Supporting Information

Elucidation of the Catalytic Mechanism of a Miniature Zinc Finger Hydrolase

Abir Ganguly ${ }^{1}$, Trung Quan Luong ${ }^{2}$, Oliver Brylski ${ }^{3}$, Michael Dirkmann ${ }^{4}$, David Möller ${ }^{4}$, Simon Ebbinghaus ${ }^{3}$, Frank Schulz ${ }^{4}$, Roland Winter ${ }^{2}$, Elsa Sanchez-Garcia ${ }^{1 *}$ and Walter Thiel ${ }^{\text {* }}$

${ }^{1}$ Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany.
${ }^{2}$ Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Physikalische Chemie I, 44227 Dortmund, Germany.
${ }^{3}$ Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Physikalische Chemie II, 44780, Bochum, Germany.
${ }^{4}$ Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie I, 44780 Bochum, Germany.

Figure S1. Convergence of the string simulations: (A) RMSDs of all seven reaction coordinates are shown for string iterations 21 to 30 . The RMSDs of each reaction coordinate were calculated from their average values in the previous 10 iterations. The figure indicates that the RMSD across all coordinates decreases with string iterations. By iteration 30 all RMSDs are well below $0.5 \AA$. (B). The strings are plotted in the space of coordinates r 1 and r 2 for selected iterations, as indicated in the figure legend. The nearly superimposable strings from the various iterations suggest that the string has reached convergence in the space of r 1 and r 2 . Iterations 31 and 32 are excluded from the analysis. This is because in these last two iterations, even after convergence of the string, the number of images was doubled and longer trajectories were propagated to obtain better sampling statistics with higher resolution for the MFEP.

Figure S2. Coordination architecture of the Zn^{2+} center for three additional starting configurations (similar to Fig. 2C and Fig. 2D, manuscript): The time-evolution of the distance between the O atom of water/hydroxide to Zn^{2+} is shown. (A), (C), (E) correspond to $\mathrm{QM} / \mathrm{MM}$ MD simulations with 2 water molecules (green, blue) in the coordination sphere of Zn^{2+}. (B), (D), (F) correspond to QM/MM MD simulations with 1 water (green) and 1 hydroxide (blue) in the coordination sphere of Zn^{2+}. For (B), (D) and (F) the last 10 ps of the simulations are shown.

Table S1. Relevant structural details and energies of the PES (related to Figure 3).

	R	TS1	I	TS2	P
$\mathrm{O}(\mathrm{OH})-\mathrm{C} 2(\mathrm{PNPA})(\AA)$	3.42	2.04	1.41	1.34	1.32
$\mathrm{C} 2(\mathrm{PNPA})-\mathrm{O} 2(\mathrm{PNPA})(\AA)$	1.36	1.40	1.48	1.85	3.64
$\mathrm{Zn}^{2+}-\mathrm{O}(\mathrm{OH})(\AA)$	1.88	1.98	2.86	3.13	3.08
$\mathrm{Zn}^{2+}-\mathrm{O} 1(\mathrm{PNPA})(\AA)$	2.41	2.35	1.92	1.94	1.99
$\mathrm{Zn}^{2+}-\mathrm{NE} 2(\mathrm{His} 10)(\AA)$	2.07	2.08	2.08	2.07	2.03
$\mathrm{Zn}^{2+}-\mathrm{NE} 2(H i s 15)(\AA)$	2.19	2.16	2.17	2.16	2.10
$\mathrm{Zn}^{2+}-\mathrm{NE} 2(\mathrm{His} 22)(\AA)$	2.08	2.08	2.11	2.09	2.08
$\boldsymbol{\Delta E}$ (kcal/mol)	$\mathbf{0}$	$\mathbf{2 1 . 9}$	$\mathbf{4 . 1}$	$\mathbf{7 . 4 0}$	$\mathbf{- 2 . 3 4}$

Figure S3. Evolution of all reaction coordinates along the converged string: Except r1 and r 2 , the remaining coordinates do not change significantly during the course of the reaction. r6, which corresponds to the $\mathrm{Zn}^{2+}-\mathrm{O}_{\mathrm{OH}^{-}}$distance, changes during the reaction because OH^{-}, which is initially strongly bound to Zn^{2+}, binds to the pNPA carbonyl and drifts away from Zn^{2+} as pNPA is hydrolyzed.

