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by a and the distance from the grating z. Summing over 
l generally yields a rather chaotic intensity distribu-
tion. Talbot noted though that all these terms reduce to 
exp(−i2�l2) = 1 at a distance of z = ka2∕4�. The remain-
ing terms add up to the intensity at z = 0 provided that this 
intensity is periodic with a [1]. The same phenomenon can 
be observed in the time domain with a periodic pulse train 
signal that is subject to group velocity dispersion �′′ that 
provides the quadratic phase evolution. The pulses first 
spread out in time, an then reassemble after propagation the 
distance t2

r
∕2�|���|, where tr is the pulse repetition time [2, 

3]. The same behaviour should be observable with a single 
pulse that is on a repetitive path in an optical cavity. In con-
trast to a free space pulse train, higher order dispersion is 
required as we will show below.

2 � Talbot Comb

Consider the modes of a laser cavity with a mode spectrum

Here the modes are numbered around the optical carrier 
frequency �0 with integers n = 0,±1,±2…. Compared to 
the usual regularly spaced frequency comb  [4] there is a 
quadratic term in n which leads to an equally spaced comb 
of radio frequency (RF) components:

These RF components are the result of beating between 
adjacent optical modes and can be seen in the power spec-
trum of the laser output. Higher order mode beatings like 

(1)�n = �0 +

(
n +

n2

m

)
�r.

(2)Δn = �n+1 − �n = �r

(
1 +

2n + 1

m

)

Abstract  We propose a new laser mode locking state in 
which the pulse disperses quickly and then revives after 
a certain time. This mechanism is based on the temporal 
Talbot effect and requires a large amount of intra-cavity 
group velocity dispersion. Similar to the usual mode lock-
ing it should be possible to employ the Kerr effect to force 
the laser into this mode, even when the cold cavity disper-
sion is not exactly matched. We show that the mode spec-
trum of such a laser is not equidistant but increases linearly 
with very high precision. This Talbot frequency comb can 
be self referenced. The beating with the adjacent modes 
uniquely defines the optical mode frequency, which means 
that the optical spectrum is directly mapped into the radio 
frequency domain. This is similar to the dual frequency 
comb technique, albeit without the limiting relative jitter 
between two combs.

1  Introduction

The Talbot effect has been described for the first time in 
1836 as a peculiar phenomenon observed in the near field 
of an optical grating. Summing over contributions of the 
individual rulings to the total field in the Fresnel approxi-
mation, a term of the form exp(−ikl2a2∕2z) appears with 
the wave number k, the rulings numbered by l and spaced 
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�n+2 − �n etc. are separated in the power spectrum by about 
�r. This is illustrated in Fig. 1 and similar to the harmon-
ics of the repetition rate in a regular frequency comb. The 
optical mode spacing at the carrier frequency �0 is given 
approximately by �r for large m. It becomes the spacing for 
all modes for m → ∞ for which (1) turns into a regular fre-
quency comb [4]. Note however that �r is not the usual rep-
etition frequency. Nevertheless �r and �0 can be measured 
in very much the same way as for a regular frequency comb 
(see Sect. 3). Besides representing an all new mode locking 
regime, the interesting aspect of (1) is that each mode beat-
ing uniquely belongs to on particular pair of modes. For 
example the RF signal at Δ0 = �r(1 + 1∕m) belongs to the 
beating between �0 and �1 and so on. Hence a RF spectrum 
recorded with a photo detector and a radio frequency spec-
trum analyzer directly displays a scaled down version of the 
optical spectrum of the laser. By placing a sample between 
the laser and the photo detector and recording the change 
of the RF spectrum one gets the absorption spectrum of the 
sample. This is similar to a dual frequency comb setting 
with a linearly increasing spacing between the modes of the 
two frequency combs [5], albeit with a single laser avoiding 
problems due to the relative jitter of the combs.

