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Abstract. We prove a key result regarding the mass and angular momentum content

of linear vacuum perturbations of the Kerr metric obtained through the formalism

developed by Chrzarnowski, Cohen, and Kegeles (CCK). More precisely we prove that

the Abbott-Deser mass and angular momentum integrals of any such perturbation

vanish, when that perturbation was obtained from a regular Fourier mode of the

Hertz potential. As a corollary we obtain a generalization of previous results on the

completion of the ‘no string’ radiation gauge metric perturbation generated by a point

particle. We find that for any bound orbit around a Kerr black hole, the mass and

angular momentum perturbations completing the CCK metric are simply the energy

and angular momentum of the particle “outside” the orbit and vanish “inside” the

orbit.

1. Introduction

In the 1970s, Chrzarnowski[1], Cohen and Kegeles [2, 3], and Wald [4] developed a

procedure for obtaining vacuum solutions of the linearized Einstein equation on a Kerr

background from a solution of the homogeneous spin ±2 Teukolsky equation. The main

advantages of this construction are that the Teukolsky equation is a scalar equation that

(unlike the linearized Einstein equation in Kerr) can be separated over harmonic modes

into a set of uncoupled ODEs.

As such, the procedure has found many applications in black hole perturbation theory [5–

8]. In recent years it has been shown that the CCK procedure — as it is sometimes

called — can be used to reconstruct the metric perturbation caused by a point particle

moving on a geodesic around a Kerr black hole from the Weyl scalars ψ0 or ψ4 sourced

by the particle [9–15]. This perturbation can then be used to obtain the correction to

equations of motion of the particle due to its own gravitational field in the form of the

gravitational self force [16, 17]. In turn, these self-force corrections play a crucial role in

a faithful modelling of the dynamics of extreme mass-ratio inspirals (EMRIs), and their

waveforms [18].

A subtlety in reconstructing the metric perturbation from ψ0 or ψ4 is that this procedure

is (fundamentally) ambiguous up to metric perturbations for which ψ0 or ψ4 vanish.
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Wald [19] showed that up to gauge modes this ambiguity formed solely of perturbations

of the background metric within the family of Petrov type-D vacuum spacetimes.

Further restricting to global vacuum solutions leaves only perturbations of δM and δJ

of the mass and angular momentum of the background within the Kerr family.‡ Since

the reconstruction procedure in [16, 17] is performed separately in a region “outside” the

particle orbit (i.e. a region of spacetime reaching from infinity to a timelike hypersurface

S containing the particle worldline) and a region “inside” the particle orbit (i.e. a region

of spacetime reaching from S to the horizon of the background metric.), this ambiguity

occurs separately in each region leading two four unknown amplitudes δM± and δJ±,

which need to be fixed using additional input. The problem of finding δM± and δJ± is

known as the completion problem.

The values of δM± and δJ± affect the EMRI dynamics in two separate ways. First, they

enter into the calculation of the conservative part of the first order self-force. Second,

they will provide second order corrections to the flux of energy and angular momentum

from the particle. In the two-timescale expansion of the dynamics [18], both lead to

an O(1) correction to the phase of emitted gravitational waveform over the inspiral

timescale.

In [20] the missing mass and angular momentum perturbations were recovered for

particles on bound equatorial orbits by requiring continuity of some gauge invariant

fields constructed from the metric perturbation. The final result of the lengthy and

involved calculation is remarkably simple: “outside” the particle’s orbit the mass and

angular momentum are given by the energy and angular momentum of the orbit, while

both vanish “inside” the orbit. As noted in [20], this result implies that in this instance

the metric perturbations produced by the CCK procedure do not contain any mass or

angular momentum, as measured by the Abbott-Deser charges [21].

The goal of this paper is to prove this is true in a general sense: the metric perturbation

produced through the CCK procedure from any regular harmonic solution of the

homogeneous Teukolsky equation always has vanishing Abbott-Deser charges. As an

immediate corollary we find that the simple result of [20] is true for general bound

orbits in Kerr space time, and independent of the variant (ingoing or outgoing) of the

radiation gauge used. However, the lemma that is the main result of this paper is of more

general applicability. In particular, it is not linked to to context of reconstructing the

metric from vacuum perturbations of ψ0 and ψ4, but is applicable to other applications

where the CCK procedure is used simply to generate vacuum metric perturbations from

solutions of the Teukolsky equation.

