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Figure. S1. Schematic of the setup used for single NV manipulation. A home-built confocal

microscope equipped with control electronics (DC: Dichroic beam-splitter, PH: Pinhole, BP:

Bandpass filter, AOM: Acousto-Optic Modulator; APD: Avalanche Photodiode). A computer

interface and custom software are used to control the 3D scanner, arbitrary waveform generator,

and the photon counter.
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S1. NITROGEN-VACANCY DEFECTS IN DIAMOND

Nitrogen-vacancy (NV) centres are point defects in the diamond lattice that constitute of a

substitutional nitrogen atom and a single vacancy forming a stable colour centre (cf. Fig. S2(a)).

The NV centre we employ for this study is the negatively charged state (NV-). The two unpaired

electrons of the negatively charged NV centre form a spin-1 system featuring a triplet and a singlet

level system. For our sensing application we employ the NV ground state triplet (cf. Fig. S2(b))

which is represented by the “bare system” Hamiltonian

HNV = DS2
z − γNVB0Sz , (S1)

where here and in the following we assume natural units (~ = 1), D ≈ 2π · 2.87 GHz is the zero

field splitting, γNV ≈ −2π · 28 GHz/T is the gyromagnetic ratio of the NV electron spin and

S = (Sx, Sy, Sz) is the spin-1 operator. The constant magnetic field B0 is applied along the NV

centre axis of symmetry to lift the degeneracy between the ms = ±1 spin states. The NV centre

ground state triplet level structure is illustrated in Fig. S2(b), showing the ms = 0 , the ms = +1

and the ms = −1 spin states, for which we use the alternative ket notation |0〉, |+〉, and |−〉,

respectively, in the main article.

For controlled manipulation of the NV spin we apply a microwave field of amplitude B
(±)
1 ,

frequency ω(±) and phase ϕ(±) on resonance (δ− = 0) to one of the dipole allowed transitions of

the NV centre: |0〉 and |−〉. The microwave field Hamiltonian applied to one of the two subspaces

spanned by either |0〉 and |+〉 or |0〉 and |−〉 reads

H
(±)
MW(t) = −γNVB

(±)
1 S(±)

x cos(ω±t+ ϕ±(t)) , (S2)

which coherently drives the NV spin at a Rabi frequency of Ω(±) = −γNVB
(±)
1 and were the S

(±)
j

with j ∈ {x, y, z} are the spin-1/2 matrices defined on the two-dimensional subspaces spanned

by |0〉 and |+〉 or |0〉 and |−〉.

We assume the external radio frequency field BRF(t) to be aligned quasi-parallel to the NV

centre axis, such that the respective Hamiltonian reads

HRF(t) = −γNVBRF(t)Sz . (S3)

The total system is now described by the Hamiltonian H(t) = HNV +H
(±)
MW(t) +HRF(t).

The ground states 3A and excited states 3E of the triplet system are shown in Fig S2(b). At

room temperature the NV colour centre has a broad excitation and emission spectra. When excited
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Figure. S2. (a) Illustration of an NV centre inside the unit cell of diamond. The NV centre

employed in this work is embedded in an electronic grade bulk diamond slap (shown at the

bottom). (b) Nitrogen-vacancy centre energy level scheme showing excitation and emission

pathways. The green arrow indicates the 532 nm laser excitation (3A to 3E) while the red is

fluorescence emission in the NIR (3E to 3A). Black arrows denote non-radiative routes through

singlet states. Spin transitions in the ground states are coherently driven by microwave fields

(orange) produced by an antenna.

by green light the NV centre decays back to the triplet ground state either by emission of a NIR

photon or non-radiatively through singlet states. The inter-system crossing rate of the spin sub-

levels ms = 0 and ms = ±1 are different, causing the ms = 0 state to preferentially undergo

spin-preserving, radiative decay, while the ms = ±1 state undergoes non-radiative decay with a

probability of 30%. For this reason the ms = ±1 states appear “dark” if compared to the “bright”

ms = 0 state. Moreover, when the NV undergoes inter-system crossing the spin information is lost,

resulting in optical polarization of the spin state into the ms = 0 state.

S2. THEORETICAL ANALYSIS OF THE UNDERLYING MECHANISM OF DYSCO

SPIN MANIPULATION

For a comprehensive analysis of the developed DYSCO sequence, here we follow two approaches.

