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Chapter 1

Introduction

Granular matter consists of macroscopic particles that occur in many outside-the-lab
situations, ranging from breakfast cereals [US07, SUK+06] and industrial grain processing
over quick sand [LRBvdM04] and sand castles as well as landslides [Her05] up to hail stones
and interstellar dust clouds [PB04, Sec. 1.7.1]. The interaction between granular particles
is governed by dissipative contact forces so that the dynamics of granular materials is out
of equilibrium. If no energy is injected, e.g. by tapping or shearing, the system is studied in
free cooling (e.g. [UAR+09]), otherwise steady states (e.g. [RVH09]) where dissipation and
energy input balance might occur. A common type of dissipative interaction are inelastic
collisions [PB04]. There are, however, many granular phenomena like sandcastles and the
accretion of interstellar dust resulting in the formation of stars that require an attractive
interaction.

This thesis will be concerned with a type of interaction that naturally combines attrac-
tion and dissipation by means of a hysteretic, i.e. history-dependent, pseudo-potential.
This thesis is concerned with a simple schematic version of such an interaction namely
the thin-thread model [FRHH08] described in Fig. 1.1 (left). Due to absence of the at-
tractive potential no energy is gained in approaching. Upon removal, however, energy is
dissipated to overcome the potential emerging after contact. If the kinetic energy is too
low to overcome the potential, particles will cluster together. The typical example for
this kind of interaction is given by wetted granular particles [WAJS00, Her05]: Here, two
particles are only connected by a liquid bridge as shown in Fig. 1.1 (right) after a collision.
Another example emerges due to contact deformation in interstellar dust [CTH93, DT97].

As a non-equilibrium system any approach to (wet) granular matter from statistical
mechanics, especially kinetic theory and hydrodynamics, requires strong chaoticity prop-
erties of the underlying dynamics. These properties become manifest in the phase space
distribution, which can conveniently be obtained numerically. The subject of this thesis is
a detailed study of the phase space structure resulting from the hysteretic interaction and
its dissipation. Due to its low dimensionality a Sinai billiard (or, equivalently, a quadratic
Lorentz gas; [Szá00]) with accordingly modified collision rules is chosen as an exemplary
system. As a consequence of dissipation the free motion in the modified Sinai billiard
only persists until the system eventually ends up in the clustered state, i.e. the dynamics
is transiently chaotic (e.g. [TG06, Chapter 6]). Before discussing the wet interaction and
the Sinai billiard in detail, we give a outline of this thesis including a brief preview of the
results.

1



2 CHAPTER 1. INTRODUCTION

In Chapter 2, the effects of dissipation leading to a steady energy reduction (“free
cooling”) on phase space structure and clustering are investigated. In this situation the
phase space can be reduced to a space with two spatial dimensions, which allows easy
visualization: A Poincaré section placed at the billiard boundary features the number of
collisions as time variable. Consequently, the dissipation occurring after each collision
is well-defined and the energy variable becomes trivial. As the wet billiard combines
features of Hamiltonian and dissipative systems it is not immediately clear in what sense
a compression of phase space volume will occur and how this might result in a structured,
i.e. non-uniform, phase space distribution. It turns out that the hysteretic feature of the
interaction may cause non-injectivity of the billiard map. The resulting double-folding
of phase space eventually gives rise to a fractal distribution that is supported on the
entire phase space. In a sense the wet billiard thus keeps the Hamiltonian feature of local
volume conservation while dissipation nevertheless manifests itself in generating a fractal
structure. In spite of the structure the phase space distribution is still well approximated
by a uniform distribution. As a demonstrative application the clustering frequency is
calculated.

In Chapter 3, the dissipation caused by the liquid bridges is augmented by an en-
ergy input to the billiard system. Shearing is chosen as an interesting driving mechanism
for various reasons: Shearing is a situation very common in nature (earthquakes, land-
slides, accretion disks of stars) and in industrial applications (material transport through
pipes due to gravity or air flow). Furthermore, shearing can be realized experimentally
as well as in computer simulations and allows for homogenous densities. In the latter
case so-called Lees-Edwards boundary conditions [AT87] are a conceptually simple tool.
Even so, steady-states resulting from the application of Lees-Edwards boundary condi-
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Figure 1.1: Thin-thread model [FRHH08]: The particles move freely (a) until they collide
and form a liquid bridge (b). The bridge is modeled as the emerging of a potential well with
velocity-independent depth ε (c). When leaving this potential well upon rupture of the liquid
bridge (d) the particle’s kinetic energy is reduced by the constant energy ε (right image courtesy
by S. H. Ebrahimnazhad Rahbari).
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tions to wet granular matter have not thoroughly been studied so far (for preliminary,
unexpected results see [Bri09], [Rah09]). Also, to the author’s knowledge, (dissipative)
billiards with Lees-Edwards boundary conditions have not been discussed in this context.
Instead, steady-states are commonly ensured by sophisticated variants of Lees-Edwards
boundary conditions that have different properties [PIM94]. Finally, shearing seems espe-
cially interesting in the context of this work as it does not prevent clustering and is even
connected to phenomena like spontaneous plugging, e.g. of industrial grains in hoppers.

The interplay of energy input and dissipation in the wet sheared billiard is found not
to result in stables steady-states. Instead, continuous heating of the system even for
low shear speeds is observed. As a result, the kinetic energy or the speed, respectively,
becomes the essential phase space coordinate. The speed dynamics are shown to resemble
a generalized random walk so that the speed distribution is broadened by diffusion. This
leads to a linear growth of the mean-square speed displacement, which corresponds to the
average kinetic energy. Eventually, this diffusive increase of the average energy dominates
over the liquid bridge dissipation.

The sheared billiard is a billiard system with moving boundaries. In such systems the
phenomenon of increasing average energy is known as Fermi acceleration after an idea of
Enrico Fermi to explain the acceleration of charged particles that collide with chaotically
moving magnetic clouds (e.g. [Los07]).

Due to the speed distribution broadening by diffusion the clustering region remains
accessible in spite of the increasing average energies. The sheared wet billiard thus com-
bines two effects of considerable interest in dynamical systems research: It is a transiently
chaotic dissipative system that also exhibits Fermi acceleration. A remarkable feature
resulting from this combination is that the sheared wet billiard possesses a power-law life-
time distribution instead of an exponential one. This feature is caused by the unbound-
edness of phase space that follows from Fermi acceleration and leads to an effectively
shrinking clustering region.

Chapter 4 concludes with a summary of the results and points out some perspectives
for future research.
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1.1 Wet granular matter

1.1.1 Granular matter and types of interaction
Granular matter is characterized by two features: Particles are macroscopic and collisions
dissipate kinetic energy into internal degrees of freedom of the particles. While the size
of granular particles on the one hand excludes all kinds of microscopic effects including
Brownian motion it gives rise to new questions like the effects of shape1 and size distri-
butions (e.g. [UKAZ09]). From a dynamical viewpoint, however, the dissipative nature
of the interaction is crucial as it makes granular matter a system far from equilibrium.

So far, research in granular matter has mainly focused on repulsive interparticle inter-
actions with viscoelastic dissipation. In the simplest approximation the latter is charac-
terized by a normal coefficient of restitution ([PB04, Sec. 2.2])

√
α := vf

n
vi

n
,

given by the fraction of the pre-collision normal velocity vi
n remaining as post-collision

speed vf
n. The energy dissipated thus decreases with the relative normal kinetic energy

En = v2
n/2 of the colliding particles:

Ef − Ei = − (1− α)Ei
n. (1.1)

Here, superscripts i and f denote the energy before and after the collision, respectively.
Note that the dissipation therefore does not introduce a specific energy scale. For realis-
tic modeling velocity-dependent coefficient of restitution are necessary [PB04], which in
general does not affect the speed-dependence of the dissipated energy.

The study of inelastically colliding granulates has reached some textbook level (e.g.
[PB04]) and many interesting results have been found. We mention correlations of the
particle velocities caused by the inelasticity of the collisions [PBS03]. These correlations
are an example of an effect that has macroscopically observable consequences but can
largely be understood on the level of two-particle collisions. It thus stresses that it is
worthwhile to study the interaction of individual pairs of granular particles in detail.

Many phenomena emerging in granular matter, such as sandcastles [Her05] and star
formation out of interstellar dust [CTH93, DT97], however, require an attractive interac-
tion. Starting from an attractive potential, interaction naturally becomes dissipative if
it is hysteretic, i.e. not symmetric or direction-dependent, such that the potential energy
gained in approaching of particles does not make up for the energy needed to escape (see
Fig. 1.1 for an example). When the emerging pseudo-potential is independent of the im-
pact speed also the dissipated energy is speed-independent so that it introduces an energy
scale. Relative to this scale there are “slow” particles that will not have enough kinetic
energy to overcome the potential barrier so that two collision partners stick together. In
the limit of an infinitely deep pseudo-potential, the interaction is thus a “sticky” one,
which never allows escape [CPY90].