The plan for this paper is as follows. In section 2 we introduce some of the preliminaries

needed for our results. In particular, following [20, 22] we introduce the Abbott-Deser

charges which will be used to measure the mass and angular momentum content of a

perturbation. Section 3 introduces our main technical result in the form of a lemma and

‡ The well known C-metric and Kerr-NUT perturbations all support matter on some section of the

symmetry axis of the background.
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continue with its proof. The main consequences of this result are discussed in section

4. We conclude with a discussion of our results in section 5.

2. Preliminaries

2.1. The Kerr metric

In this paper we study perturbations of the Kerr metric, which in Boyer-Lindquist

coordinates is given by

gKerr
µν dxµ dxν =−

(
1− 2r

Σ

)
dt2 +

Σ

∆
dr2 +

Σ

1− z2
dz2

+
1− z2

Σ

(
2a2Mr(1− z2) + (a2 + r2)Σ

)
dφ2 − 4Mar(1− z2)

Σ
dt dφ,

(1)

where z := cos θ, ∆ := r(r−2M)+a2, and Σ := r2+a2z2. Moreover, we use geometrized

units (G = c = 1). In (most of) the following we also set M = 1 for convenience. All

notations and conventions are compatible with the appendix of [17].

The CCK procedure (discussed below) further is formulated in the Newman-Penrose

formalism. For that purpose we chose the following null tetrad (introduced by

Kinnersley),

eµ1 = lµ =
1

∆
(r2 + a2,∆, 0, a), (2)

eµ2 = nµ =
1

2Σ
(r2 + a2,−∆, 0, a), (3)

eµ3 = mµ = − ρ̄
√

1− z2√
2

(ia, 0,−1,
i

1− z2
), (4)

eµ4 = m̄µ =
ρ
√

1− z2√
2

(ia, 0, 1,
i

1− z2
), (5)

where lµ and nµ are the in- and outgoing principle null vectors of the Kerr background.

2.2. CCK metric perturbations

The procedure developed by Chrzarnowski [1], Cohen and Kegeles [2, 3], and Wald

[4], also referred to as the “CCK” procedure, starts from solutions of the homogeneous

Teukolsky equation with spin-weighted s = ±2,{
−
((r2 + a2)2

∆
− a2(1− z2)

) ∂2
∂t2
− 4Mar

∆

∂2

∂t∂φ
−
(a2

∆
− 1

1− z2
) ∂2
∂φ2

+2s
(M(r2 − a2)

∆
− r − iaz

) ∂
∂t

+ 2s
(a(r −M)

∆
+

iz

1− z2
) ∂
∂φ

+∆−s
∂

∂r

(
∆s+1 ∂

∂r

)
+

∂

∂z

(
(1− z2) ∂

∂z

)
− s(s+ 1)z2 − s

1− z2
}
sΦ = 0.

(6)
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A vacuum metric perturbation is then constructed using,

hCCKµν := sĤµν ◦ sΦ + c.c., (7)

where the sĤµν are certain second order partial differential operators given by

+2Ĥµν := −ρ−4
{
e1µe

1
ν

(
δ̄ − 3α− β̄ + 5$

)(
δ̄ − 4α +$

)
+ e3µe

3
ν

(
∆̂ + 5µ− 3γ + γ̄

)(
∆̂ + µ− 4γ

)
− e1(µe3ν)

((
δ̄ − 3α + β̄ + 5π + τ̄

)(
∆̂ + µ− 4γ

)
+
(
∆̂ + 5µ− µ̄− 3γ − γ̄

)(
δ̄ − 4α + π

))}
,

(8)

and

−2Ĥµν := −
{
e2µe

2
ν

(
δ + ᾱ + 3β − τ

)(
δ + 4β + 3τ

)
+ e4µe

4
ν

(
D − %

)(
D + 3%

)
− e2(µe4ν)

(
(δ − 2ᾱ + 2β − τ) (D + 3%) + (D + %̄− %) (δ + 4β + 3τ)

)}
.

(9)

Here D, ∆̂, δ, δ̄ are the direction derivatives along the tetrad legs as used in the Newman-

Penrose formalism. The other Greek symbols are the Newman-Penrose spin-coefficients

(see e.g. the appendix of [17]).

The produced metric perturbation satisfies the radiation gauge conditions. When

s = +2 the metric satisfies the outgoing radiation gauge (ORG) condition nαhαβ = 0,

and when s = −2 the metric satisfies the ingoing radiation gauge (IRG) condition

lαhαβ = 0. In both cases the metric is traceless hαα = 0.

