Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Dynamical sensitivity control of a single-spin quantum sensor.

MPG-Autoren
/persons/resource/persons134490

Lazariev,  A.
Research Group of Nanoscale Spin Imaging, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons119008

Arroyo Camejo,  S.
Department of NanoBiophotonics, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons220367

Rahane,  G.
Research Group of Nanoscale Spin Imaging, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons220370

Kavatamane,  V. K.
Research Group of Nanoscale Spin Imaging, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons32780

Balasubramanian,  G.
Research Group of Nanoscale Spin Imaging, MPI for Biophysical Chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2468236.pdf
(Verlagsversion), 3MB

Ergänzendes Material (frei zugänglich)

2468236_Suppl.pdf
(Ergänzendes Material), 2MB

Zitation

Lazariev, A., Arroyo Camejo, S., Rahane, G., Kavatamane, V. K., & Balasubramanian, G. (2017). Dynamical sensitivity control of a single-spin quantum sensor. Scientific Reports, 7: 6586. doi:10.1038/s41598-017-05387-w.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-B019-5
Zusammenfassung
The Nitrogen-Vacancy (NV) defect in diamond is a unique quantum system that offers precision sensing of nanoscale physical quantities at room temperature beyond the current state-of-the-art. The benchmark parameters for nanoscale magnetometry applications are sensitivity, spectral resolution, and dynamic range. Under realistic conditions the NV sensors controlled by conventional sensing schemes suffer from limitations of these parameters. Here we experimentally show a new method called dynamical sensitivity control (DYSCO) that boost the benchmark parameters and thus extends the practical applicability of the NV spin for nanoscale sensing. In contrast to conventional dynamical decoupling schemes, where π pulse trains toggle the spin precession abruptly, the DYSCO method allows for a smooth, analog modulation of the quantum probe's sensitivity. Our method decouples frequency selectivity and spectral resolution unconstrained over the bandwidth (1.85 MHz-392 Hz in our experiments). Using DYSCO we demonstrate high-accuracy NV magnetometry without |2π| ambiguities, an enhancement of the dynamic range by a factor of 4 · 103, and interrogation times exceeding 2 ms in off-the-shelf diamond. In a broader perspective the DYSCO method provides a handle on the inherent dynamics of quantum systems offering decisive advantages for NV centre based applications notably in quantum information and single molecule NMR/MRI.