This thesis is a detailed study of a hysteretic interaction with velocity-independent
dissipation. The example of such an interaction that triggered this thesis is wet sand as

1There is, for example, ongoing research on packings of tetrahedra by Max Neudecker and Matthias
Schröter, Max-Planck-Institute for Dynamics and Self-Organization, Dept. of Complex Fluids.



1.1. WET GRANULAR MATTER 5

opposed to dry sand, which lacks attractive interaction. The terms wet and dry will there-
fore be used to refer to granulates with hysteretic interaction or granulates characterized
by a constant coefficient of normal restitution, respectively.

1.1.2 Liquid bridges and contact deformation
Capillary bridge between two wetted spheres. To illustrate the basic physics in-
volved in wetted granulates (Fig. 1.2, left) we follow [Her05] and refer to [WAJS00] for
details. When bringing two wetted spheres, each of radius R, into contact, the covering
liquid films will merge and form a liquid bridge as depicted in Fig. 1.3. The surface ten-
sion of the liquid γ and the two principal radii of curvature ri (see Fig. 1.3) determine the
Laplace pressure pL in the contact region,

pL = γ
( 1
r1

+ 1
r2

)
≈ γ

r1
,

where r1 � r2 is an assumption justified for small liquid contents resulting in non-
overlapping bridges. The strong negative (inward) curvature corresponding to r1 thus
results in an underpressure that causes a liquid flow into the contact region until the
contact angle reaches its equilibrium value θ. We restrict the present discussion to the
case of complete wetting, i. e. θ = 0, so that the liquid bridge connects tangentially to
the spheres as in Fig. 1.3. In this geometry (and still assuming r1 � r2, or alternatively
r2 � R) one finds r2

2 = 2Rr1. The capillary force acting between the two spheres at the
contact area A = πr2

2 is then given by

F0 = pLA = 2πRγ.

Figure 1.2: Two examples for interactions that are dissipative due to hysteresis: The
optical micrograph on the left shows water bridges that have formed between wetted glass beads.
The electron micrograph on the right shows material necks (best visible within the red circle)
forming between colliding silicon grains (average grain diameter ≈ 70 nm). The necks form as
a consequence of increased van-der-Waals forces caused by contact deformation. This effect is
negligible for the glass beads because of larger grain sizes. (left courtesy by Mario Scheel [Sch09],
right image after [Iij87] in [CTH93]).



6 CHAPTER 1. INTRODUCTION

R

r2

r1

Figure 1.3: Cross section of two wetted spheres connected by a liquid bridge for a
contact angle θ = 0. Note that R2 denotes the radius of the liquid-bridge section perpendicular
to the plane shown. Also R1 is depicted larger than realistic (cf. Fig. 1.2).

On separation, the liquid bridge connecting both spheres elongates. The change of the
bridge force as a function of distance s can be approximated as [WAJS00]

F (s) = F0

1 + 1.05
√

R
V
s+ 2.5

(√
R
V
s
)2 , (1.2)

where the liquid bridge volume V appears as scaling factor. At a critical distance sc,
the liquid bridge ruptures. In [WAJS00] the authors find this bridge-rupture distance for
θ = 0 to be described by

sc = V
1
3 + 0.1 · V

2
3 . (1.3)

At this point, the direction-dependent, hysteretic feature of the liquid bridge interaction
is apparent: The bridge force is only present after the two spheres have touched not while
they are approaching. Due to the missing force before the collision the total energy ε
needed to elongate and rupture the liquid bridge is lost as kinetic energy. The dissipated
bridge-rupture energy is given by [HF07, Sec. 3.2]:

ε =
∫ sc

0
F (s) ds ≈ 2πγ

R

√
V . (1.4)

As neither FB nor sc depend on the velocity of the spheres, ε is velocity-independent,
too. This has important consequences: If the relative velocity of the collision partners
is too small to rupture the liquid bridge they will stick together and form a cluster
(Fig. 1.2, left). For dry granular matter, in contrast, the dissipated energy decreases via
α with the relative kinetic energy of the colliding particles (Eq. 1.1). Thus, the formation
of aggregates is not caused by pairwise sticking of particles but by decreasing granular
pressure in strongly cooling regions (see e.g. [PB04, Part V]).

The coefficient of restitution corresponding to the dissipation by bridge rupture reads

αwet =
√

1− ε

Ei
(1.5)
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Figure 1.4: Aggregated giant hail stone. This giant hail stone [OA05] seems to be an
aggregate of several smaller ones. As hail stones may be covered with a liquid layer in the so
called “wet growth regime” liquid bridge interaction might, among other interactions, offer an
explanation for the formation.

and decreases with Ei as required to obtain a constant dissipation.
It should be noted that in collisions between real wetted particles both dissipative

effects, inelasticity and bridge rupture, are present. At low speeds the liquid-bridge inter-
action dominates while at high speeds inelasticity cannot be neglected anymore (cf. [Röl10,
Sec. 3.3]). This thesis studies the wet-type interaction in detail and will compare it to the
dry interaction. The mixed case lies outside its scope.

The liquid bridge interaction described so far is applicable to objects with a size of
several microns up to millimeters in various every-day situations where cohesive forces be-
tween the particle bodies are small compared to the capillary force just described [Her05].
A prominent example is wet sand or soil, found from landslides to sandcastles, usually in
a dense state. The model system of this thesis is a billiard system with low densities. A
possible example, which is however unstudied from this viewpoint so far, might be hail
stones in the so called wet-growth regime [PK97, Sec. 16.1.1]: While a hail stone passes
through supercooled air it collects condensing water droplets. When freezing this water
releases latent heat. If the conditions do not allow for sufficient heat transport more water
is collected than freezes and the hail stone will under certain conditions be surrounded
by a water layer. On a speculative basis liquid bridges might, among other interactions,
offer an explanation to the formation of aggregated giant hail stones as shown in Fig. 1.4.

Contact deformation of spherical dust grains. Another mechanism for velocity-
independent dissipation caused by a hysteretic potential can be found in astrophysics
([CTH93],[DT97]): Typical grain sizes in interstellar medium range from angstrom to
several nanometers. The particles considered here are thus much smaller than those in
typical every-day granulates, and van-der-Waals/adhesion effects of the grain material
itself are no longer negligible as attractive interactions. In fact their strength in dust-
particle collisions may be direction-dependent and may cause an interaction potential
very similar to the one caused by liquid bridges: When two particles initially collide the
contact region is small and with it the adhesion forces. The impact, however, leads to a
small deformation of the contact zone, which enlarges as consequence. A larger contact
zone means larger contact forces that have to be overcome to separate the particles again.
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Before separation (given high enough relative speeds to prevent clustering) the two grains
will even form a small “neck” out of grain material similar to a liquid bridge (Fig. 1.2). It
should be noted that viscoelastic dissipation is inherent in contact deformation. A clear
separation of dissipation due to inelasticity of collisions and rupture of the material is thus
more difficult than in the case of wet granular matter. Although we stress the broader
applicability of the interaction, wet granular matter will serve as exemplary system.

1.1.3 The thin-thread model
The scope of this thesis is to closely investigate the peculiarities of the wet interaction
described in the last section. To concentrate on the substantial properties we introduce a
simplified model of liquid bridges, the thin-thread model2 [FRHH08] depicted in Fig. 1.1.
It reduces the wet interaction to its two core features: Hysteresis is obtained by switching
on and off of the potential well and velocity-independent dissipation results from the
constant depth of the potential well. The potential is characterized by the bridge-rupture
distance sc and the bridge-rupture energy ε. Both features are quantitatively determined
by the liquid volume (Eqs. 1.3 and 1.4).

The success of the thin-thread model in simulations demonstrates that it indeed cap-
tures all important features of liquid-bridge interaction. The thin-thread model was in-
troduced in [FRHH08] because the piecewise force-free motion is especially suitable for
fast, event-driven computer simulations where collision and bridge rupture interrupt the
ballistic flight of particles as instantaneous events. In [FRHH08] the authors find that the
phase diagram of vertically shaken wetted granulates obtained from simulations based on
the thin-thread model compares well to experimental data. Moreover, simulations using
the thin-thread model are found to largely coincide with molecular dynamics simulations
with the microscopically more realistic minimal-capillary model. The latter approximates
the bridge force by a constant rather than by Eq. 1.2 and thus corresponds to a linearly
increasing potential. In conclusion, the thin-thread model is not only a conceptual model
of wet granular matter but has practical relevance as well.

The thin-thread model describes a dissipative interaction in a “potential-framework”:
At every point the particle dynamics takes part within a potential landscape. Never-
theless the difference in potential when separating as compared to approaching changes
the potential energy of a particle without accordingly changing the kinetic energy such
that the total energy is reduced. The motivation of this thesis it to find out how this
uncommon interaction, which combines features of dissipative and Hamiltonian system
affects particle dynamics.