Despite being a solution of the Teukolsky equation, the field sΦ does not coincide with

the Weyl scalar ψ0 or ψ4 (of the appropriate spin-weight) that would be obtained from

the corresponding CCK metric perturbation. The fields sΦ are (in this context) known

as Hertz potentials. A general inversion procedure for obtaining the Hertz potential

corresponding to some ψ0 or ψ4 exists [9, 15], but its details will not be discussed here.

2.3. Abbott-Deser charges

In this paper, following [22] and [20], we measure the mass and angular momentum of

a perturbation using conserved charges introduced by Abbott and Deser [21] that can

be defined quasilocally on any metric perturbation when the background has admits a

Killing vector. Its advantage in the present context is that it applies to any vacuum

perturbation of Kerr spacetime, whereas more conventional notions of mass and angular

momentum cannot be applied directly. E.g. the Komar quantities require the existence

of Killing vectors on the full (perturbed) metric (which we generically won’t have),

and the ADM quantities require asymptotic flatness (satisfied only by a subset of CCK

perturbations. Nonetheless, in domains of common applicability (Kerr perturbations
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that are asymptotically flat or share the Killing symmetries of the background) the

Abbott-Deser quantities coincide with the ADM and Komar ones [22].

For any metric perturbation hαβ on a background gαβ with a Killing vector kµ, Abbott

and Deser [21] introduced the anti-symmetric 2-form,

Fαβ[kµ] :=
1

8π

(
kλ∇[αh̄β]λ + h̄λ[α∇β]k

λ − k[α∇λh̄β]λ
)
, (10)

where h̄αβ := hαβ − (1/2)gαβhλ
λ is the trace reversed metric perturbation. The key

property of Fαβ is that its divergence defines a conserved current,

jα := −∇λF
λα = kλT

λα, (11)

where Tαβ is the energy-momentum tensor appearing as a source on the right hand

side of the linearized Einstein equation for hαβ. Consequently, Fαβ is divergenceless for

vacuum ( Tαβ = 0) perturbations and can be used to define a topological charge,

Q[hµν , k
µ,S] :=

∫
S
Fαβ[kµ] dSαβ (12)

for any closed 2-surface S. It was shown by Dolan and Barack [22] that the Abbott-Deser

charge Q is in fact invariant under gauge transformations. Moreover, Eq. (11) implies

that if the closed surface envelopes a region containing a non-zero matter distribution

Tαβ, the Abbott-Deser charge is equal to the Noether charge of the matter corresponding

to the Killing vector kµ [22]. This last property is essential for completion problem as it

allows one to related the Abbott-Deser charges of the metric perturbation to the energy

and angular momentum of the particle source.

3. Main lemma

Using the symmetries of the background Kerr spacetime, solutions of the Teukolsky

equation can be decomposed

sΦ(t, r, z, φ) =

∫
dω
∑
m

sΦmω(r, z)ei(mφ−ωt), (13)

where each of the individual harmonic modes sΦmω(r, z)ei(mφ−ωt) satisfies the

homogeneous Teukolsky equation and can thus be used as a starting point of the CCK

procedure. It is in terms of these modes that we formulate our main lemma.

Lemma (Main lemma). Let sΦmω(r, z)ei(mφ−ωt) be a smooth solution of the homogeneous

(s = ±2)-Teukolsky equation. Then all Abbott-Deser charges of the corresponding

vacuum CCK metric, hCCKαβ , vanish.

Proof. Since we are dealing with vacuum metric perturbations, the Abbott-Deser

charges are topological invariants of closed 2-surfaces. Hence we are free to choose
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our surfaces to be spheres Str at constant t and r. This means that the integrals for the

Abbott-Deser charges can be written,

Q[hµν , k
µ,Str] =

2π∫
0

1∫
−1

F [kµ] dz dφ, (14)

with

F [kµ] := ΣF rt. (15)

We proceed by distinguishing three separate cases.

Non-stationary modes We first consider modes with ω 6= 0. Since the CCK operators

are partial differential operators that do not depend on t explicitly, the metric (before

taking the real part) will be proportional to exp(iωt). Since the construction of the AD-

charge Q for Str also does not involve t explicitly, this implies that Q is proportional

exp(iωt). Since Q has to be independent of t, this can only be true if Q = 0.

Non-axisymmetric modes For the second case we consider modes with m 6= 0. Since

the CCK operators also do not depend on φ explicitly this means that F ∝ exp(imφ).

Consequently, the integral in (14) vanishes.

