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We construct closed-form gravitational waveforms (GWs) with tidal effects for the coalescence
and merger of binary neutron stars. The method relies on a new set of eccentricity-reduced and
high-resolution numerical relativity (NR) simulations and is composed of three steps. First, tidal
contributions to the GW phase are extracted from the time-domain NR data. Second, those con-
tributions are employed to fix high-order coefficients in an effective and resummed post-Newtonian
expression. Third, frequency-domain tidal approximants are built using the stationary phase ap-
proximation. Our tidal approximants are valid from the low frequencies to the strong-field regime
and up to merger. They can be analytically added to any binary black hole GW model to obtain a
binary neutron star waveform, either in the time or in the frequency domain. This work provides
simple, flexible, and accurate models ready to be used in both searches and parameter estimation
of binary neutron star events.
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The 2015 detections of gravitational waves (GWs) of
merging binary black holes (BBHs) [1, 2] have initi-
ated a new observational era in astronomy and funda-
mental physics. In the coming years, ground-based ad-
vanced interferometers will reach design sensitivity and
observe the coalescence and merger of binary neutron
stars (BNSs) [3]. These observations will have a unique
potential to probe the fundamental physics of NSs and to
connect high-energy astrophysical phenomena with their
strong-gravity engines. Main examples are the possibil-
ity to constrain the equation of state (EOS) of the cold
ultradense matter in NS interiors, e.g. [4], and the possi-
bility to show the unequivocal connection between elec-
tromagnetic signals, e.g. short gamma ray bursts [5] or
kilonovae [6], with the collision of two compact objects.

A key open problem for GW astronomy with BNS
sources is the availability of faithful waveform models
that capture the strong-gravity and tidally-dominated
regime of the late-inspiral and merger. State-of-art tidal
waveform models have been developed in [7, 8] and are
based on the effective-one-body (EOB) description of the
general-relativistic two body problem [9, 10]. That ap-
proach proved to be very powerful but has also limita-
tions. EOB waveforms cannot be efficiently evaluated,
hence they cannot be directly used for GW searches or
parameter estimation. To that purpose one must build
other representations [11] that require extra efforts and
introduce further uncertainties. Additionally, current
published tidal EOB models neither include spin effects
nor are tested against spinning NR simulations [12]. Re-
cent work also showed that the current EOB models are
not uniformly accurate on the binary parameter space
that has been simulated in Ref. [13]. Thus, modeling

techniques complementary to EOB, see e.g. [14, 15], are
needed especially because post-Newtonian (PN) approx-
imants fail towards merger and introduce systematic un-
certainties in GW parameter estimation [16–18].

In this work we construct for the first time closed-form
(analytical) approximants to the tidal GW phase directly
employing numerical relativity (NR) simulations. Simple
time and frequency domain approximants are build from
a set of error-controlled BNS merger simulations. Our
method is inspired by some ideas used in the modeling
of BBH’s GWs. In particular, it makes direct use
of NR data as in the Phenom approach [19] and em-
ploys resummed PN expressions as in the EOB approach.

Eccentricity-reduced and high-resolution NR simula-
tions. For this work we simulated nine BNS configu-
rations in general relativity. We simulated equal-masses
BNSs both irrotational and with spins (anti-) aligned to
the orbital angular momentum. Three different parame-
terized EOSs (MS1b, H4, SLy) [20] are employed to span
a large range of tidal parameters (see below). The bi-
nary gravitational mass is M = MA + MB ∼ 2.7, where
A,B label the NSs and MA is the mass of star A in iso-
lation. Spin magnitudes are in the range χA = χB ∼
[−0.1,+0.15], where χA = SA/M

2
A is the mass-rescaled

dimensionless spin. We use the numerical methods im-
plemented in the pseudospectral initial data SGRID code
[21] and in the 3+1 adaptive-mesh-refinement evolution
BAM code [22]. Key technical points are the use of
the Z4c formulation of general relativity and of an high-
order scheme for the hydrodynamics [23, 24]. See [25]
for further details. Note that we employ geometric units
G = c = M� = 1.
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These new simulations significantly improve the
waveform’s quality over previous ones. Low-eccentricity
initial data were generated following Ref. [26]; our BNSs
have e ∼ 10−3. Each BNS is evolved using four to
five grid resolutions making a total of 37 runs. The
NSs are resolved with smallest grid spacings in the
range h = 0.291 − 0.059 in each direction. These are
the largest BNS simulations performed with the BAM
code so far and utilized ∼ 25 million CPU hours on
various high-performance-computing clusters. Numeri-
cal uncertainties are estimated from convergence tests
and a detailed error budget has been computed. Our
waveforms have maximal errors at merger, accumulated
over ∼ 12 orbits, of ∼ 0.5 − 1.5 radians, depending on
the particular configuration [25].