For small numbers of four π block repetitions (e.g., N = 1) the dynamics of the Bloch vector and

its dependence on the external BRF(t) = B
(0)
RF cos (ωRFt+ ϕRF) field as well as the phase angle ϕ
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are directly computed from the system interaction Hamiltonian (in the rotating frame of the bare

NV system)

H(t) = ~

 0 −Ω−
2 e−iϕ

Ω−
2 e−iϕ −δ− + γNVBRF(t)

 . (S4)

The spin evolution is obtained from the evolution operator

U(t, 0) = T e−i/~
∫ t
0 H(t′) dt′ (S5)

(where T denotes time ordering) by means of a custom written routine implemented in Wolfram

Mathematica. In the following we present both numerical (see section S2 i) and analytical calcu-

lations (see section S3) explaining the underlying mechanism of the dynamical sensitivity control

scheme.

i. Simulations of long DYSCO sequences using SpinDynamica

Here we show numerical simulations of the spin dynamics associated with the DYSCO sequence.

As for large numbers N of the fundamental 4·π-pulse unit the evaluation becomes computationally

challenging, here we resort to employ the SpinDynamica simulation package, which allows us to

efficiently simulate typical, long experimental sequences with N = 150 up to N = 200.

For all simulations we consider the initial spin to be initialized to |0〉 and the spin driving

microwave field is applied on resonance, i.e. δ− = 0. First we analyse the DYSCO sequence as

presented in the main article:

[πx−ϕπx−ϕπx+ϕπx+ϕ]N − πy − [πx+ϕπx+ϕπx−ϕπx−ϕ]N . (S6)

Fig. S3(a) shows the Bloch vector evolution for each pulse of the DYSCO sequence in Eq. (S6),

where the time evolution is colour coded for each pulse (blue indicates the start, red denotes the end

of each pulse). The population P0(BRF, N) oscillates as a function of the external BRF amplitude

and the fast Fourier transform (FFT) of the function obtained for ϕ is denoted as S(ζ) and shown

in Fig. S3(b) displaying the simulation results and c) showing experimental data. As described

in the main article, we define arg max
ζ
|ϕ of this quantity as dynamical sensitivity β(ϕ,BRF, N).

Fig. S3(b) and (c) demonstrate that simulations and experiments correspond very well.
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Figure. S3. Bloch sphere dynamics, simulation and experimental results of the DYSCO pulse

sequence from Eq. (S6) simulated using SpinDynamica. (a) The pulse-by-pulse Bloch vector

dynamics for one full sequence. (b) Simulations showing the FFT of the P0 dependence on BRF

and ϕ for N = 160 units. (c) Experimental results of S(ζ) and the dynamical sensitivity β

variation with pulse phase angle ϕ for a set of N = 200 units. The initial state starts from the

bright state ms = 0.

ii. Simulations for DYSCO sequence with first and last (π/2) pulses

To demonstrate that the DYSCO scheme relies only on the population change without being

specific to any particular state, we present a slightly modified version of the DYSCO sequence

from Eq. (S6). In this variant we surround the DYSCO pulse sequence with a pair of π/2 pulses

represented in the following way:(π
2

)
x
− [πx−ϕπx−ϕπx+ϕπx+ϕ]N − πy − [πx+ϕπx+ϕπx−ϕπx−ϕ]N −

(π
2

)
x

(S7)

Similar to the previous section, Fig. S4(a) shows the Bloch vector evolution for each pulse of the

DYSCO sequence in Eq. (S6) in colour code. We observe that the increase in the BRF field gives

raise to oscillation in the population P0(BRF, N) and the corresponding FFT is denoted by S(ζ)

and is shown in Fig. S4(b) and (c), displaying the simulation and experimental results, respectively.
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Fig. S4(b) and (c) show that simulations and experiments agree well. The dependence is similar

to that obtained when initial state starting from the pure state ms = 0.

Figure. S4. Bloch sphere dynamics, simulation and experimental results of the DYSCO pulse

sequence from Eq. (S7) simulated using SpinDynamica. (a) The pulse-by-pulse Bloch vector

dynamics for one full sequence. (b) Simulations showing S(ζ) the FFT of the P0 dependence on

BRF and ϕ for N = 160 units. (c) Experimental results of S(ζ) and the dynamical sensitivity β

variation with pulse phase angle ϕ for a set of N = 200 units.