Thick-film vs. thin-film thin-thread model. So far the thickness of the uniform
liquid film has been neglected as compared to the bridge-rupture distance sc. This is
physically justified and means that liquid bridges are only formed during a collision.
This variant is named thin-film model as opposed to the thick-film model in which the
thickness of the uniformly spread liquid film and the bridge-rupture distance are taken
to be the same. In the thick-film case liquid bridges can also form if only the films but

2The thin-thread model got its name because the interaction it describes resembles a piece of thread
connection two beads: As long as it is not maximally elongated it exerts no force. When stretch up to
the rupture distance, however, the thread suddenly exerts a radial force.
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not the grains are in contact. In Fig. 1.1, the potential well would thus appear as soon
as the radial distance between particles becomes smaller than the bridge-rupture distance
sc. Macroscopic results like temperature development in free cooling have been found
to be independent of the exact implementation of the thin-thread model [UAZ+09]. In
the present context we will mainly focus on the thin-film but sometimes compare to the
thick-film variant of the thin-thread model to detect microscopic differences.

1.1.4 Free cooling and shearing

As a dissipative system (wet) granular matter is necessarily studied as an open system
coupled to a certain environment. The specific environment reflects back on the statistical
properties of the system. Thus, the billiard model for wet granular matter is studied in
at least two different environments to get an impression about their influence.

Chapter 2 deals with a freely cooling granular billiard. A freely cooling granulate is
free of external forces (especially of gravity) so that the “environment” only consist of the
internal particle degrees of freedom that are excluded from consideration and into which
the liquid bridge energy is dissipated. Without energy input, the granular temperature
T , which is defined via the average kinetic energy 〈E〉 of the granular particles, T ∝ 〈E〉,
steadily decreases, i.e. the system “cools” down. Experimentally, free cooling is hard
to realize as gravitation has to be compensated. For dry granulates, the authors of
[MIMA08] managed to do so in the laboratory using diamagnetic levitation. For wet
granulates, however, such a study is still missing. Due to these difficulties free cooling is
mainly studied in computer simulations [UAR+09, UAZ+09]: The temperature decrease
with time is found to be adequately described by

∂tT ∝ fcoll · ε · Pbridge,

where fcoll is the collision frequency, ε the bridge rupture energy and Pbridge the probability
that a collision is followed by a bridge rupture, i.e. 1−Pbridge is the probability to cluster
in a collision. Naturally the interesting part of this ansatz is to estimate fcoll and Pbridge.

In Chapter 3 shearing is added as driving mechanism to the billiard model. As shearing
occurs in many natural situations it can be realized experimentally. In computer simula-
tions, there are different ways to implement shearing. A cosine shear profile was applied
to a wet granulate in [RVH09] and found to result in stable or oscillatory unstable steady
states. A linear shear profile can be implemented by Lees-Edwards boundary conditions
[AT87, Sec. 8.2], which will be used in Chapter 3. Lees-Edwards boundary conditions are
a type of periodic boundary conditions where the periodic images at two opposite sides of
the simulation box, e.g. the periodic images to the top and to the bottom, are moving with
constant speed s (Fig. 1.5). Passing over into such a moving periodic image corresponds
to a change of coordinates into a moving frame of reference. We discuss briefly how the
kinetic energy of a particle is affected by crossing such a boundary. First, we observe that
Lees-Edwards boundary crossings are symmetric with respect to rotations by π. It is thus
sufficient to consider only the top boundary. Let vx be the velocity component parallel to
the Lees-Edwards boundary and vy > 0 the perpendicular component. Then the energy
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Figure 1.5: Lees-Edwards boundary conditions are characterized by periodic images at
two sides that move with a constant velocity s. Transforming a velocity ~v into one of these
moving images corresponds to a coordinate change into a moving frame of reference so that the
component of ~v parallel to the moving boundary changes. On average, Lees-Edward boundary
crossings increase the speed |~v| (see main text for further details).

E = v2/2 = (v2
x + v2

y)/2 changes according to

2E ′ = (vx − s)2 + v2
y = v2 + s2 − 2sv cos θ

⇒ ∆E = E ′ − E = s2

2 − s
√
E cos θ,

where the angle 0 ≤ θ < π is the trajectory angle in the upper half as depicted in Fig. 1.5.
Assuming a uniform distribution of directions θ the kinetic energy is on average found to
increase:

〈∆E〉 = 1
π

∫ π

0
∆E dθ = s2

2 . (1.6)

Thus, Lees-Edwards boundary conditions drive a system. Lees-Edwards boundary con-
ditions have been applied to a wet granulate in [Bri09, Rah09]. Surprisingly, a steady
state temperature is only observed up to a critical shear rate. For higher shear rates the
system is steadily heated. No explanation for this behavior exists so far, which further
motivates us to study the combination of Lees-Edwards boundary conditions with wet
granular matter in detail.

1.2 Sinai billiard

1.2.1 Chaoticity and the foundations of statistical physics
Statistical physics relies on the underlying dynamics to be sufficiently random or chaotic,
respectively. Dynamical systems theory has developed a detailed hierarchy distinguishing
different degrees of randomness (e.g. [Ott02, Sec. 7.6]). In the present context, however, it
is sufficient to restrict the discussion to ergodicity and a general notion of strong chaoticity.
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Ergodicity as well as chaoticity are properties of a dynamical system on a subset
of the phase space. For a Hamiltonian system the relevant subset is usually the energy
surface while for dissipative systems a chaotic attractor or saddle might be relevant [TG06,
Box 7.4]. The respective domain will for the remainder of this section simply be referred
to as the phase space.

A dynamical system is ergodic if almost every initial conditions comes arbitrarily
close to any point of the phase space in the course of time (for a detailed discussion see
e.g. [Dor99, Mac03]). Ergodicity thus justifies to replace the time-averages of macroscopic
quantities by ensemble averages, i.e. a statistic handling of the microstates. Ergodicity for
Hamiltonian systems furthermore implies the uniformity of the microcanonical ensemble
upon which Gibbsian equilibrium statistical mechanics is based [LP73].

Ergodicity does not imply chaoticity in the sense of strong sensitivity on the initial
conditions and fast separation of neighboring trajectories. As a counterexample, imagine
two neighboring phase points ergodically exploring phase space without ever separating.
The separation of neighboring trajectories is also termed mixing as an initially connected
set will be spread out (see again [Dor99, Mac03]). When referring to “strong chaoticity”,
mixing over the phase space will be meant. Chaoticity in this sense implies ergodicity
and is thus the stronger concept.

Strong chaoticity is required for any coarse-grained, i.e. stochastified, mesoscopic treat-
ment of the full microscopic dynamics [vK61]. In particular, Boltzmann’s equation is
based on the assumptions of molecular chaos and with it kinetic theories and hydrody-
namics (e.g. [Sch06, Chapter 9]). Moreover, only strong chaoticity ensures that an arbi-
trary initial distribution evolves towards a (local) equilibrium distribution. Consequently,
strong chaoticity of the underlying dynamics is especially crucial for non-equilibrium sta-
tistical physics [Dor99, Sec. 1.6].

In the present context we will numerically access the properties of a dynamical system
given by a map M via its natural distribution with measure µ∞ and – if it exists3 –
density ρ∞ on the phase space X. If M is chaotic, the natural distribution is obtained
as the long-time limit towards which a smooth initial distribution ρ0(x) converges under
the action of M [TG06, Sec. 5.4.4]:

ρ0(x)
M◦M ···◦M
−−−−−−→ ρ∞(x).

In practice, the distributions are sampled by an assembly of systems with different initial
conditions whose distribution on X is observed as a function of time. Variation of the
initial assembly and distribution rules out pathological cases. For a system that is ergodic
but not mixing a localized initial condition does not eventually fill, i.e. sample, the total
phase space at each time step. Therefore the assembly has to be traced out over time
spans in this case, relying on the equivalence of time and ensemble averages.

We note that the asymptotically relevant part of phase space is given by the support
of the natural distribution, which corresponds to the attractor of the system and that in
the context of classical statistical mechanics the term “ensemble” is used to refer to the
natural distribution.

3Note that from a probability density function ρ(x) a measure µ(S) can be induced as µ(S) :=∫
S
ρ(x) dx where S is some region. There might, however, be measures (in particular for fractal distribu-

tions) that do not correspond to a density function and are thus the more general concept.
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So far we have elaborated that chaoticity (ergodicity) is the fundamental assumption
of statistical physics. But can it be rigorously justified from the microscopic dynamics? In
fact, so far a mathematical proof only exists for a few systems while also counterexamples
have emerged [LP73].

In this context dynamical billiards are very important: Billiards are an efficient re-
duction of the dynamics of hard ball systems, i.e. of colliding smooth spheres modeling
simple fluids, and allow to study their microdynamical properties [Szá00]. So far, how-
ever, chaoticity has been proven for two elastically colliding particles (corresponding to
the Sinai billiard, which will be discussed in the next section) while the general proof for
many elastically interacting particles [Sim10] and for systems of two particles with other
types of interactions [Liv00] are challenging fields of active research in mathematics.