Extraction of tidal contributions. Spin and tidal ef-
fects in the phase of the complex GW h(t) = A(t)e−iφ(t)

are parametrized to leading PN order respectively by the
effective spin

χeff = XAχA +XBχB −
38

113
XAXB(χA + χB) (1)

describing the spin-orbit (SO) interaction [27], and by
the tidal coupling constant [10]

κT2 = 2

[
XA

XB

(
XA

CA

)5

kA2 +
XB

XA

(
XB

CB

)5

kB2

]
, (2)

where kA2 is the quadrupolar Love number describing the
static quadrupolar deformation of one body in the grav-
itoelectric field of the companion, XA = MA/M , and
CA is the compactness of star A. We work with the
phase as a function of the dimensionless GW frequency
ω̂ = M∂tφ(t) and use the ansatz

φ(ω̂) ≈ φ0(ω̂) + φSO(ω̂) + φT (ω̂) , (3)

where φ0 denotes the nonspinning black hole (or point
particle) phase evolution. The next-to-leading order PN
expression of the tidal contribution (TaylorT2 approxi-
mant) [18] reads

φT2
T = −κT2

cNewtx
5/2

XAXB
(1 + c1x) , (4)

with x(ω̂) = (ω̂/2)2/3, where ω̂/2 is the orbital frequency,
and cNewt = −13/8, c1 = 1817/364 (value for equal mass
case). Similarly, the SO contribution is φSO ∝ χeff at
leading PN order. Using Eq. (3) the nonperturbative
SO and tidal contributions can be extracted by linear
combinations of simulation data with different parame-
ters, as detailed in [12, 28]. For simplicity, we neglect
spin-spin interactions; they are subdominant contribu-
tions and poorly resolved in our simulations [28]. We
find that the spin and tidal terms in Eq. (3) are decou-
pled to the level of the NR uncertainties, Fig. 1. This
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FIG. 1. Phase as a function of the GW frequency from NR
simulations. The simulations are labeled as EOSχA

MA
. Top:

Total phase / number of cycles accumulated within frequency
interval ω̂ ∈ [0.04, 0.17] for different BNSs. Markers indicate
the merger (peak of the GW’s amplitude) of the particular
simulation for the highest revolved simulation. Bottom: Tidal
phase contribution φT /κ

T
2 computed by subtracting pairs of

datasets; note it is independent on the spin.

fact allows us to construct spinning BNSs using binary
black hole baseline waveforms and adding the tidal con-
tribution. Further, Fig. 1 indicates that the TaylorT2
approximant does not capture the phase evolution in the
strong field region, failing for ω̂ & 0.06, cf. [16].
Time-domain tidal approximant. A closed-form ex-

pression for φT is obtained using the fitting formula

φT = −κT2
cNewt

XAXB
x5/2 × (5)

1 + n1x+ n3/2x
3/2 + n2x

2 + n5/2x
5/2 + n3x

3

1 + d1x+ d3/2x3/2

Demanding that Eq. (5) reproduces Eq. (4) in a low
frequency expansion, we set d1 = (n1 − c1). The other
coefficients are fit to NR data. Note that for simplicity
Eq. (5) does not contain tidal terms corresponding to
higher multipoles [29], and the dependency from XA,B of
the higher effective PN terms is ignored. This is justified
since we seek an effective expression of the phase; the
coefficients of the latter could be further improved using
more simulations with various mass ratios.