S3. ANALYTICAL APPROXIMATION OF THE DYSCO SPIN DYNAMICS FOR

SMALL MAGNETIC FIELD

In addition to the numerical simulation presented above, here we perform analytical approxima-

tions valid for small RF magnetic field amplitudes B
(0)
RF and vanishing microwave detuning δ− = 0

from resonance. This way we derive an explicit analytical expressions for the dependence of the

occurring population shift as a function of the RF magnetic field amplitude B
(0)
RF with respect to

the driving Rabi frequency field B1.

Fig. S5 illustrates the Bloch sphere including the applied angular momentum vectors associated
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with the external RF magnetic field BRF as well as the driving microwave field. In the following

we will drop the index “1” of the microwave driving field B1 and replace it by Bξ , when referring

to a specific microwave pulse of phase ξ.

The joint action of the BRF and Bξ fields on the Bloch vector can be described by the rotation

matrix

M(ϕ,θ,γ) =


vγs2θc2ϕ+ cγ vγs2θcϕsϕ− sγcθ vγsθcθcϕ+ sγsθsϕ

vγs2θcϕsϕ+ sγcθ vγs2θs2ϕ+ cγ vγsθcθsϕ− sγsθcϕ

vγsθcθcϕ− sγsθsϕ vγsθcθsϕ+ sγsθcϕ vγc2θ + cγ

 (S8)

performing a rotation of the Bloch vector by an angle γ around the axis specified by spherical

coordinates (ϕ, θ), where we use the abbreviations vγ = (1 − cos γ), cθ = cos θ and sθ = sin θ.

After application of the DYSCO pulse sequence to the initial Bloch vector ~bini the final Bloch

vector is given as

~bfinal = MDYSCO
~bini (S9)

where the transformation matrix MDYSCO is given as the time-ordered product of the rotation

matrices of the (2N + 1) individual pulses

MDYSCO =

2N+1∏
i=1

M(ϕi,θi,γi) . (S10)

The population of the |0〉 and the |−〉 states are then readily obtained from the z-axis component

bz of the final Bloch vector as P(0,−) = 1/2(1± bz).

For the DYSCO sequence starting from the Bloch sphere pole from Eq. (S6) we obtain the

population of the |0〉 state as a Taylor expansion given by

P0 = 64
B2

RF

B2
1

sin2 ϕ+O(BRF)4 . (S11)

For the DYSCO sequence starting from the equatorial plane by using a π/2 pulse described in

Eq. (S7) we analogously obtain the Taylor expansion as

P0 =
1

2
− 8

BRF

B1
sinϕ+O(BRF)3 . (S12)

The dynamical sensitivity β(ϕ) of a sequence can be deduced from these expressions for P0. We

observe that the characteristic dependence of the dynamical sensitivity obtained for the DYSCO

sequence initialized along the pole as in Eq. (S6) and for the case initialized along the superposition

plane Eq. (S7) are similar.
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i. Visualization of the DYSCO spin-dynamics on a Bloch sphere for small magnetic field

We will present an intuitive illustration and analyse the dynamics of the spin vector upon

application of the DYSCO sequence that is described in Eq. (S7). After the spin had be initialized

to |0〉 (i.e., the north pole of the Bloch sphere) the initial
(
π
2

)
x

pulse drives the Bloch vector to point

into the −y-axis direction. Now the application of the first four π-pulse block [πx−ϕπx−ϕπx+ϕπx+ϕ]

leads to a zig-zag trajectory on the Bloch sphere. Note that while Bx−ϕ and Bx−ϕ are pointing

to opposite directions, the resulting rotation axes ax−ϕ and ax−ϕ are not collinear, owing to the

influence of the BRF magnetic field. After every second π pulse the spin comes back (close) to the

yz-plane (i.e., the x-component of the Bloch vector is very small).