Before discussing billiard systems in detail, some relativizations concerning the seem-
ingly weak basement of statistical physics are at place: So far only microscopic dynamics
have been considered to provide chaoticity. There are, however, other sources of chaotic-
ity. Those include external perturbations and randomness that is provided externally,
e.g. by a random grid or amorphous material in which the dynamics takes place [Dor99,
Sec. 1.3]. In real life the thermodynamic limits comes additionally to aid as sharp distri-
butions effectively restrict the phase space so that chaoticity is only required on a small
domain. Furthermore large numbers of particles help to decrease correlations [Dor99,
Sec. 17.5].

From a physicist’s point of view, therefore, the question of ergodicity and chaoticity
is not whether it holds but in what sense and how exactly these properties may be inter-
preted and formulated as a basis of statistical physics. For (wet) granular materials these
questions are still open. Even when no dramatic findings are expected for wet granular
matter, it is of fundamental interest how dissipation and hysteresis as occurring for the
wet interaction manifest themselves in the structure of the natural distribution.

1.2.2 Description and interpretation
In general a dynamical system describing the free motion of a point particle that is
elastically reflected from piecewise-smooth boundaries is called a (dynamical) billiard
(cf. [Bun07]). Elastically reflected means that – according to the law of reflection –
incident and exit angle are the same and that energy is conserved. If the interaction is
not modified, billiards are thus Hamiltonian systems. Depending on the shape of their
boundary billiard systems can exhibit and represent all possible types of behavior found
for Hamiltonian systems (cf. [Bun07]) and are therefore a valuable tool in this field of
study.

Sinai billiards, named after Yakov Grigorevich Sinai who introduced them in 1960s,
are a special type of billiards characterized by boundaries that are everywhere dispersing,
i.e. have outward curvature. The 2-dimensional prototype of a Sinai billiard consisting of
a circular scatterer centered in a square with periodic boundary conditions is depicted in
Fig. 1.6. Note that the periodically connected square is equivalent to the 2-dimensional
torus.

The dispersing boundary of the Sinai billiard ensures that neighboring trajectories
separate very fast. In fact, the specialty of the dispersing billiards is that Sinai could
mathematically prove that they have the strongest chaotic properties (cf. [Bun07]). In
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L

R

Figure 1.6: The Sinai billiard consists of a point particle that is elastically reflected from a
circular scatterer and moves apart from that freely in a periodically continued square box. The
billiard geometry is determined by the scatterer radius R and the box size L.

particular, they are mixing and ergodic on the energy surface.
As it describes the motion of a single 2-dimensional particle the full phase space of

the Sinai billiard is 4-dimensional. In the elastic case, energy conservation restricts the
motion to the 3-dimensional energy surface. The phase space can be reduced further to 2
dimensions by means of a Poincaré section where one only considers the discrete dynamics
given by intersecting the full trajectory with the scatterer boundary. In other words, the
discrete evolution of a phase point on the scatterer boundary is defined to be the point
of first return to the boundary under the original continuous evolution. In particular, the
discrete time is given by the number of collisions with the scatterer.

This collision section of the phase space is measure-preserving (cf. [Bun00]) so that
a natural distribution observed on the Poincaré surface of section faithfully represents
the one on the full phase space. Consequently, the Sinai billiard has an easy-to-visualize
phase space and is thus also very suitable for numerical phase space studies.

Interpretation: Lorentz gas. There are two possible interpretations of the Sinai
billiard. Interpreting the periodic boundary conditions as an infinite rectangular grid of
scatterers leads to the quadratic Lorentz gas. Here, a light particle is moving in an array
of scatterers that are so heavy that their momentum is not changed by the collisions
with the light particle. The Lorentz gas was proposed as a model for the motion of an
electron between atomic cores in a metal by Hendrik Antoon Lorentz. In a granulate,
however, particles are of comparable size and moreover not regularly ordered so that this
interpretation does not seem appropriate. The Lorentz gas picture is nevertheless useful
to distinguish between general types of motion depending on the density and position
of scatterers: If the length of a free path between two collisions is (un)bounded the
Lorentz gas is said to have an (in)finite horizon (cf. [Bun00]). Clearly, a Lorentz gas on
a quadratic lattice always has an infinite horizon due to collision-free flights parallel to
the grid structure. This might be mathematically troublesome, for the numerical phase
space studies intended in this thesis it is unproblematic, however, as the pre/post-collision
Poincaré map prevents statistical dominance of seldom colliding trajectories. By choosing
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a triangular lattice one can remove collision-free flights for sufficiently large scatterers
(cf. [Los07, Sec. 9.1]). However, an open horizon is unavoidable for the sheared Sinai
billiard in Chapter 3.

Interpretation: Relative motion of two disks in a box with periodic boundary
conditions. The second interpretation of the Sinai billiard is the relative motion of two
particles in the plane. As visualization is hard for the 8-dimensional phase space of the two
particles in the plane the great advantage of the following reduction is the 2-dimensional
billiard phase space that nevertheless keeps the important features.

Take two hard disks of equal mass without rotational degrees of freedom that interact
via elastic collisions. To allow for more than one collision periodic boundary conditions
are imposed. To prevent simultaneous interaction with two periodic images, which would
contradict the two-particle interpretation, only dilute two-particle gases are taken into
account. The two disks exert equal and opposite forces onto each other so that the center
of mass moves rectilinear-uniformly. This movement remains unaffected by application of
periodic boundary conditions if the two particles cross the boundary simultaneously. For
disks with equal masses this is the case and allows for choosing the center-of-mass system
as reference system.

The two disks with position vectors ~ri cannot approach each other closer than the sum
of their radii Ri,

|~r| = |~r2 − ~r1| ≥ R1 +R2 =: R,

and collide for |~r| = R. Consequently, the relative motion corresponds to the motion of
a point particle with position ~r that is scattered from a circle of radius R (cf. Fig. 1.6).
As the hard core potential governing the elastic collisions gives rise to a radial force, the
tangential part vt of the relative velocity ~v remains unchanged by a collision while the
radial component vr is reversed:

collision: ~v = vt~et + vr ~er 7→ ~v′ = vt~et − vr ~er.

An elastic collision thus changes ~v according to the law of reflection. The description of
the relative dynamics is completed by the update of ~r according to the periodic boundary
conditions, which can be interpreted as moving the origin of the coordinate system to the
adjacent periodic image:

boundary: ~r 7→ ~r mod L.

In between collision and boundary crossing the motion is ballistic and the relative dynam-
ics described above is just the situation of a Sinai billiard (cf. [Tab05, Example 1.10]).

A similar reduction is possible for more than two particles in more than two dimen-
sions [Dor99, Sec. 18.4]. The crucial difference occurring, however, is that the scattering
boundaries, which determine the regions in configuration space prohibited to the rela-
tive motion become cylinders in contrast to the circular scatterer of the Sinai billiard.
A cylinder is not dispersing along its sides, which complicates the treatment of higher
dimensions. The present study therefore focuses on the properties of 2 disks in a periodic
box where standard tools of dynamical systems theory are available.
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We stress that collisions of two particles are also at the heart of the Boltzmann equa-
tion, which neglects many-particle correlations. Studying two particles interacting ac-
cording to the thin-thread model (Sec. 1.1.3) might thus eventually give hints how a
Boltzmann equation for wet granular matter should look like and how the inherent irre-
versibility caused by the hysteresis could be taken into account.

To study free collision of two wet particles the Sinai billiard will be amended by the
wet interaction in the next chapter. In Chapter 3, the billiard is further generalized by
adding shear so that the dissipative two-particle collisions can also be studied in a driven
setting.
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Chapter 2

Freely cooling wet billiard

This chapter is concerned with the question if and how the hysteretic interaction in the
absence of any driving mechanism manifests itself in phase-space structure. Due to its
low-dimensional and illustrative phase space the Sinai billiard (Sec. 1.2.2) with collision
rules modified according to the hysteretic interaction serves as model system. As the
hysteretic interaction combines features of Hamiltonian and dissipative systems it is not
clear whether the natural distribution will remain uniform (on the energy surface) as
for the classical Sinai billiard or whether the dissipation causes structure in the natural
distribution. To further illustrate the question we shortly discuss how dissipation typically
affects the natural distribution.

The classical Sinai billiard conserves energy during collisions and is thus a Hamiltonian
system. Due to Liouville’s theorem the volume of some subspace will not change when
the system is evolving (at least if canonically conjugate variables are used). The shape of
this subspace, however, may be heavily deformed. To ensure volume conservation, con-
traction (slenderizing along stable directions) and stretching (broadening along unstable
directions) thus balance in Hamiltonian systems. On the other hand, the interaction be-
tween (wet) granular particles dissipates energy and is thus expected to contract phase
volume along the decreasing momentum coordinates.

The effects of this phase space contraction are best illustrated by the baker map,
which is a very simple but powerful model for the interplay of stretching and folding in
phase space. The baker map (e.g. [TG06, Sec. 5.1]) acts on the unit square, which might
correspond to a small region in the phase space of a more complicated dynamical system,
as shown in Fig. 2.1. As illustrated, the baker map does nothing else than stretching (by
a factor 2), compressing (by a factor c) and some kind of folding of the phase space1. If
the compression factor is c = 1/2 the baker map is volume/area conserving so that its
image is again the whole unit square. For 0 < c < 1/2 phase volume is contracted as
in a typical dissipative system. In this case the unit square evolved by the baker map
approaches a fractal attractor (e.g. [TG06, Chapter 2]) whose projection onto the x-axis
is the Cantor set.