The fit is performed on a dataset spanning the in-
terval ω̂ ∈ [0, 0.17]. Eq. (4) is used for ω̂ ≤ 0.0074,
while the tidal EOB waveforms of [7] are used for ω̂ ≥∈
[0.0074, 0.04]. The datasets are connected such that
phase differences near the interval boundaries are min-
imal. We interpolate the data on a grid consisting of
10000, 5000, 500 points in the three intervals, respec-
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FIG. 2. Comparison of NR simulations with model wave-
forms obtained following Eq. (3). The panels show the real
part of the GW signals (NR data – gray, tidal approximant
– orange). We also include the phase between the NR data
with respect to our tidal approximant Eq. (5), to Taylor T2
tidal approximant Eq. (4) (cyan), and for some cases to EOB
(green dashed [8], green dot dashed [7]. We also indicate the
estimated uncertainty of the NR data (blue shaded) and the
alignment region (gray shaded). Simulations use the same
notation as in Fig. 1 except for the unequal mass case of [13]
with EOSMA+MB .

tively. Although the final fit depends only weakly on
the exact number of points of the interpolating grid, us-
ing more points at lower frequencies helps constraining
the fit in that regime. Our approximant is defined by
Eq. (5) with the fitting coefficients n = (-17.941,57.983,-
298.876,964.192,-936.844), and d3/2 = 43.446.

A time-domain approximant of a generic spin-aligned
BNS configuration is computed by prescribing κT2 and
adding Eq. (5) to a BBH baseline that includes the spin
contribution. The time-domain phasing is then calcu-
lated by numerically integrating t =

∫
dφ/ω̂(φ) in order

to obtain a parametric representation of the tidal phase.
We stop the integration once φ(ω̂) reaches its maximum.

Examples of such constructed waveforms are reported
in Fig. 2. There, we use the nonspinning BBH waveforms
from the SXS-database [30, 31], in particular setup 66 for
the equal mass cases and setup 7 for the q = XA/XB =
1.5 configuration. In order to compare with the BNS
configuration with χeff = +0.123 we add to the nonspin-
ning NR BBH curve the spin-orbit contributions given
in Eq. (417) of [27]. In general a spinning binary black
hole baseline should be used.

In most cases our new waveforms are compatible with
the NR data within the estimated uncertainties. The pro-
posed tidal approximant remains accurate also for longer
waveforms. Phase differences with respect to hybrid tidal
EOB-NR waveforms and accumulated over the last 300
orbits before merger are of the order of ∼ 1 rad, see [25].
In the nonspinning cases, our results can be directly com-
pared to the tidal EOB waveforms of [7, 8] [see green lines
in Fig. 2]; comparable performances are observed in spite
of the simplicity of our model.

Although the fit has been derived with an equal mass
ansatz, it gives a good prediction also for the unequal
mass case. That is partly due to the leading-order
dependence on the mass ratio contained in the tidal
coupling constants, Eq. (2). Also, while we use NR
data up to ω̂ = 0.17, the model remains accurate
also for BNSs with smaller κT2 that merge at higher
frequencies. Let us stress that the model performances
are independent of the BBH baseline, provided the latter
is a faithful representation of BBH waveforms.

Frequency-domain tidal approximant. In the fre-
quency domain h̃(f) = f−7/6Ã(f)e−iΨ(f). The expres-
sion of the tidal phase is computed using the stationary
phase approximation (SPA) [29]

d2ΨSPA
T

dω2
f

=
Qω(ωf )

ω2
f

, (6)

where ωf is the Fourier domain circular frequency ωf =
2πMf , and Qω(ω) = dφ/d logω. The integration of
Eq. (6) with (5) is performed numerically; the constants
of integration are fixed by demanding continuity with the
TaylorF21PN in the limit f → 0. The resulting expression
ΨNR
T can be approximated by a Padé function:

ΨNRP
T = −κT2

c̃Newt

XAXB
x5/2 × (7)

1 + ñ1x+ ñ3/2x
3/2 + ñ2x

2 + ñ5/2x
5/2

1 + d̃1x+ d̃3/2x3/2

with c̃Newt = 39/16 and d̃1 = ñ1 − 3115/1248, the other
parameters read: ñ = (-17.428,31.867,-26.414,62.362)
and d̃3/2 = 36.089.