Stationary and axisymmetric (SAS) modes We are left with the case ω = m = 0. As

discussed in e.g. [15], any stationary axisymmetric (SAS) solution can be written as a

sum

sΦSAS(r, z) = sΦ
+
SAS(r, z) + sΦ

−
SAS(r, z), (16)

where sΦ
−
SAS(r, z) satisfies regular boundary conditions at the horizon [23],

−2Φ
−
SAS(r, z) = −2Φ

−
0 (z)∆2 +O(∆3) as r → r+ (17)

+2Φ
−
SAS(r, z) = +2Φ

−
0 (z) +O(∆) as r → r+ (18)

and sΦ
+
SAS(r, z) satisfies regular boundary conditions at infinity,

−2Φ
+
SAS(r, z) =

−2Φ
+
0 (z)

r−1
+O(r−2) as r →∞ (19)

+2Φ
+
SAS(r, z) =

+2Φ
+
0 (z)

r−5
+O(r−6) as r →∞. (20)

We now calculate the Abbott-Deser charges of each component separately, starting with

sΦ
−
SAS(r, z). We first write a general Killing vector on Kerr spacetime as,

kµ := (x, 0, 0, y), (21)

by explicit calculation and expanding near the horizon we find that F is given by

F [kµ] ∝ (2ay − r−x)
(dG(z)sΦ

−
0 (z)

dz
+O(∆)

)
(22)
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with

G(z) =
−4(1− a2)r+z(1− z2)

(2z2 + r+(1− z2))2
, (23)

where r± are the outer and inner horizon radii of the background Kerr spacetime, and

the spin s only affects to proportionality factor.

Consequently, assuming that the mode is smooth and therefore finite at the poles z = ±1

we conclude that

Q =

∫
S2

Fαβ[kµ] dΣαβ = O(∆). (24)

Since Q vanishes at the horizon it must vanish everywhere.

The procedure is similar for sΦ
+
SAS(r, z), where explicit calculation finds that

F ∝ r−1 (25)

near infinity, and consequently Q vanishes (as was already noted in [20]).

We thus find the Abbott-Deser charges must vanish for any CCK metric perturbation

constructed from a smooth Teukolsky mode.

4. Consequences

The main lemma implies that the Abbott-Deser charges must vanish for a broad class

of Hertz potentials. This essentially includes all solutions of the Teukolsky equation for

which the Fourier transform in t and φ exists, and that are smooth enough such that

any Fourier sums/integrals can be exchanged with the integrals of the Abbott-Deser

flux.

However, the proof certainly does not cover all possible Hertz potentials. The form of

the proof further suggests that the best place to look for counterexamples would be in

stationary axisymmetric (SAS) modes that are singular on the symmetry axes z = ±1.

In the case a = 0, Keidl et al. [11] identified a number of such type-D solutions,

some of which were identified as “mass” or ”angular momentum” perturbations of the

background.

In Appendix A we repeat the calculation of Keidl et al. [11] for general a 6= 0. Like

[11] we find an eight dimensional family of solutions. All solutions in this family have

non-vanishing Abbott-Deser integrals. However, on closer examination this is due to the

solutions being sourced by a non-vanishing energy-momentum distribution supported

on the symmetry axis. On re-examination the same turns out to be true of the “mass

perturbations” found in [11]. The “angular momentum perturbation” from [11] however

turns out to be a proper vacuum perturbation. It is given by

−2ΦδJ = i
z(z2 − 3)

1− z2
δJ. (26)
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As we guessed it is a Hertz potential that is singular at the poles z = ±1. With the

Killing vector as in (21), the Abbott-Deser charge is

Q = yδJ. (27)

This provides an effective counter example to the tempting conjecture that all metric

perturbations constructed using the CCK formalism have vanishing Abbott-Deser

charges; at least when a = 0. For the spinning case the conjecture is in principle

open, since there is a still larger class of potential Hertz potentials that we have not

covered. (For example functions with a polynomial time dependence.)

Nonetheless, the class of Hertz potentials for which the Abbott-Deser charges vanish

is wide enough to include any Hertz potential that would appear as the result of the

inversion process utilized in [15, 17] to obtain the radiation gauge metric perturbation

generated by a point particle.

These papers use the ‘no string’ formulation of the radiation gauge introduced by Pound

et al. [16], where the spacetime is divided in two halves by a hypersurface S containing

the particle worldline and that separates the black hole horizon from (spatial) infinity.