To see how the laser spectrum might be forced to the 
modes defined by (1) it is instructive to compute the elec-
tric field at a fixed point inside the cavity. Assuming that 
the modes oscillate with some complex amplitudes an we 
get:

This can not represent a stable pulse in the time domain. 
Assuming that m is an exact integer however, the pulse will 
revive up to a carrier–envelope phase of �ce = 2�m�0∕�r 
after the time T = 2�m∕�r:

This is similar to the regular mode locking scheme, except 
that the pulse repetition rate is replaced by the much lower 
revival rate �r∕(2�m). The revival time is the m multiple of 
the cavity round trip phase delay of the n = 0 mode at �0. 
Figure 2 shows an example of the resulting laser power for 
a special case as a function of time. Like in a regular mode 
locked laser, the peak power enhancement over the time 
averaged power is roughly given by the number of active 
modes. In contrast to the latter, the large peak power occurs 

(3)E(t) = Eoe
−i�0t

+∞∑

n=−∞
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m

)
�r t.
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Fig. 1   Upper The optical spectrum of the Talbot-comb accord-
ing to (1) for m = 100 assuming a Gaussian spectral envelope. 
With this rather small value it is possible to illustrate the linearly 
increasing mode spacing. Lower Equidistant radio frequency combs 
obtained with a photo detector. The left (blue) part is due to the first 
order (k = 1) beating of adjacent modes �n+k − �n (Eq. (2)) which 
would be used for spectroscopy. The center (red) part are the sec-
ond order (k = 2) beatings and the right (green) part is the k = 3 
radio frequency comb and so on. All of them have a uniform, equi-
distant spacing of 2k�r∕m (hence the name radio frequency comb). 
The width of the spectral envelopes are the same when measured by 
the number of components. Increasing m prevents the overlapping 
regions, at least for the lower orders. Even if the radio frequency 
combs would overlap, each component is still uniquely linked to a 
particular pair of optical modes

Fig. 2   The power ∝ |E(t)|2 at a fixed point inside the laser cavity 
according to (3) normalized to the time averaged power. The recur-
rence coefficient is m = 10, 000 and the amplitudes follow a Gaussian 
distribution an = e−(n∕1000)

2 (which is not exactly a Gaussian spectral 
envelope). After m cavity round trips the original pulse revives. The 
plot looks very similar if one scales m and the number of modes up. 
The brute force computation using (3) with sufficient resolution for 
larger m is computational challenging
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not every cavity round trip but only every m-th cavity round 
trip. The usual Kerr lens mode locking mechanism might 
be used to enforce an integer m by reduced loss of the high 
peak intensity pulse. In the case of the Talbot comb, that 
large peak intensity occurs only every m-th round trip. We 
therefore expect that the self amplitude modulation of the 
Kerr effect has to be stronger for successful mode lock-
ing. The mode spacing nominally becomes negative for 
n < −m∕2 (see Fig. 3). Physically this means that the corre-
sponding spectral region possesses a negative group veloc-
ity. While this is possible in principle we exclude this for a 
reasonable laser design and assume that the active modes 
of the laser are limited to n > −m∕2.

To find the required dispersion that results in the mode 
spectrum of (1), we first resolve it for n:

Like in any other laser with cavity length L, the round 
trip phase �(�) at frequency � has to fulfill the boundary 
condition:

Since �0 is the resonant mode with n = 0, the last term has 
to be added to obtain the total round trip phase. Without 
loss of generality we assumed in (1) that the parameter �0 
is the center of the emitted spectrum (see Fig. 3). Using (7) 

(5)n =
m

2

(√
1 + 4

�n − �0

m�r

− 1

)

(6)�(�) =2�n +
L

c
�0

(7)=�m

(√
1 + 4

� − �0

m�r

− 1

)
+

L

c
�0

and computing the derivatives at �0 we obtain the disper-
sion required to generate the mode spacing of (1):

Here !! represents the double factorial. For a real laser the 
requirements on the dispersion are quite extreme but not 
impossible (see Sect. 5 and Fig. 4). These requirements are 
mitigated by large values of m, i.e. a long pulse revival time 
(for a given �r). However we expect that this would lead to 
a reduced Kerr effect and hence weakens the mode locking 
mechanism. We expect that once the laser is set up for a 
particular value of m, it will be reproduced every time it is 
put in the mode locked state.

3 � Self‑referencing 

For self-referencing the two parameters of the Tal-
bot comb, �r and �0 need to be measured and ideally 

(8)���
�0
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m�2
r

(9)����
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(10)�����
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…
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2k(2k − 3)!!�
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Fig. 3   Frequencies of the modes of the Talbot comb according to (1) 
shown as the red solid curve. The dashed part belongs to the nega-
tive mode spacing section (i.e. negative group velocity). We do not 
consider this possibility and therefore also discarded the other sign 
solution in (5). This curve defines the dispersion properties of the 
cavity whose expansion is shown in (11). The vertex of the curve at 
[−m∕2;�0 − m�r∕4] can be chosen without restriction by selecting 
m and �r. The active modes, i.e. the laser spectrum, is assumed to 
be centered at �0. It covers a certain range in �n and n-space (grey 
area). The curvature of the parabola reflects the required group veloc-
ity dispersion which can be minimized by large values of m and �r in 
accordance with (11)