Figure 3 compares the obtained tidal approximants
ΨNR
T ,ΨNRP

T with the TaylorF21PN and the 2.5PN approx-
imants given in [29] (TaylorF22.5PN). Because of the con-
struction of Eq. (7) the low frequency behavior of Tay-
lorF2 is recovered. At higher frequencies PN expressions
predict smaller tidal effects than ΨNR

T . Considering the
accuracy of ΨNRP

T , the Padé fit recovers ΨNR
T with frac-

tional errors . 1%.
To further test the performance of the proposed

frequency-domain model we compute the unfaithfulness
(F̄ = 1 − F , one minus faithfulness) which is the mis-
match for the fixed intrinsic binary parameters with re-
spect to tidal EOB waveforms starting at ∼ 25Hz and



4

−0.25
−0.20
−0.15
−0.10
−0.05

0.00
Ψ
T
/κ

T 2

TaylorF21PN

TaylorF22.5PN

ΨNR
T

ΨNRP
T

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

2πMf

0.00
0.01
0.02
0.03
0.04
0.05

∆
Ψ
T
/κ

T 2

TaylorF21PN-ΨNR
T

TaylorF22.5PN-ΨNR
T

ΨNRP
T -ΨNR

T

FIG. 3. Frequency-domain tidal approximants. Top
panel shows ΨT /κ

T
2 as given by the TaylorF21PN,

TaylorF22.5PN [29], Eq. (6), and Eq. (7). Bottom panel: Dif-
ference between the frequency-domain representations.

hybridized with NR simulations [25]. The unfaithfulness
quantifies the loss in the signal-to-noise ratio (squared)
due to the inaccuracies in the signal modeling. The typi-
cal maximum value used in the GW searches is F̄ ≤ 0.03,
which roughly corresponds to . 10% loss in the number
of events (assuming that they are uniformly distributed).

Figure 4 shows F̄ for different approximants and
varying the minimum frequency in the overlap interval
from Mfmin ∼ [0.0022, 0.04]/2π, i.e. from ∼ 27 Hz to
the NR regime (∼ 480 Hz). Tidal approximants have
significant mismatches with respect to BBH ones already
for Mfmin ∼ 0.01/2π. The unfaithfulness computed
from Mfmin ∼ 0.0022/2π up to the merger is only
weakly dependent on the particular tidal approximant.
However, tidal effects become significant at higher
frequencies, and if the F̄ computations are restricted
to higher frequencies significant differences amongst the
approximants emerge. ΨNRP

T has the smallest unfaith-
fulness. For MS1b0.00

1.35 (top panel), in particular, the
proposed tidal approximant has an unfaithfulness about
one order of magnitude smaller than TaylorF2. For
SLy0.00

1.35 (bottom panel) the unfaithfulness is F̄ < 0.03
for all tidal approximants, indicating that the largest
contribution due to tidal effects comes from the strong-
field–NR regime.

Conclusion. The tidal approximants, which we pro-
pose, can be efficiently used for both GW searches and
parameter estimation of BNS events. For data-analysis
applications it is trivial to re-parametrize the tidal cou-
pling constant κT2 in terms of the mass ratio and (com-
binations of) the dimensionless tidal parameters that are
shown to be optimal for those purposes [17, 18]. The
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FIG. 4. Unfaithfulness of different approximants with re-
spect to hybridized EOB-NR waveforms for MS1b0.00

1.35 (top)
and SLy0.00

1.35 (bottom). The unfaithfulness is computed within
the interval M [fmin, fmax] ∼ [0.0022, 0.04]/2π, i.e. fmin varies
between 27 and 480 Hz. fmax is set to the merger frequency
of the highest resolved simulation (1398 Hz for MS1b0.00

1.35 and
2005 Hz for SLy0.00

1.35). As BBH baseline for ΨNRP
T we use a

nonspinning equal-mass EOB waveform [32].

cutting frequency for the phase approximants is given by
the NR results of [33] that characterize the merger fre-
quency of any BNS in terms of κT2 . Tidal corrections to
the amplitude can be also added following [29]. Further
work could also aim at improving the approximants using
more NR data by including precession effects [34, 35].

