English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Cell-specific proteomic analysis in Caenorhabditis elegans

MPS-Authors
/persons/resource/persons208206

Schuman,  Erin Margaret
Synaptic Plasticity Department, Max Planck Institute for Brain Research, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Yuet, K. P., Doma, M. K., Ngo, J. T., Sweredoski, M. J., Graham, R. L. J., Moradian, A., et al. (2015). Cell-specific proteomic analysis in Caenorhabditis elegans. Proceedings of the National Academy of Science, 112(9), 2705-2710. doi:10.1073/pnas.1421567112.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002E-1C68-B
Abstract
Proteomic analysis of rare cells in heterogeneous environments presents difficult challenges. Systematic methods are needed to enrich, identify, and quantify proteins expressed in specific cells in complex biological systems including multicellular plants and animals. Here, we have engineered a Caenorhabditis elegans phenylalanyl-tRNA synthetase capable of tagging proteins with the reactive noncanonical amino acid p-azido-L-phenylalanine. We achieved spatiotemporal selectivity in the labeling of C. elegans proteins by controlling expression of the mutant synthetase using cell-selective (body wall muscles, intestinal epithelial cells, neurons, and pharyngeal muscle) or state-selective (heat-shock) promoters in several transgenic lines. Tagged proteins are distinguished from the rest of the protein pool through bioorthogonal conjugation of the azide side chain to probes that permit visualization and isolation of labeled proteins. By coupling our methodology with stable-isotope labeling of amino acids in cell culture (SILAC), we successfully profiled proteins expressed in pharyngeal muscle cells, and in the process, identified proteins not previously known to be expressed in these cells. Our results show that tagging proteins with spatiotemporal selectivity can be achieved in C. elegans and illustrate a convenient and effective approach for unbiased discovery of proteins expressed in targeted subsets of cells.