Table S2. Parameters derived from Michaelis-Menten kinetics shown in Fig. 6 of the main paper.

$\mathbf{M e C N}[\%(\mathbf{v} / \mathbf{v})]$	2.66
$\mathbf{V}_{\mathbf{m a x}}\left[\boldsymbol{\mu} \mathbf{M} / \mathbf{s} * \mathbf{1 0}^{-3}\right]$	17.0 ± 4.3
$\mathbf{k}_{\text {cat }}\left[\mathbf{1 / s} * \mathbf{1 0}^{-3}\right]$	0.85 ± 0.21
$\mathbf{K}_{\mathbf{M}}[\mathbf{m M}]$	5.8 ± 2.1
$\mathbf{k}_{\mathbf{c a t}} / \mathbf{K}_{\mathbf{M}}\left[\mathbf{1} / \mathbf{M}^{*} \mathbf{s}\right]$	0.148 ± 0.064
$\mathbf{\Delta G}^{\ddagger}[\mathbf{k c a l} / \mathbf{m o l}]$	20.5 ± 0.3

Calculation of reactant and transition state volumes for reaction pathway 1

The volume of the hydrolase catalytic center was determined using the Mol_Volume program available in the MDTools suite of programs. ${ }^{1}$ This program determines the volume of a given macromolecule by generating a dense grid around the macromolecule and calculating the number of vertices that appear within a probe radius of the atoms in the molecule. The volume is then expressed as

$$
V=\frac{V_{\text {grid }} \quad N_{\text {near }}}{N_{\text {total }}}=N_{\text {near }} \quad V_{\text {per rode }}
$$

where $V_{\text {grid }}$ is the volume of the grid, $N_{\text {near }}$ is the number of vertices within the probe radius of a particular atom, and $N_{\text {total }}$ is the total number of vertices.

In our case, we chose the catalytic center to be comprised of the substrate, the Zn^{2+} ion, and either a Zn^{2+} bound water (in the reactant state) or hydroxide ion (in the transition state). The calculations were performed separately on QM/MM optimized reactant and transition state geometries (Figure 3 of the main paper) as well as on an ensemble of reactant and transition state configurations obtained from QM/MM MD simulations. Default values of all parameters were used in the calculations.

Table S3. Volume of the Zn -finger hydrolase catalytic center. The values obtained from QM/MM MD simulations are averaged over 500 snapshots (errors in parentheses). Volumes are reported in \AA^{3}

	Reactant state	Transition state	$\Delta \mathrm{V}^{\ddagger}$
PES	879	840	-39
QM/MM MD	$843.8(1.7)$	$792.1(0.6)$	-51.7

Classical MD simulations of the Zn-finger hydrolase

In this study, all calculations were based on the de novo structure reported by Srivastava and Durani. ${ }^{2}$ In an effort to identify other catalytically relevant conformations of the Zn finger hydrolase, we ran five independent 25 ns MD trajectories in which the hydrolase was unrestrained (data not shown). In these simulations, the hydrolase was extremely flexible, as expected, and in some cases partially unfolded. We were unable to identify other conformations of the hydrolase that are significantly different from the originally designed structure and at the same time catalytically relevant.

References

(1) Humphrey, W.; Dalke, A.; Schulten, K. J. Molec. Graphics. 1996, 14, 33.
(2) Srivastava, K. R.; Durani, S. PLoS ONE 2014, 9, e96234.