Although we focused on BNSs, by setting kA2 = 0 and
with the appropriate choice of the resulting κT2 one could
construct waveforms for black-hole–neutron star binaries.
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SUPPLEMENTARY MATERIAL

Simulations overview

The physical parameters of the BNS configurations and the grid configurations used in the simulations are sum-
marized in Tab. I. The configurations consist of equal mass (MA = MB) binaries with aligned or anti-aligned spins
(χA = χB). In total, nine (37) new configurations (simulations) have been performed for the scope of this paper.
BNS configurations are indicated by the EOS, the masses (subscript), and the spin (superscript), i.e. EOSχA

MA
. We

also use non-spinning data from the simulations described in [13] with the notation (EOSMA+MB
).

Our initial configurations are constructed with the pseudospectral SGRID code [26, 36–38], which makes use of
the constant rotational velocity approach [21, 39] to construct constraint solved spinning BNS configurations in
hydrodynamical equilibrium. Eccentricity reduced initial data are constructed following [26, 40] by applying an
iteration procedure varying the binary’s initial radial velocity and the eccentricity parameter.

Evolutions are performed with the BAM code [22, 24, 41, 42]. We use 7 mesh refinement levels labeled with
l = 0, ..., 6 with grid spacing hl = h0/2

l for l > 0 and number of points per direction nl. Different grid resolutions
named R1, R2, etc. have been employed; the NS diameter is typically covered with n6 = 64, 96, 128, 192, 256 points
for respectively R1 to R5 (Table I.) The numerical fluxes for the general relativistic hydrodynamics are computed as
in [24] based on a flux-splitting approach with the local Lax-Friedrich flux and after reconstruction of the characteristic
fields [43, 44]. This method guarantees clear convergence and a robust error assessment of the numerical simulations,
see below.

TABLE I. BNS configurations. The first column defines the name of the configuration with the notation: EOSχ
A

MA . The
subsequent columns describe the corresponding physical properties of the individual stars: the EOS [20], the gravitational mass
of the individual stars MA,B , the binary mass M = MA + MB , the binary’s baryonic mass Mb, the stars’ dimensionless spin
χA,B , the effective spin χeff , the dimensionless quadrupolar tidal coupling constant κT2 , the initial dimensionless GW frequency
Mω22(0), the ADM mass MADM(0) and angular momentum JADM(0) and residual eccentricity estimated from the proper
distance, see [26]. The last columns indicate the resolutions employed for BAM’s evolution grid. We use 7 mesh refinement
levels l = 0, ..., 6 with refinement ratio 2:1 and grid spacing hl = h0/2

l for l > 0. We report the number of points per direction
in the finest level, n6, for all the runs and the grid resolution h6 in the finest level of the most resolved run. Grid resolutions
of other runs can be obtained using h′ = h · n/n′.

Name EOS MA,B M Mb χA,B χeff κT2 Mω22(0) MADM(0) JADM(0) e[10−3] n6 h6

MS1b−0.10
1.35 MS1b 1.3504 2.7008 2.9351 -0.099 -0.082 288.0 0.0357 2.6795 7.4858 1.8 (64,96,128,192) 0.097

MS1b0.00
1.35 MS1b 1.3500 2.7000 2.9351 +0.000 +0.000 288.0 0.0357 2.6786 7.8021 1.7 (64,96,128,192) 0.097

MS1b0.10
1.35 MS1b 1.3504 2.7008 2.9351 +0.099 +0.082 288.0 0.0357 2.6793 8.1292 1.9 (64,96,128,192) 0.097

MS1b0.15
1.35 MS1b 1.3509 2.7018 2.9351 +0.149 +0.123 288.0 0.0357 2.6802 8.3054 1.8 (64,96,128,192) 0.097

H40.00
1.37 H4 1.3717 2.7435 2.9892 +0.000 +0.000 190.0 0.0367 2.7213 8.0052 0.9 (64,96,128,192) 0.083

H40.14
1.37 H4 1.3726 2.7452 2.9892 +0.141 +0.117 190.0 0.0368 2.7229 8.4897 0.4 (64,96,128,192) 0.083

SLy0.00
1.35 SLy 1.3500 2.7000 2.9892 +0.000 +0.000 73.5 0.0379 2.6778 7.6860 0.4 (64,96,128,192,256) 0.059

SLy0.05
1.35 SLy 1.3502 2.7003 2.9892 +0.052 +0.043 73.5 0.0379 2.6780 7.8588 0.4 (64,96,128,192) 0.078