For the minimal capillary model, which is conceptually equivalent to the thin-thread
model studied here (cf. Sec. 1.1.3), symplecticity, which implies volume conservation
[Ott02, Sec. 7.1.1], has been formally shown [HF07, Sec. 4.6]. On the other hand, dissipa-

1The folding can be motivated as necessary to appear in a bounded phase spaces, which prevents
infinite stretching of an initial volume.

17
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n n n

xn xn xn

n = 1 n = 2 n = 3n

xn

n = 0

A AB B
(x, y) ∈ [0, 1]× [0, 1] B (x, y) =

(cx, 2y) for y ≤ 1
2

[1 + c (x− 1) , 1 + 2 (y − 1)] for y > 1
2

Figure 2.1: The baker map B acts similar to the way a baker treats the dow: The unit square
as phase space is stretched by a factor 2 in the y-direction and compressed by a factor c in
the x-direction. Finally, the stretched image is cut in the middle and put back onto the unit
square. For c = 1/2 the volume of the unit square is conserved. For c < 1/2 (in the figure:
c = 1/3) the volume decreases, which results in the fractal structure illustrated. The support of
its projection onto the x-axis is the Cantor set. A compression factor of c > 1/2 would result in
iterated double folding of the phase space (image after [TG06, Sec. 5.1.3]).

tion should manifest itself in some way and the sudden change of the potential landscape
seems not to be included in the formal treatment. So far it has thus remained an open
question in what sense the wet interaction is or is not volume-preserving.

From the statistical-physics point of view the main concern is not whether or not the
natural distribution is uniform but how strong a possible structuring turns out to be. If
the distribution or its projections are still sufficiently well approximated by a uniform
distribution no extra care has to be taken, at least from this direction, in formulating the
statistical physics of wet granular matter.

2.1 The system
For the sake of this discussion we employ dimensionless units if suitable: The energy
E is measured in units of the bridge-rupture energy ε (cf. Fig. 1.1), and lengths, in
particular the box size or periodicity of the billiard L (cf. Fig. 1.6) and the rupture
distance (cf. Fig. 1.1) of the liquid bridge sc, are given in units of the central-disks radius
R (cf. Fig. 1.6). Furthermore, mass is set to unity so that speed is given by v =

√
2E.

The collision rules of the Sinai billiard are modified in order to include the wet inter-
action (see Fig. 2.2). The liquid bridge exerts a radial force and reduces the radial energy
Er = v2

r/2 by an energy ε, thus causing the velocity to tilt:

boundary: ~v = vt~et + vr ~er 7→ ~v′ = vt~et +
√
v2
r − 2ε ~er. (2.1)

If Er < ε the liquid bridge cannot be ruptured and both particles stick together and form
a cluster. As systems in this state do not explore the phase space anymore they will be
excluded or separately analyzed in the following.

As bridge rupture punctually interrupts the ballistic motion in the same way as bound-
ary crossing and collision do the relative dynamics is still given by a sequence of straight
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line segments now connected by one of the three events:

• collision (totally elastic, following law of reflection)

• bridge rupture (dissipation, trajectory tilts)

• exit and entrance according to periodic boundary conditions (preserves energy
and direction of the trajectory)

We note that the dynamics remains completely Hamiltonian (and therefore measure-
preserving) in between the sudden switch-ons of the thin-thread potential. Consequently,
the post/pre-collision Poincaré section still serves its purpose. Furthermore, the collision
sections are sections of constant energy: On each collision, the system energy is reduced
by the constant amount ε while it is preserved in between. Hence the initial energy Eini
and the number of collisions n the system has experienced so far completely determine
the current energy:

E (n) = Eini − ε · (n− 1) (2.2)

Here the factor (n− 1) appears since after the nth collision the nth bridge has formed but
is not yet ruptured. As the collision Poincaré section features the number of collisions n
as evolution variable, this equivalence of energy and “time” prevents the need of an extra
energy coordinate. The phase space of Poincaré sections remains 2-dimensional.

Note that the tilting bridge rupture is dispersing so that the spatial dynamics of
the wet Sinai billiard will remain strongly chaotic (cf. Sec. 1.2.2). Even if the energy
coordinate would not have been eliminated by the Poincaré section, problems concerning
chaoticity are not to be expected as the thin-film interaction was argued to even increase
separation of trajectories ([Her05, Sec. III.A], [FHZ07]).

The unbalanced dissipation caused by the wet interaction continually decreases the
system energy analogously to the free cooling of many-particle wet granulates (Sec. 1.1.4):
The “granular temperature” (see Sec. 1.1.4) of the billiard system is directly given by
Eq. 2.2 as there are no temperature fluctuation for a given initial energy. The situation is
thus reminiscent of a microcanonical ensemble. In the many-particle case the temperature
decrease is proportional to the collision frequency fcoll and to the bridge rupture energy,
∂tT ∝ εfcoll. The same is true for the billiard temperature with its trivial collision
frequency fcoll = 1.

2.1.1 Coordinates, mapping and phase space

To take advantage of the line segments constituting the billiard trajectories and the sym-
metries of the events discussed in the last section it is convenient to use the following
coordinates that emerge from the Cartesian description by a canonical transformation
(Fig. 2.2, [Vol02, Chapter 4])

(q1, q2; p1, p2) 7→ (θ,−p; I,Q),
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Figure 2.2: The wet interaction is included into the Sinai billiard by modified collision rules:
The collision itself still follows the law of reflection while the bridge rupture reduces the radial
velocity leading to a tilt of the trajectory. The line segments are conveniently described by an
angle and the impact parameter.

where the new coordinates are:

I = q1p2 − q2p1 (angular momentum)
Q = (q1p1 + q2p2)/p

p =
√
p2

1 + p2
2 (absolute value of momentum)

θ = arctan
(
p2

p1

)
(angle of the trajectory with respect to the q1-axis)

The corresponding generating function is

F4(p2, p2;Q, I) = I arctan
(
p2

p1

)
−Q

√
p2

1 + p2
2.

As canonical transformations are measure-preserving the new coordinates allow a mean-
ingful description of the phase space.

The collision Poincaré section allows to eliminate Q: The value of Q specifies where
exactly on a trajectory segment determined by I and θ the particle is located. The
condition of lying on the boundary (applied either to pre- or to post-collision segments,
which results in the two different but equivalent pre- and post-collision sections) then
determines the 3-dimensional Poincaré surface of section as a subspace of (I,Q, p, θ)-
space. A point on this surface is determined by (I, p, θ). Furthermore, the number of
collisions n determines the system energy E(n) according to Eq. 2.2 so that also the
momentum p(n) =

√
2E(n) is fixed. For a given p(n) the dynamics is thus restricted to

a 2-dimensional surface. In terms of the impact parameter

b := I

p
(2.3)
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this surface is
(I, θ) = (p(n) · b, θ) ∈ p(n) · [−R,R]× [0, 2π] ,

where the values of impact parameters in a collision are restricted by the radius R as no
collision occurs otherwise. Here p(n) still appears as a scaling factor and shows that the
immediate effect of the liquid bridge dissipation is a homogenous rescaling of phase space
after each bridge rupture/before each collision. Being homogenous this scaling will not
affect or cause any structuring in phase space and we will therefore omit the factor in the
following. Eventually

(b, θ) ∈ [−R,R]× [0, 2π] (2.4)
is the 2-dimensional phase space, which has to be supplemented by the number of collisions
n and the initial energy.

In the (b, θ)-coordinates just introduced the billiard events are explicitly given by the
following maps.

Collision. Due to conservation of energy and angular momentum E and b are un-
changed. The angle θ changes according to the law of reflection as sketched in Fig. 2.3 (a
and b):

collision: θ 7→ θ′ = θ + π + 2 asin b.

Periodic boundary. Applying periodic boundary conditions amounts to a change of
coordinate origin. Thus, E and θ are unchanged. Rotating Fig. 2.3 (d) through an angle
α that specifies whether the particle leaves to the right, top, left or bottom, respectively,
gives for the impact parameter:

boundary: b 7→ b′ = b− L sin (θ − α) , α ∈ {0, 1
2π, π,

3
2π}. (2.5)

Liquid bridge. According to the thin-thread model the energy is reduced by the bridge-
rupture energy (Eq. 2.1)

bridge: E 7→ E ′ = E − 1. (2.6)
The liquid bridge exerts a central force so that angular momentum is conserved in bridge
ruptures,

√
E · b =

√
E ′ · b′, and the impact parameter b changes according to

bridge: b 7→ b′ = b√
1− 1

E

. (2.7)

By using the relation above and Fig. 2.3 (a),
sinϕ
sinϕ′ = b

b′
=
√

1− 1
E
⇒ ϕ′ = asin sinϕ√

1− 1
E

,

so that from Fig. 2.3 (c) the change of θ is found to be

bridge: θ 7→ θ′ = θ + asin
 b

(1 +D)
√

1− 1
E

− asin b

1 +D
.