Cartesian coordinates (\AA) of optimized $\mathbf{Q M}$ regions for various stationary points

(a) Reactant state (Figure 3A)

CB SER 629.95626 .78024 .749
HB1 SER 629.77826 .42825 .778
HB2 SER 631.02626 .60224 .537
OG SER 629.61228 .13924 .675
HG1 SER 630.07428 .52623 .906
ND1 HSD 1024.51725 .33427 .579
HD1 HSD 1023.53225 .60927 .575
CG HSD 1025.09624 .20227 .061
CE1 HSD 1025.47526 .09828 .116
HE1 HSD 1025.25427 .01328 .662
NE2 HSD 1026.65825 .52727 .961
CD2 HSD 1026.43824 .33827 .311
HD2 HSD 1027.25923 .67127 .061
ND1 HSD 1528.47622 .53331 .305
HD1 HSD 1528.96121 .73931 .733
CG HSD 1527.13522 .79431 .409
CE1 HSD 1529.04823 .52330 .595
HE1 HSD 1530.10223 .54030 .315
NE2 HSD 1528.13924 .41930 .255
CD2 HSD 1526.94023 .97930 .745
HD2 HSD 1526.01024 .52430 .586
ND1 HSD 2226.75327 .92632 .210
HD1 HSD 2226.61127 .94633 .223
CG HSD 2226.15628 .70031 .249
CE1 HSD 2227.69327 .17231 .623
HE1 HSD 2228.31926 .47432 .170
NE2 HSD 2227.73727 .41030 .325
CD2 HSD 2226.79528 .37730 .083
HD2 HSD 2226.636 28.768 29.082
C1 PNP 130.92628 .60427 .512
C2 PNP 129.48328 .95727 .562
O1 PNP 128.56028 .19127 .698
O2 PNP 129.27930 .29527 .466
C3 PNP 127.99130 .76627 .581
C4 PNP 127.71131 .63928 .630
C5 PNP 126.41532 .12228 .793
C6 PNP 125.43331 .69227 .906
C7 PNP 125.71230 .84026 .839
C8 PNP 127.01030 .37926 .669
N1 PNP 124.04832 .12628 .105
O3 PNP 123.83933 .02328 .889

O4 PNP 123.19131 .53127 .485
H1 PNP 131.26828 .78726 .482
H2 PNP 131.01627 .53427 .767
H3 PNP 131.49829 .25428 .189
H4 PNP 128.51131 .91829 .317
H5 PNP 126.15732 .80229 .607
H6 PNP 124.90930 .57226 .154
H7 PNP 127.28529 .72125 .845
ZN ZN2 128.43326 .08828 .874
O1 OH 130.18825 .69828 .328
H1 OH 130.06424 .97727 .674
(b) Intermediate state (Figure 3B)

CB SER 630.15626 .63224 .539
HB1 SER 629.98326 .29525 .573
HB2 SER 631.21426 .43124 .289
OG SER 629.83527 .99524 .492
HG1 SER 630.21528 .37823 .677
ND1 HSD 1024.30824 .84327 .825
HD1 HSD 1023.28524 .88727 .932
CG HSD 1024.96623 .90727 .072
CE1 HSD 1025.21525 .62428 .422
HE1 HSD 1024.94926 .41929 .119
NE2 HSD 1026.44125 .24528 .076
CD2 HSD 1026.30024 .17127 .235
HD2 HSD 1027.16423 .67026 .809
ND1 HSD 1528.54922 .54331 .524
HD1 HSD 1529.03521 .76131 .978
CG HSD 1527.20522 .79531 .587
CE1 HSD 1529.13223 .52230 .810
HE1 HSD 1530.19623 .52030 .572
NE2 HSD 1528.22824 .40330 .419
CD2 HSD 1527.01923 .96230 .893
HD2 HSD 1526.09024 .49630 .701
ND1 HSD 2226.74027 .99432 .196
HD1 HSD 2226.70528 .08433 .216
CG HSD 2225.99628 .64131 .246
CE1 HSD 2227.59227 .16731 .571
HE1 HSD 2228.30926 .54532 .098
NE2 HSD 2227.43327 .23630 .265
CD2 HSD 2226.45328 .16530 .046
HD2 HSD 2226.13528 .44129 .043
C1 PNP 131.39628 .14127 .330
C2 PNP 130.27627 .73728 .285