In each of these halves the metric perturbation is obtained using the CCK formalism

from a Hertz potential that is regular at either the horizon or infinity. Consequently

[19], this procedure is ambiguous up to perturbations of the black hole mass and

angular momentum (and possibly additional gauge terms). That is, in each half the

reconstructed metric needs to be supplemented with a perturbation of the form

δM±∂g
Kerr
µν

∂M
+ δJ±

∂gKerr
µν

∂J
, (28)

where the partial derivative are to be taken with the mass M and angular momentum

J = Ma held fixed, and the ± indicate the regions ‘outside’ and ‘inside’ S (and the

particle’s orbit). Finding the values of δM± and δJ± is sometimes known as the

completion problem.

In [20], a lengthy calculation involving the matching of gauge invariant fields from both

sides of S was used to prove that for any bound orbit restricted to the equatorial plane

of the black hole,
δM+ = E, δM− = 0,

δJ+ = L, δJ− = 0,
(29)

where E and L are the energy and (component parallel to total angular momentum

of) the angular momentum of the particle. In section VI of [20] it was further observed

that since the Abbott-Deser mass of
∂gKerr

µν

∂M
is 1 and its Abbott-Deser angular momentum

vanishes and vice versa for
∂gKerr

µν

∂J
, their result implied that the “reconstructed part” of

the metric perturbation (in that particular scenario) had zero Abbott-Deser mass and

angular momentum and conversely that proving so would be sufficient to determine the

completion.
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Since the Hertz potential in the ‘inside’ and ’outside’ regions (by construction) is

always decomposable in smooth harmonics as in (13), our main lemma implies that

the reconstructed part of the metric perturbation always has vanishing Abbott-Deser

mass and angular momentum, for any bound orbit and regardless of the spin of the

Hertz potential.

We thus obtain the following corollary to our main lemma, generalizing the main result

of [20].

Corollary (Completion amplitudes). For a particle on any bound orbit around a Kerr

black hole the ‘no string’ radiation gauge metric perturbation, the completion amplitudes

are given by Eq. (29).

It seems likely that this result also extends to unbound orbits and plunging trajectories,

although some care is needed in examining the convergence of the mode-sum at infinity

and/or the black hole horizon due to the presence of a distributional point source.

5. Discussion

We have established that the Abbott-Deser charges of any vacuum metric perturbation

of Kerr spacetime generated from a regular harmonic mode of the Hertz potential using

the CCK formalism, vanish. We thereby (partially) answer a long standing question

regarding the mass and angular momentum content of such perturbations. In particular,

this allows one to completely recover a vacuum metric perturbation (up to a regular

gauge transformation) from the corresponding perturbation of the Weyl scalar ψ0 or ψ4,

if one knows the Abbott-Deser mass and angular momentum.

As a corollary we find the mass and angular momentum perturbations needed to

complete the ‘no string’ radiation gauge metric perturbation generated by a point

particle on any bound orbit around a Kerr black hole. We thereby generalize the previous

result of [20], where the same result was obtained for the limited case of equatorial orbits

using a much more elaborate calculation. The method set out in [20] nonetheless has

value. Besides providing an independent verification of our present result, the method

of [20] can be extended to help smoothen the gauge modes in the no string radiation

gauge [24], as is needed for some gravitation self-force calculations such as the self-force

correction to the periapsis shift [25].

The extension of the results of [20] to general (inclined) orbits is a key step towards

the calculation of the gravitational self-force on such orbits, and thereby the study

of the evolution of extreme mass-ratio inspirals; binary black hole systems consisting

of a (super)massive black hole orbited by a stellar mass compact object. These so-

called EMRIs form a key source of gravitational waves for the proposed space-based

gravitational wave observatory LISA [26]. In particular, self-force on inclined orbits will

be a key ingredient in studying the effect of orbital resonances [27–31].
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Appendix A. The SAS kernel

The Weyl scalars ψ0 and ψ4 are constructed from a metric perturbation hµν by certain

second order differential operators. Composing these with the CCK metric construction

operators produces a set of fourth order differential operators relating the spin s = ±2

Hertz potentials to the Weyl scalars ψ0 and ψ4. Since ψ0 and ψ4 themselves satisfy the

spin s = ±2 Teukolsky equation, these operators map vacuum solutions of the Teukolsky

equation into each other. In fact, these operators are (proportional to) the well-known

Teukolsky-Starobinksy identities. It is the inversion of these operators that allows one

to recover the Hertz potential from a physical Weyl scalar obtained through other means

[9, 10]. Such an inversion will always be ambiguous up to an element of the kernel of

these fourth order differential operators.