Figure 2.4 demonstrates that collision, bridge and boundary all act on (b, θ)-space as
shearing.
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Inelastic collisions instead of bridge rupture. For comparison, inelastic collisions
(cf. Sec. 1.1.1) described by a normal, velocity independent coefficient of restitution α :=
v′2n/v

2
n will be considered. In that case the mapping is given by

inelastic collision:


E = v2

2 7→ v2
t

2 + α v
2
n

2 = α + b2(1− α)
b 7→ b√

α+b2(1−α)

θ 7→ θ + π + asin b+ asin b√
α+b2(1−α)

. (2.8)

It can be obtained by combining the conservation-of-angular-momentum argument em-
ployed for the bridge map with the collision map. Due to the variable energy dissipated
the collision Poincaré section is no section of constant energy here. Consequently a 3-
dimensional (b, θ, E) phase space is needed to characterize the billiard motion under this
interaction. For comparison we will consider projections onto the (b, θ) plane, however.
This is motivated by the fact that there is no inherent energy scale in the restitution bil-
liard so that a change of energy just corresponds to a rescaling of time. The distribution
of energies has no impact on the dynamics in itself.
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a) ϕ = asin b
X
, X ∈ {1, 1 + sc} b) θ′ = θ + π + 2ϕ

c) θ′ = θ + ϕ′ − ϕ d) b− b′ = L sin θ

Figure 2.3: Derivation of the billiard maps. a) The billiard maps are easiest formulated
using the trajectory angle with respect to the surface normal, ϕ. As illustrated, it is readily
obtained from the impact parameter b and the radius of the respective circle. b) Illustration of
the law of reflection from the θ perspective. c) Bridge rupture as modeled by the thin-thread
model tilts the trajectory as described by a change of θ. d) The application of periodic boundary
conditions changes the impact parameter as depicted.
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Figure 2.4: Action of boundary, collision and bridge map on (θ, b)-space. The initial
assembly (left) is subject to one application of the boundary (top), collision (middle) or bridge
(bottom) map, respectively. All maps act as shear in the phase space.
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2.1.2 Implementation
Simulating the billiard trajectory of an initial state (b, θ, Eini) consist in successively up-
dating the state according to the event maps derived in the last section. The event type
following next is determined by the previous event and the coordinate values. The fol-
lowing diagram illustrates the possibilities: If the radial energy is large enough, Er > ε, a
collision is for the thin-film model always followed by a bridge, which has then to be fol-
lowed by a boundary crossing. After a boundary crossing and the corresponding change
of the coordinate system a collision will follow if b < R. Otherwise another boundary
crossing is performed. If a trajectory reaches the clustered state, i.e. Er < ε, the state
is neither propagated nor printed in the following but removed from the assembly. If of
interest, the number of clustered states occurring in an assembly of initial conditions is
counted as function of time.

collisionclustering bridge boundary
Er > εelse always

b < R

else

Note that for the boundary crossing the coordinate values of b and θ also determine
whether the top, bottom, left or right boundary is crossed. In principle the open horizon
of the Sinai billiard (Sec. 1.2.2) allows for an infinite series of boundary crossings. As these
trajectories have measure zero in phase space they are however irrelevant for numerically
determining the natural distribution. In practice, a trajectory is removed (and counted
independently from the clustered states) if more than 104 successive boundary crossings
were performed.

2.1.3 Transient chaos
Excluding the clustered states from consideration makes the wet Sinai billiard a transiently
chaotic system: Due to the continuous cooling eventually all initial conditions will reach
the clustered state, which is thus the attractor of the system. We observe the transient
dynamics before this state is reached. This section quickly reviews some aspects of the
theory of transiently chaotic systems that are relevant in the present context.

Transient chaos in general refers to dynamics that takes place on a chaotic saddle, i.e. a
subset in phase space that is attracting in most directions but has also some exit directions
towards an attractor [TG06, Chapter 6]. The exit towards the attractor is conveniently
taken to be a leak, i.e. an absorbing region, from which trajectories cannot escape. This
is exactly the situation in the wet billiard: The clustered states are treated as absorbing
region and the saddle is characterized by the natural distribution of non-clustered systems.
It is not immediately clear, what the natural distribution is on a chaotic saddle with
asymptotic measure zero. As for numerical data in general, the natural distribution is
understood here in the sense that the phase space distribution has relaxed away from the
initial condition and not in a sense of a limit n → ∞. Thus, to numerically observe the
natural distribution on a chaotic saddle an assembly of initial conditions is propagated for



26 CHAPTER 2. FREELY COOLING WET BILLIARD

some steps until a steady situation appears. The distribution is then obtained from the
frequency of systems in a certain state, normalized to the number of states that remain
unclustered.

Trajectories exploring the chaotic saddle represent some kind of a metastable state and
an important characteristic of transiently chaotic dynamics is the lifetime of trajectories
within this state. For strongly chaotic systems the number of trajectories with differ-
ent initial conditions N(t) is generally expected to decay exponentially with an average
lifetime 〈τ〉 (cf. [TG06, Chapter 6], [Ott02, Chapter 5]):

N(t) ∼ exp
(
− τ

〈τ〉

)
.

This is readily illustrated by the natural assumption that the rate of escape from the
saddle into the leak κ is given by the size of the leak. This “size” is given by the natural
measure µ of the states that will be mapped into the absorbing region. When numerically
sampling the respective phase space distribution, the measure of the absorbing region
is determined by the trajectories that have been mapped into the absorbing region and
will be removed in the next step. Moreover, the normalization has to be adapted to the
remaining number of trajectories. With µ(L) = κ (which is just the inverse of the average
lifetime τ):

Ṅ(t) = −κN(t) =⇒ N(t) = N(0) exp (−κt)

Note that this exponential decay passes over to the distribution of lifetimes, ρ(τ) ∼
exp (τ/〈τ〉),

N(t)
N(0) = P (T > t) = 1−

∫ t

0
ρ(τ) dτ,

where P (T > t) denotes the probability that a trajectory has a lifetime T = τ > t and is
thus not clustered at time t.

The concept of transient chaos is a generalization of asymptotic chaos and some re-
search is done into this direction. In particular, extreme long-lived supertransients with
decay rates decreasing algebraically with some parameter p, κ ∼ p−α, have been discussed
in the context of “boundary crisis”, e.g. [TL08], [Ott02, Chapter 8]. In the context of en-
larged lifetimes the exponential nature of the decay itself, however, has not been found
to be modified for strongly chaotic systems. So far, non-exponential, in particular alge-
braic lifetime distributions, have only been found for weakly chaotic systems with “sticky
regions” (see [AT09, Sec. VI] and ref. therein).

Before discussing the lifetimes of the wet billiard we turn to its natural distribution
that is strictly speaking the distribution on the chaotic saddle of non-clustered states.

2.2 Numerical results for the natural distribution
Simulation. In this section we discuss the natural distribution of the freely-cooling
wet billiard. Phase space distributions are obtained numerically as counting density on
the phase space, i.e. the weight of each state is given by the frequency of finding an
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assembly member in this state normalized to the number of assembly member that remain
unclustered. To obtain the natural distribution a random initial distribution, i.e. an
assembly of randomly initialized systems, is propagated according to the billiard dynamics
(Sec. 2.1.2) until is has relaxed away from the initial distribution.

Observations. The structure of the phase-space distribution of two wet disks depends
on the interaction. Figures 2.5 and 2.6 shows simulation results for the (b, θ) phase space
of the Sinai billiard with totally elastic collisions and the wet billiard as well as a (b, θ)
projection for the dry billiard with restitution (see Sec. 2.1.1). The Sinai billiard is a
mixing Hamiltonian, i. e. measure-preserving, system and thus shows a uniform natural
distribution (Sec. 1.2.2). As a “standard” dissipative chaotic system the restitution billiard
is locally volume-contracting so that the interplay of expanding and contracting directions
leads to a fractal phase space distribution as discussed at the beginning of this chapter.
The wet billiard has features of both situations: It is dissipative but the dissipation
can be hidden in a general rescaling of the momentum coordinate (Sec. 2.1.1). To a
considerable extend it thus resembles a Hamiltonian system on every individual energy
level. In Fig. 2.5/2.6 we observe that the wet interaction gives rise to structuring of the
phase space that turns out to be fractal.

Before investigating how this phase-space structure emerges from the dissipation and
hysteresis some general remarks:

Symmetries. The phase space shows symmetries according to the geometric structure
of the quadratic lattice corresponding to the periodic boundary conditions. The four-fold
rotational symmetry causes invariance under π/2-shifts and the mirror symmetry of the
lattice results in an inversion symmetry of the phase space. This symmetry might be used
to improve image quality by only plotting one symmetry block, i.e. (b, θ) ∈ [0, 1]× [0, π/2].