The position of the spin vector after the four π-pulse block is then obtained as
x

y

z

 = M(x+ϕ,θ,π)M(x+ϕ,θ,π)M(x−ϕ,θ,π)M(x−ϕ,θ,π)


0

−1

0

 (S13)

where the rotation axis of the Bloch vector is specified by the pulse phase ϕ and the angle θ =

π
2−arcsin

(
BRF
B1

)
(i.e., the ratio between RF field and driving field B1) as illustrated in Fig. S5. If we

approximate the resulting expression from Eq. (S13) for small RF magnetic fields (i.e., BRF � B1),

the small angle approximation delivers θ ≈ π
2 −

BRF
B1

. In this case the z-component of the resulting

vector will be similar to the difference in polar angle

∆θ ≈ −1

4
(2 sin(4θ) + 3 sin(8θ)) sin(ϕ)− 2 sin3(2θ) cos(2θ) sin(3ϕ) (S14)

which is acquired over the run of the four π-pulse sequence. From a Taylor expansion of this

expression up to second order in BRF we finally obtain the explicit expression for the polar angle

shift as

∆θ ≈ 8
BRF

B1
sinϕ+O(BRF)3 . (S15)

The derived sine dependence of the Bloch vector polar angle difference ∆θ (and thus also of the

population shift ∆P0 = 1/2(1+cos θ) ≈ 1/2(1+∆θ)) from the phase angle ϕ of the pulse sequence

is in close correspondence to the numerical simulations and experimental results presented in the

previous section. The latter show that the sine dependence of the acquired phase (per four π-pulse

block) is valid not only for the DYSCO variant from Eq. (S7) starting from the equatorial plane,

but also for the original DYSCO sequence from Eq. (S6) starting from the pole of the Bloch sphere.
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Figure. S5. (a) Representation of the Bloch sphere and the applied angular momentum vectors

associated with the external RF magnetic field BRF and the driving microwave fields Bξ. Note

Bx−ϕ and Bx−ϕ denote the directions of microwave driving field B1 used for the first two π-pulses

of the four π-pulse block. In the approximation BRF � B1 the resulting shift of the Bloch vector

polar angle ∆θ corresponds to the change ∆z of the Bloch vector z-component.

(b) Projection onto the xz-plane of the Bloch vector during the first two π-pulses of the four

π-pulse block: the first rotation along the aϕ axis and the following along the a−φ axis bring the

Bloch vector out of equatorial plane of the Bloch sphere, resulting in a shift of the Bloch vector

z-component.

These results also agree with the analytical expression in Eq. (S12) obtained for the complete 9π

DYSCO pulse sequence.

Here, we analytically derived that the DYSCO sequence produces a magnetic field dependent

population shift (associated to a change ∆θ) of the Bloch vector polar angle, instead of a magnetic

field dependent phase shift (i.e. a change ∆φ of the Bloch vector azimuthal angle) as in the

case of multi-pulse sequences. We show that the spin dynamics and the mechanism associated

with the DYSCO sensing scheme are distinct and they complement free-precession based sensing

schemes that primarily accumulate phase on the equatorial plane of the Bloch sphere (e.g. Ramsey,

Hahn-echo or CMPG sequences).

ii. Sensitivity comparison of DYSCO and free precession sensing schemes

In order to compare the sensitivity of the DYSCO scheme with the sensitivity of free precession

sensing schemes, we will calculate the deviation angle of the Bloch vector from its initial direction for

the both cases. In the DYSCO sensing scheme, one block of the pulse sequence induces the vector

angle change as calculated in Eq.(S15). Assuming the maximal sensitivity condition (sinϕ = 1),
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one obtains

∆θ = 8
BRF

B1
, (S16)

where BRF is the sensed magnetic field and B1 is the driving field. The evolution time for the

application of one DYSCO block, i.e. four π-pulses, can be expressed through the driving field as

four times

tπ =
TR
2

=
π

ΩR
=

π

γB1
, (S17)

where TR denotes the period of the Rabi oscillation and ΩR is the angular Rabi frequency.

During the same period of time, the free precessing spin will acquire a phase of

∆φ = ω · 4tπ = 4π
BRF

B1
, (S18)

where ω = γBRF.

The ratio of the angles from Eq.(S16) and Eq.(S18) is the ratio of sensitivities of the respective

sensing schemes

∆θ

∆φ
=

2

π
≈ 0.64. (S19)

Comparing the sensitivities obtained experimentally (25 population oscillations in DYSCO vs.

42 population oscillations in Hahn-Echo for the same BRF amplitude ramp, refer to Sec. ”Com-

parison of DYSCO sensitivity to free-precision based schemes”) we obtain a ratio of 25/42 ≈ 0.6.

This value is in a good correspondence with the theoretical calculation.
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