We here determine the stationary axisymmetric (SAS) component of this kernel. This

was previously determined by Keidl et al. [11] in the specific case of a Schwarzschild

(a = 0) background and a s = −2 (i.e. IRG) Hertz potential. We generalize their result

to general Kerr (a 6= 0) backgrounds (and include both spins).

In these case of a Hertz potential sΦ that is stationary and axisymmetric (i.e.

independent of t and φ) the relevant fourth order differential equations relating the

Hertz potential to ψ0 and ψ4 are

32ρ̄−4ψ̄4 = ∆2∂4r∆
2(+2Φ) = 4ð̄−1ð̄0ð̄1ð̄2(−2Φ) (A.1)

8ψ̄0 = ð1ð0ð−1ð−2(+2Φ) = 8∂4r (−2Φ). (A.2)

These equations involve either radial or angular derivatives but not both. The kernel is

most easily found by setting ψ0 and ψ4 to zero and starting from the “radial” equations.

Starting with the s = −2 case, the general solution is easily seen to be a third order

polynomial in r with arbitrary functions in z as coefficients. However, −2Φ also needs to

solve the s = −2 Teukolsky equation. Inserting the general solution, the left-hand side

of Teukolsky equation is again (proportional to) a third order polynomial in r. Hence

it can be solved order-by-order in r yielding 4 linear second order ordinary differential

equations in z for the arbitrary functions. The most general stationary axisymmetric

solution −2ΦKer of both the homogeneous radial equation and the s = −2 Teukolsky
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equation is part of an 8 complex parameter family, which we find to be given by,

−2ΦKer =
1

1− z2
{
c1 + (r − 1)zc2 + z(z2 − 3)c3 +

(
r + (r − 1)z2

)
c4

+
(
r2 − a2

)
zc5 + r

(
r(r − 3) + 3a2

)
c6 +

(
r2 + (r2 − a2)z2

)
c7

+ rz
((
r(r − 3) + 3a2

)
z2 − 3

(
r(r + 4)− 4a2

))
c8

}
.

(A.3)

It is then straightforward to check that this solution also satisfies the “angular” part of

equation (A.1). Moreover, one readily checks that these solution coincide with the ones

found in [11] after setting a = 0.

However, this is not the full story. The metric reconstruction procedure is only

guaranteed to produce a vacuum solution of the Einstein equation on the coordinated

patch that is being used. In our case this is the (modified) Boyer-Lindquist coordinate

patch on the background Kerr spacetime, i.e. r > r+ and −1 < z = cos θ < 1. In

particular, there is the distinct possibility that these solutions are sourced by energy-

momentum supported on the symmetry axes z = ±1. Given that the Hertz potential

(A.3) is irregular on these axes, this seems more than a mere possibility.

If we calculate the Abbott-Deser flux (12) through a cylinder enclosing a section of one

of the symmetry axes, then, by construction, this is equal to the total mass and/or

angular momentum within the cylinder as appearing in the energy-momentum tensor

sourcing the metric perturbation. In order to get a proper vacuum perturbation we need

to require, these charges to vanish in the limit that the radius of the cylinder is reduced

to zero.

Imposing this condition for any section of the symmetry axis and any Killing vector,

produces constraints on the coefficients ci. In fact, when a 6= 0 we find that the axes

are only free of mass and angular momentum when all ci vanish. In other words, the

SAS kernel for spinning Kerr spacetimes produces no proper vacuum perturbations.

In the special case of a Schwarzschild a = 0 background, the conditions become

Re c2 = Re c4 = Re c7 = Im c2 = Im c4 = 0, and

Re(c5 + 21c8) = 0
(A.4)

or

Re c1 = Re c2 = Re c3 = Re c4 = Re c5 = Re c7 = Re c8 = 0, and

Im c1 = Im c2 = Im c3 = Im c4 = 0.
(A.5)

In particular, we find that the “mass perturbations” identified in [11] as the solutions

with Re c4 and Re c7 non-zero, are in fact not vacuum perturbations, but have some

energy momentum source associated with the symmetry axis. This misidentification is

due to the gauge transformations used in the identification in [11] being singular on the
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symmetry axes. We do however recover the angular momentum perturbation, in [11]

identified as the solution with Im c3 non-zero, as a genuine vacuum perturbation.

The s = +2 case can be solved in similar fashion. The Hertz potential modes in the

SAS kernel are simply,

+2ΦKer = ∆−2−2ΦKer, (A.6)

as expected from some symmetries of stationary axisymmetric solutions of the Teukolsky

equation (see e.g. [15]).
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