Fig. 4   Comparing the exact round trip phase given by (5) and (6) 
with the expansion given by (11) for different order with m = 106 
and �r = 2� × 100  MHz. Successively compensating dispersion up 
to the order �(6)(�), the phase mismatch reduces to 0.77  rad at the 
edges of the spectrum (width 10  THz), i.e. about 0.12 free spectral 
ranges. This mismatch has to be compensated by the Kerr effect like 
in a regular mode locked laser
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stabilized. We assume that the recurrence index m is 
known. One might get an estimate of it and then fix it 
to be an integer, by measuring the recurrence time and 
compare it to the cavity length. A more reliable method 
would be to measure a known optical frequency with a 
self-referenced Talbot comb and then identify the proper 
m compatible with that measurement. This is the same 
method often applied with regular combs to determine 
the correct mode number.

The parameter �r can be determined by observing the 
mode beating dependence on n as expressed by (2), i.e. by the 
second order mode differences:

In practical terms this frequency is readily generated by 
mixing two adjacent RF modes Δn, say by driving some-
thing non-linear with the photo detector signal. The mixing 
result can then be locked to a precise reference frequency 
such as an atomic clock by feeding back on the cavity 
length and presumably also on the pump laser power. In 
that sense �r is determined almost as simple as the repeti-
tion rate of a regular frequency comb.

The second parameters of the Talbot comb, �0 can be 
measured in very much the same way as done with the carrier 
envelope offset frequency of a regular comb [4], i.e. with an 
f − 2f  interferometer. A part from the red side of the Talbot 
comb with mode number n1 is frequency doubled and super-
imposed the blue part of mode number n2. According to (1) 
the generated beat notes have the frequencies:

The condition for a signal in the radio frequency domain 
is that out of the combinations of integers in the bracketed 
term there is one, that is large enough to multiply �r all the 
way up to the optical frequency �0. For m → ∞ this con-
dition is identical of the comb spanning an optical octave. 
If the combs bandwidth is sufficient there are many com-
binations of integers that fulfill this requirement, i.e. sev-
eral radio frequency beat notes may be taken as �0. Again 
this is very similar to regular frequency combs where the 
offset frequency is only determined modulo the repetition 
rate. Which of the beat notes is taken for �0 does not matter 
as long as the mode numbering is adapted to that choice. 
Frequency doubling the Talbot comb however will generate 
even more frequencies as assumed in (13), as we will see 
in the next section. The challenge then might be to identify 
the correct beat note that determines �0.

(12)
2

m
�r = Δn+1 − Δn

(13)2�n1
− �n2

= �0 −

(
2n1 − n2 +

2n2
1
− n2

2

m

)
�r

4 � Non‑linear interactions

Both, frequency doubling for self-referencing and spec-
tral broadening to obtain an octave spanning bandwidth 
require non-linear processes. Driving a � (2) non-linearity 
the resulting field can be written as

Just like (4), this field reproduces itself after the recurrence 
time T = 2�m∕�r by virtue of the same argument made in 
(3). This should not surprise because whatever the � (2) does 
in the time domain, a periodic input should result in an out-
put of the same periodicity. The mode distribution of terms 
with n = n� belongs to a frequency doubled Talbot comb as 
used in (13). Since there is only one such combination in 
the sum for each n, the � (2) process is expected to be less 
efficient than for a regular frequency comb. Of course this 
can also be understood in the time domain where a short 
pulse is formed only after m cavity round trips. The mode 
combinations in (14) with n′ ≠ n do not belong to the dou-
bled Talbot comb. This probably means that the frequency 
doubled Talbot comb are not good for the type of spectros-
copy described above. However, the usual f − 2f  self refer-
encing is possible using these processes if one finds ways 
for a more efficient non-linear interaction. Since the dou-
bling process is expected to be weak, it might be advisable 
to work with an auxiliary frequency doubled cw laser beat-
ing the fundamental and second harmonic with the Talbot 
comb and the doubled Talbot comb respectively. It should 
be mentioned that even without self-referencing the Talbot 
comb could be a useful tool. One might instead reference 
one of its modes to a wavemeter or to a atomic or molecular 
line. In fact for the intended broad band spectroscopy refer-
encing to an atomic clock is usually not necessary.