SLy0.11
1.35 SLy 1.3506 2.7012 2.9892 +0.106 +0.088 73.5 0.0379 2.6789 8.0391 0.7 64,96,128,192 0.078

Simulations accuracy

Eccentricity

We construct eccentricity reduced initial data by means of an iterative procedure that monitors and varies the
binary’s initial radial velocity and the eccentricity parameter, see Eq. (2.37) and (2.39) of [26]. As an initial guess,
quasi-equilibrium configurations in the usual quasi-circular orbit are employed for which residual eccentricities are in
the range of e ∼ 10−2. The steps of the iterative procedure are then, (i) evolve the data for ∼ 3 orbits, (ii) measure
the eccentricity e, for which we use the proper distance as described in [26], and (iii) re-compute the initial data with
adjusted parameters. As an exemplary case, the iteration procedure for the SLy0.00

1.35 case is presented in Fig. 5. Target
residual eccentricities e ∼ 10−3 are usually achieved within three iterations [26].
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FIG. 5. Proper distance along the connection line between
the two NSs centers for SLy0.00

1.35.
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FIG. 6. Phase difference for setup SLy0.00
1.35 (solid lines).

Dashed lines are rescaled phase differences assuming second
order convergence, which is achieved for resolution R2 and
above. Straight vertical lines mark the moment of merger,
i.e. the peak in the GW amplitude.

Waveform’s error-budget

The GW metric multipoles

r h`m(t) = A`m(t)e−iφ`m(t) (8)

are constructed from the curvature multipoles using frequency domain integration of Ref. [45]. In this work only
the dominant (2,2)-mode is considered and indices are dropped in the following. The retarded time is defined as
u = t − r∗, where r∗(M) is the tortoise coordinate of the Schwarzschild spacetime of mass M computed from the
coordinate (isotropic) radius at which GWs are extracted (see below).

Uncertainties due to truncation errors are estimated following [24]. As an exemplary case we present the phase
difference between different resolutions for SLy0.00

1.35 in Fig. 6. Second order convergence (dashed lines) is achieved for
resolutions R2 and higher. For a better approximation of the waveform we follow the description of [46] and apply a
Richardson extrapolation for the phase using the highest three available resolutions for each dataset.

GWs are extracted at finite radii, where we pick r = 1000 for our analysis. The numerical error introduced by finite
radii extraction of the GW is obtained by comparing finite radii waveforms with second oder polynomial extrapolated
waveform (similar results are obtained by including next-to-leading order terms, see [24, 47]).

Time-domain approximants

Time-domain fit

To obtain the time-domain fit, we split the interval ω̂ ∈ I = [0, 0.17] into three different intervals: IT2 = [0, 0.0074],
IEOB = [0.0074, 0.04], INR = [0.04, 0.17]. In IT2 we evaluate Eq. (4) at 10000 equally spaced points. For interval IEOB

we compute three tidal EOB waveforms [7] corresponding to the three irrotational runs of Tab. I and with starting
frequency ω̂(0) = 0.0065. We compute ∆φT /κ

T
2 by taking the difference of φ(ω̂) for different BNS configurations.

From the obtained curves we compute the average and interpolate on an equally spaced grid with a total of 5000 grid
points in IEOB. A phase shift is applied to the EOB data by minimizing the phase difference between the T2 and EOB
data in the interval ω̂ ∈ [0.00715, 00765]. For the interval INR we compute φT /κ

T
2 by taking the difference between the

irrotational NR data [as for the EOB waveforms]; we then take the average of all obtained results, interpolate on an
equally spaced grid with 500 grid points, and fix the initial phase by minimizing the phase difference in [0.04, 0.044].

The obtained data on I = IT2 ∪ IEOB ∪ INR are fittd as a function of x, after factoring out the leading order
Newtonian term. The result is given in Eq. (5); the high frequency part of the fit is shown in the bottom panel of
Fig. 1.