Naturality. An initial distribution that is propagated by the freely cooling billiard
dynamics cannot relax towards a natural distribution as the latter changes with energy.
Consequently, Fig. 2.6 is a priori not expected to yield a good approximation of the
natural distribution. To allow the system to relax towards a natural distribution the
energy may be kept unchanged upon bridge rupture while b and θ are normally updated
by the dynamics. Figures 2.7 and 2.8 show histograms of the wet phase space achieved
with and without change of energy. They demonstrate that the stripe pattern only changes
slightly with energy so that the difference is barely visible. The comparison further more
confirms that the stripe pattern observed indeed is the natural distribution: It is reached
independent of the initial conditions. For most purposes it will be sufficient to work with
the cooling. This is very convenient as it allows easy access to the natural phase space
distribution as a function of energy.

Pre- and post-collision section. (b, θ)-values directly before or directly after a colli-
sion constitute two equivalent Poincaré sections. Figures 2.7 and 2.8 show histograms of
the wet phase space for these sections. Both show a stripy pattern yet the pre-collision
section features nearly straight lines, which might be of advantage in the further analysis
compared to the curves of the post-collision section.
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Figure 2.5: Scatter plots of phase space distributions obtained by iterating an assembly
of uniformly distributed initial conditions according to the maps in Sec. 2.1.1 and printing the
resulting states. The structure of the phase-space distribution of two disks depends on the
interaction. As a mixing Hamiltonian system the classical billiard with totally elastic collisions
(top) relaxes towards a uniform natural distribution, while the dry billiard with restitution
(bottom) results in a fractally structured distribution. See Fig. 2.6 for continuation.
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Figure 2.6: Continuation of Fig. 2.5: The wet billiard also shows a structured distribution.
Simulation details. n: number of collisions, Eini: initial energy, Ewell: bridge rupture energy
ε (the elastic billiard is obtained for ε = 0), E = Eini− (n− 1)ε: energy after n collisions, “opt”:
special simulation option here controlling the use of inelastic collisions, “sect”: indicating if pre-
or post-collision values are plotted. The plots have a resolution of 3000×3000 initial conditions.
Apart from mentioned, default parameters were used (see Appendix A).
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Figure 2.7: Histograms of the symmetry-reduced wet phase-space distribution, post-
collision section. Top: Free cooling after n = 6 collisions, i.e. with energy Eini − nε =
15− 6 = 9. Bottom: Billiard dynamics without energy reduction on bridge rupture after n = 6
collisions at E = 9. The natural distribution slightly changes with energy. Consequently,
the histogram obtained by keeping the energy constant is slightly sharper as the system has
sufficient time to relax. Note that the similarity between the distributions independent of the
initial conditions indicates that the distribution obtained is indeed the natural one. Simulation
details. Resolution: nbin = 1000 × 1000. nbin · 100 initial conditions, randomly distributed.
Further parameters as in Fig. 2.6.
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Figure 2.8: Histograms of the symmetry-reduced wet phase-space distribution, pre-
collision section. Top: Free cooling. Bottom: Propagation without change of energy. Details
see Figure 2.7.
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2.3 Non-injectivity as origin of fractal structure
The fractal structure in the wet phase space is caused by a mechanism that is qualitatively
different from the one in the dry case illustrated by the baker map (Fig. 2.1). Rather than
variability of the phase-space compression rate the structure does not emerge from defi-
ciency of phase volume but is due to a surplus of volume: The fractal structure emerging
in the wet billiard dynamics mainly results from non-injective regions of the billiard map:
Due to the direction dependence of the thin-thread model two trajectories – one colliding
and one passing trajectory – evolve into a single one after a bridge rupture (see Fig. 2.9).
This merging means that the point (b, θ) describing the final trajectory has two preimages
(2→1-mapping). The regions in phase space resulting from such a double folding of phase
space end up with higher density than the regions that are mapped bijectively. Iterative
mapping and double folding eventually causes the fractal distribution. Note that in con-
trast to the distribution obtained in the dry case, which has a Cantor type support with
box counting dimension D0 < 2, the support of the natural distribution of the wet billiard
fills the whole phase space so that D0 = 2. The distribution is fractal in the sense that
its information dimension D1 is smaller than the box counting dimension of its support,
D1 < D0 (for a detailed discussion see [TG06, Sec. 2.3]).

The 2→1-regions are characterized by the fact that the impact parameters b < 1
encountered after a collision are transformed by the bridge map to values b′ = bridge(b)
that coincide with the values b > 1 of passing trajectories, that is:

|b′| > 1.

Using the bridge map Eq. 2.7 and recalling b < 1 the above condition gives the critical
impact parameter for 2→1-mapping:

b2→1 :=
√

1− 1
E
< |b| < 1.

At low kinetic energies a second effect characteristic to the wet granular matter occurs:
clustering. The two interacting disks form a cluster if the radial part of the kinetic energy
Erad is smaller than the bridge rupture energy ε = 1:

Erad < 1.

With E = Erad +Etan = E cos2 ϕ+E sin2 ϕ, where ϕ denotes the angle between trajectory
and surface normal (see Fig. 2.3) a critical impact parameter bc is obtained above which
clustering occurs (sc: bridge-rupture distance):

1 > E cos2 ϕ = E

(
1− b2

(1 + sc)2

)

⇒ bc := (1 + sc)
√

1− 1
E
< |b| < 1.

If bc ≥ 1 no clustering occurs. From this condition the critical energy dividing the
clustering and pre-clustering regime can be obtained:

bc (Ec) = 1 ⇒ Ec =
 1

1− 1
(1+sc)2

 . (2.9)
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The ceiling function is used because the energy decreases in portions of ε.
Figure 2.10 sketches the situation: 2→1-mapping occurs for all energies, clustering

only in the low energy clustering regime, E < Ec. Both effects occur for large impact
parameters |b| and since bc/b2→1 = 1 + sc > 1 the clustering region lies completely within
the 2→1-region:

2→1-mapping: |b| ∈ [b2→1, 1]
clustering: |b| ∈ [bc, 1]

√
1− 1

E
= b2→1 < bc = (1 + sc)

√
1− 1

E
. (2.10)

The clustering region is treated as an absorbing region in phase space and clustered
trajectories are removed from the assembly. Thus, after the onset of clustering for E <
Ec the 2→1-effect is partially cancelled: Only the passing trajectory remains while the
second one that has been subject to collision and bridge interaction is removed. In other
words: The leak lies in the non-injective image region and it removes some trajectories
corresponding to the collision and bridge rupture branch of the preimage.

Clustering alone would not produce phase space structure as it does not affect sur-
jectivity: The bridge map (Eq. 2.7) uniformly expands the non-clustering part of phase
space with |b| ∈ [0, bc ] to the interval [0, 1]. Thus – eventually thanks to the conservation
of angular momentum – the phase space of the Poincaré section at the next collision is
completely covered by the image of the part of phase space remaining after the removal
of bound states.

2.3.1 2→1-mapping
To check if phase-space structure is indeed caused by phase space folding due to 2→1-
mapping as described in the previous section the following simulation is performed: An
assembly is initialized with post-bridge impact-parameter values b′ that lie within the
bridge image of the 2→1-region (i.e. the assembly consists of closely passing trajectories),

|b| ∈ [b2→1, 1]
Eq. 2.7
−−−−−−→ |b′| ∈

1, 1√
1− 1

E

 ,
and propagated until the next collision to see what pattern the critical region takes in
the collision section. Figure 2.11 shows that the resulting stripe pattern is just the first
order pattern of the fractal structure. As pre-collision values are displayed instead of the
post-collision ones, it is also possible to identify the geometric origin of the pattern.
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Figure 2.9: 2→1-mapping and clustering are two effects characteristic to the thin-thread
model that govern the fractal distributions on the phase space. 2→1-mapping (left) occurs for
all energies, clustering (right) only in the low energy clustering regime. Both effects occur for
large impact parameters |b|.

θ

b

clustering region

2to1 mapping region

Figure 2.10: Sketch of the 2→1-mapping and clustering region in (b, θ) space for low
energies. The clustering region lies within the 2→1-region so that their structure generating
effects cancel out. Shown above are the positions of the regions in the collision section although
2→1-mapping and clustering actually become effective only later with bridge rupturing.
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Figure 2.11: The pre-collision density (“simulation”) and the expected 2→1-region
(“theory”) match perfectly. Depending on the angle the stripe pattern can be assigned
to the geometrical structure. To additionally check whether the origin of the first order stripe
pattern lies in the geometric arrangement of scatters the radius was chosen large enough to block
the diagonal channels (red dotted line).
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2.3.2 Interplay of 2→1-mapping and clustering
To examine whether the onset of clustering truly counteracts the 2→1-mapping we quan-
tify the amount of phase-space structure by means of an information entropy (e.g. [Set07]),

Sε(n) = − 1
νbin

νbin∑
i=1

ρi ln ρi with ρi = νi(n)
N(n)/νbin

= −
νbin∑
i=1

νi(n)
N(n) ln

(
νi(n)
N(n)νbin

)
,

where N(n) is the number of assembly members after n collisions, νbin = ε−1/2 the number
of bins and νi(n) the number of assembly members in the ith bin at time n. The entropy
is normalized such that it yields zero for a uniform distribution νi = N/νbin. Note that
n corresponds to an energy E via Eq. 2.2. Having in mind Fig. 2.7 and 2.8 n has been
chosen to simplify the simulation.