With a similar argument as above, driving a � (3) non-
linearity for spectral broadening the combination of 
modes

are generated. In a regular frequency comb this process 
simply extends spectrum by adding new modes on the 
extended grid of original modes. In the case of the Talbot 
comb this does not take place. One can see this by requir-
ing the modes in (15) to be a Talbot comb of the same 
m: (n + n� − n��)2 = n2 + n�2 − n��2. Solving this equation 
yields two solution n�� = n and n�� = n�. In neither case 
additional modes are added to the initial Talbot comb.

(14)E2(t) = E2
0
e−i2�0t

∑

n,n�

anan�e
−i
(
n+n�+

n2+n�2

m

)
�r t.
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5 � Example design 

One of the possibilities to demonstrate the Talbot comb is 
to employ a fiber-laser-based design. Because of the small 
mode-volume and long interaction length, the fiber-laser 
could introduce strong nonlinear effects such as nonlinear 
polarization rotation which is often used for conventional 
mode-locked fiber lasers  [6]. In the case of Talbot comb, 
the mode-locking mechanism is effectively m times smaller 
than the conventional lasers. Therefore either strong non-
linear effects or matching the overall dispersion to (6) with 
very good accuracy is required to enforce the Talbot mode-
locking. Intracavity dispersion can be introduced through a 
fiber Bragg grating (FBG) that can be designed with very 
large values for the group velocity dispersion and precise 
values for the higher order dispersions. To manufacture a 
FBG a grating is written into a photo sensitive fiber with 
a UV laser. Up to the 6th order dispersion is commercially 
available.

One or even several FBGs can be conveniently imple-
mented into the fiber-laser cavity using an optical circula-
tor. The cavity should include a gain fiber, a pump beam 
combiner, an optical isolator and an output coupler as 
shown in Fig. 5. An example for design parameters might 
be m = 106, �r = 2� × 100 MHz assuming a spectral width 
of �� = 2� × 10  THz and an optical carrier frequency of 
�0 = 2� × 300 THz (� = 1 μm) which is close to the Ytter-
bium gain maximum. With this we obtain from (11) 
���
�0

= −3.2 × 107  fs2, ����
�0

= 3.0 × 108  fs3 and 

�(4)
�0

= −4.8 × 109  fs4 etc. Rather than this expansion one 

might use the first term in (7) to directly compute the 
required dispersion function.

To estimate the order of magnitude of the required length 
of the FBG Δz we calculate the difference of the round trip 

phase delay for the two ends of the spectrum (full width Δ�) 
using (7): Δ� = �(�0 + Δ�∕2) − �(�0 − Δ�∕2). This 
phase difference has to be divided by the wavenumber 2�∕� 
to obtain the required path length difference between the two 
extreme colors. With the parameters above, dividing by the 
refractive index of 1.5 and taking into account that the light 
travels twice through the FBG we obtain Δz = 3.3 cm. The 
real length might then also depend on the requirements for 
the reflectivity. Fiber lasers generally come with a large opti-
cal gain so that it may be possible to compromise on that 
parameter. The first design may not be the rather optimistic 
one of this proposal but could be a trade off between large 
m (=low dispersion) and small m (=stronger mode locking). 
To start operation at a very large value of m it may also con-
ceivable to include an intracavity modulator that mimics all 
or parts of the temporal envelope shown in Fig. 2.

6 � Conclusions

This article is dedicated to Theodor Hänsch on the occasion 
of his 75th birthday. Among the many other laser tricks that 
he has invented is the optical frequency comb. Originally 
intended as a tool to measure laser frequencies, it has found 
several other applications for example in attosecond science 
and astronomy. Further it is used for large bandwidth direct 
comb spectroscopy. The current work tries to extends these 
possibilities, even though we have to admit that more ideas 
are required to turn it into a useful tool. Nevertheless we hope 
that this idea provides a new playground and entertainment 
for those who like curiosity driven research. In this spirit 
Theodor Hänsch has been our guide for many decades and we 
hope that there will be many more to follow. Happy Birthday!
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Fig. 5   Possible set-up of a Talbot laser build with fiber components. 
A fiber Bragg grating (FBG) included into the ring resonator with 
a circulator (circ) might be used to set the required dispersion. For 
smaller values of m and hence larger dispersion several FBGs might 
be part of the resonator
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