O1 PNP 129.31627 .03727 .710
O2 PNP 129.79128 .98928 .904
C3 PNP 128.78729 .70928 .413
C4 PNP 128.30630 .73729 .255
C5 PNP 127.17331 .46228 .930
C6 PNP 126.51031 .17127 .735
C7 PNP 127.03830 .24526 .835
C8 PNP 128.18129 .52827 .150
N1 PNP 125.23931 .80127 .437
O3 PNP 124.88932 .74328 .114
O4 PNP 124.57231 .32026 .534
H1 PNP 130.97028 .65026 .455
H2 PNP 131.90327 .23226 .972
H3 PNP 132.12128 .78727 .845
H4 PNP 128.83030 .91430 .195
H5 PNP 126.77232 .22229 .604
H6 PNP 126.53930 .10625 .879
H7 PNP 128.58428 .80926 .438
ZN ZN2 128.25725 .90228 .848
O1 OH 130.79627 .08829 .419
H1 OH 131.55326 .54029 .131
(c) Product state (Figure 3C)

CB SER 630.49826 .18524 .375
HB1 SER 630.37325 .65925 .334
HB2 SER 631.46725 .85123 .952
OG SER 630.45927 .55624 .632
HG1 SER 630.56628 .04623 .791
ND1 HSD 1024.35424 .92927 .747
HD1 HSD 1023.33325 .02627 .830
CG HSD 1024.98423 .93027 .054
CE1 HSD 1025.27825 .69328 .335
HE1 HSD 1025.03726 .53128 .989
NE2 HSD 1026.49325 .23728 .040
CD2 HSD 1026.32424 .13427 .241
HD2 HSD 1027.17423 .57826 .858
ND1 HSD 1528.55422 .46831 .633
HD1 HSD 1529.05521 .72032 .131
CG HSD 1527.20222 .68031 .649
CE1 HSD 1529.12823 .42130 .882
HE1 HSD 1530.19623 .44130 .664
NE2 HSD 1528.20524 .25130 .426
CD2 HSD 1526.99523 .80130 .889
HD2 HSD 1526.05524 .29530 .648

ND1 HSD 2226.76827 .89832 .199
HD1 HSD 2226.67127 .99133 .214
CG HSD 2226.15028 .62031 .213
CE1 HSD 2227.62427 .04531 .626
HE1 HSD 2228.24326 .35832 .196
NE2 HSD 2227.59727 .17230 .312
CD2 HSD 2226.69728 .17230 .040
HD2 HSD 22 26.505 28.51429 .024
C1 PNP 131.59328 .00727 .533
C2 PNP 130.75427 .01528 .228
O1 PNP 129.53826 .94728 .041
O2 PNP 130.47630 .64128 .441
C3 PNP 129.23630 .73928 .224
C4 PNP 128.34931 .39829 .155
C5 PNP 127.00031 .52028 .936
C6 PNP 126.42030 .96927 .773
C7 PNP 127.24330 .31226 .833
C8 PNP 128.59830 .20027 .043
N1 PNP 125.01031 .02927 .579
O3 PNP 124.31431 .53428 .449
O4 PNP 124.54030 .55326 .547
H1 PNP 131.37527 .94026 .456
H2 PNP 132.66427 .89127 .737
H3 PNP 131.23629 .02627 .839
H4 PNP 128.80531 .81430 .055
H5 PNP 126.35432 .04229 .645
H6 PNP 126.78129 .89725 .940
H7 PNP 129.20929 .67526 .305
ZN ZN2 128.23625 .73728 .944
O1 OH 131.28026 .18129 .100
H1 OH 132.27226 .21229 .115