8

0 500 1000 1500 2000
−1.5

−1.0

−0.5

0.0

0.5

MS1b0.00
1.35

0 500 1000 1500 2000

H40.00
1.37

0 500 1000 1500 2000
−1.5

−1.0

−0.5

0.0

0.5

H40.14
1.37

0 500 1000 1500 2000

MS1b0.10
1.35

0 500 1000 1500 2000

t/M

−1.5

−1.0

−0.5

0.0

0.5

MS1b−0.10
1.35

0 500 1000 1500 2000

t/M

SLy0.11
1.35

<(rhNR
22 )/M <(rh22)/M φ− φNR log100 |φ− φNR|

FIG. 7. GWs for different setups, see Tab. I. We compare our waveform model with full NR simulations. For each configuration
we show the real part obtained with Eq. (5) (orange) and the real part of the comparison waveform (gray). The dephasing
between the model and the comparison waveform φ − φNR is shown blue and log100 |φ − φNR| is shown red. The numerical
uncertainty is shown as a blue shaded region and the alignment region as a gray shaded interval.

Waveform comparison

In addition to the exemplary cases in the main text, we further test the performances of the prosed model comparing
to

• Waveforms from all the simulations listed in Tab. I [See Fig. 7 for examples].

• Equal and unequal mass NR waveforms of Ref. [13] [see Fig. 8 in which we also include tidal EOB waveforms].

• Hybrid EOB-NR waveforms with a starting frequency of 75 Hz. The hybrid waveforms are constructed by
combining tidal EOB waveforms of [7] with the highest resolution irrotational data presented in Tab. I [See
Fig. 9 for the results].

We find that our time-domain approximant is robust for a variation of the binary parameters and the waveform length.
In particular, spurious effects due to time-domain waveform alignment do not influence significantly our results.

Frequency-domain approximants

The 2.5PN TaylorF2 expression of Damour et al. [29] (DNV) with which we compare reads for equal mass BNSs:

Ψ2.5PN
T = κT2 c̃Newtx

5/2(1 + c̃1x+ c̃3/2x
3/2 + c̃2x

2 + c̃5/2x
5/2) , (9)

where

c̃Newt = −39

4
, c̃1 =

3115

1248
, c̃3/2 = −π, c̃2 =

23073805

3302208
+

20

81
ᾱ2

2 +
20

351
β22

2 , c̃5/2 = −π 4283

1092
. (10)

For equal masses ᾱ2
2 = 85/14. The expression above includes tail terms up to 2.5PN order and the 2PN is computed

up to an unknown (not yet calculated) coefficient which we set β22
2 = 0.
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FIG. 8. Comparison of the proposed waveform model with NR simulations of [13]. For each configuration we show the real
part obtained with (5) (orange) and the real part of the NR waveform (gray). The dephasing between the model and the NR
data φ− φNR is shown blue and log100 |φ− φNR| is shown red. We also include the phase between the NR data with respect to
the EOB models of [8] (green dashed) and [7] (green dot-dashed). The numerical uncertainty is shown as a blue shaded region
and the alignment region as a gray shaded interval. Considered configurations are: an equal mass setups for the MS1b with
masses MA = MB = 1.375 (upper left); an unequal mass setups setup with MA = 1.65,MB = 1.10 for MS1b (upper right),
and unequal mass setups with MA = 1.50,MB = 1.00 for MS1b (lower left) and SLy (lower right) (bottom row).

To validate the frequency approximant we compute the mismatch (or unfaithfulness)

F̄ = 1−max
φc,tc

(h1(φc, tc)|h2)√
(h1|h1), (h2, h2)

(11)

with φc, tc an arbitrary phase and time shift, and the noise-weighted overlap defined as

(h1, h2) = 4<
∫ fmax

fmin

h̃1(f)h̃2(f)

Sn(f)
df . (12)

Above, Sn(f) is the one-sided power spectral density of the detector noise, where we use the ZERO_DET_high_P noise
curve of [48]. The value of F̄ indicates the loss in signal-to-noise ratio (squared) when the waveforms are aligned
in time and phase. Template banks are constructed so that the maximum value is max(F̄ ) = 0.03. Such mismatch
corresponds to a maximum loss in event-rate of ∼ 0.09.
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FIG. 9. We compare our waveform model with hybrid NR-tidal EOB waveforms. For each configuration we show the real part
obtained with (5) (orange) and the real part of the hybrid waveform (gray). The dephasing between the model and the hybrid
φ − φNREOB is shown blue and log100 |φ − φNREOB| is shown red. The alignment region is marked as a gray shaded interval.
The simulations cover about 300 orbits before the merger.
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