Figure 2.12 (top) shows simulation results for different νbin. The initial decrease of
entropy can be assigned to the relaxation from the initial distribution towards the stripe
pattern. In the consecutive pre-clustering regime the entropy decreases further, which
indicates that the natural distribution belonging to the respective energy gradually show
stronger structuring. Finally, with onset of clustering, the entropy apparently approaches
a plateau. The entropy values, which reflect the amount of structure in the natural
distribution at the given energy E(n) (see Eq. 2.2), can be explained by the size of the
2→1-region belonging to E. In Fig. 2.12 (bottom) the width of the impact parameter
ranges ∆b obtained from Eq. 2.10 are plotted against energy:

∆b2→1 (E > Ec) = 1−
√

1− 1
E

∆b2→1 (E < Ec) = L
√

1− 1
E

∆bc (E < Ec) = 1− (1 + sc)
√

1− 1
E
.

The figure shows that in the pre-clustering regime the 2→1-region grows with n, explaining
the decrease in entropy. In the clustering regime the clustering region emerges at expense
of the effective 2→1-region and prevents a further decrease of entropy.

We do not further investigate the structure emerging in the phase space of the wet
billiard as the basic principles were illustrated. Instead we concentrate on the clustering
in the following section. However, we like to mention further steps to model the fractal
structure: Based on a simple overlapping baker map (cf. Fig. 2.1) with a compression
factor c > 1/2 it should be possible to estimate the information dimension of the structure
along the lines of [TG06, Problem 2.16]. Numerically the information dimension can be
determined from the information entropy (cf. [MTV04, Eq. 10]).
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Figure 2.12: Amount of structure in the natural distribution as quantified by the
information entropy Sε. The entropy shows differences before and after onset of clustering.
Pre-Clustering: The 2→1-region grows with n. As the amount of structure increases the
entropy decreases. Clustering: The clustering region increases at the expense of the effective
2→1-region and prevents a further decrease of entropy. Note that the n- and E-axis correspond
to each other.
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2.4 Clustering
Despite of all the phase-space structure that was in detail explained in the previous
sections a uniform distribution is still a sufficiently good approximation when deriving
less microscopic properties of the dynamics. In particular, projecting the phase space
distribution onto the coordinate axes, i.e. marginalizing one coordinate, yields uniform
distributions (cf. Appendix B.1). This indicates, in particular, that for a many-particle
system no structure remains in the few-particle distribution function on which kinetic
theories basically rely [Rei98, Sec. S6.A].

As a demonstration and application of this fact we will in the following study the
probability of a the two-disks gas to be clustered after n collisions if started with a
random initial condition. Figure 2.13 (red dots) shows simulation results for this survival
probability P (n) that were obtained from the remaining number of unclustered states
N(n) out of a set of N(0) trajectories with different initial conditions:

P (n) = N (n)
N (0) .

In the pre-clustering regime, i. e. for energies larger than the critical energy, E > Ec (see
Eq. 2.9), no clustering can occur so that P (E) = 1. For E < Ec in the clustering regime
the survival probability rapidly decreases with decreasing energy. If the remaining energy
is smaller than the bridge rupture energy, E < ε, there are no more free states.

Following section 2.1.3 the number of the clustering phase states per collision, i.e. the
clustering probability P (cluster|E) per collision and thus the clustering or escape rate κ
is determined by the natural measure of the clustering region (cf. Eq. 2.10)

(θ, b) ∈ [0, 2π]× ([−1,−bc(E)] ∪ [bc(E), 1]) .

As the clustering region does not depend on the angle θ effectively only the projection
of the phase space distribution onto the b-axis is needed. As this projection is a uniform
distribution (cf. B.1), the energy dependent clustering rate is given by

κ (E) = P (cluster|E) =


1 if E < 1
1− (1 + sc)

√
1− 1

E
if 1 < E < Ec

0 else
. (2.11)

The number of unclustered states N(n) = N(0)P (n) is consequently determined by the
expression

∂nN = −κ (E) ·N.

The clustering rate depends on E and via Eq. 2.2 on n so that with Ec = E (nc) the
clustering rate in the non-trivial regime nc < n < Eini takes the form

κ (E (n)) = 1− (1 + sc)
√

1− 1
Ec−(n−nc) .
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Figure 2.13: Survival probability as function of number of collisions. Recall that the
number of collisions n corresponds to an energy E(n). The plot thus shows the probability P (E)
for a system with an arbitrary initial condition and energy E not to cluster. The simulation
data and analytical prediction (see main text) fit perfectly. Note that from Eq. 2.9 and the
given parameters Ec = 6 so that clustering is from Eq. 2.2 expected to start at nc = 12. This is
indeed observed (see inset).

The resulting differential equation is found to be solved by

N (n+ nc) = N0 exp
(∫ n

0
κ (n′) dn′

)

= N0
exp
{
−n−(1+L)

[√
(Ec−n)(Ec−n−1)+ln(√Ec−n+

√
Ec−n−1)

]}
exp
{
−(1+L)

[√
Ec(Ec−1)+(1+L) ln(√Ec+

√
Ec−1)

]} ,

where the integral was evaluated using Mathematica. Consequently, the freely-cooling
wet billiard is expected to show an exponential-type escape of trajectories as expected for
a strongly chaotic system. However, the energy dependence of the leak causes a rather
complicated exponent. Figure 2.13 (green line) shows that the simulation results are well
met. The clustering example discussed thus illustrates that assuming a uniform phase
space distribution remains a valid approximation for wet particles.
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2.5 Side note: Thick-film model
The 2→1-mapping of the thin-thread model is a feature not necessarily resulting from
a hysteretic interaction. It is therefore interesting to take a brief look at the thick-film
variant of the wet interaction (see section 1.1.3), which is hysteretic and everywhere
bijective. The possible sequence of events is altered as compared to the thin-film wet
billiard (cf. section 3.1.1):

collisionclustering bridge boundary
Er > εelse always

b < R

else

R < b < R + L

As dissipation happens upon bridge rupture the Poincaré section has to be placed pre-
bridge rather than post-collision to have a section of constant energy. Consequently, the
phase space spans an interval [−(R+ sc), R+ sc]. Furthermore, there is no critical energy
Ec (see section 2.3) above which clustering is absent: If the particle touches the liquid
film tangentially with zero radial energy it will cluster irrespective of the absolute energy.
The probability to cluster, however, decreases with increasing energy and is in line with
Eq. 2.10 given by (R = 1):

P (cluster|E) =

1 if E < 1
1− bc(E)

1+sc
= 1−

√
1− 1

E
else

(2.12)

Without the 2→1-mapping and as clustering itself will not produce phase space structure
(see section 2.3), the thick-film billiard is expected to have a uniform phase space distribu-
tion. This is not the case: Figure 2.14 demonstrates that for the freely-cooling thick-film
billiard some slight stripes are visible in the phase space distribution. For unclear rea-
sons the structure vanishes if the energy is not reduced on bridge rupture. Thus, the
natural distribution of the thick film billiard remains unclear. Preliminary observations
(not shown here) indicate that the stripe pattern is independent of the system energy.
This suggests that subtle geometric effects play a role in explaining the phase space of
the thick-film billiard.
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Figure 2.14: Scatter plots of the thick-film phase space. The phase space distribution of
the freely-cooling thick-film billiard shows structure (top). When the energy is not reduced on
bridge rupture, however, the structure vanishes (bottom). Note that the missing structure in
the bottom scatter plot is not caused by too many points; structure remains absent for fewer
points. Key to the captions. See Fig. 2.6
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Chapter 3

Sheared wet billiard

As a dissipative system with no dynamic but only the static two-particle cluster as an
equilibrium state the wet billiard (and granular matter in general) is studied as non-
equilibrium system. Free cooling as studied in the previous chapter corresponds to a
steady decrease of energy. Nevertheless, the accessible energy surface as support of the
natural distribution is controlled by the Poincaré section (Sec. 2.1.1) in this setting.

In the present chapter dissipation caused by the liquid bridges will be contrasted with
an energy input to the billiard system. Shearing is chosen as a driving mechanism for
reasons already discussed (Sec. 1). Although the energy input due to shear prevents the
collision-Poincaré section from being a section of constant energy a steady state situa-
tion with a fixed (average) energy would offer another mechanism to control the energy
coordinate. For the combination of Lees-Edwards boundary conditions and wet granular
matter it is however still an open question under what conditions steady states occur
(cf. Sec. 1.1.4). Next to further exploring the phase space of wet granular matter in a
driven situation the sheared Sinai billiard in its minimality thus seems a good setup to
explore the question when and why steady states might occur in sheared wet granular
matter.

Eventually, it is not obvious whether clustering still occurs in the sheared billiard. To
probe natural distributions it would on the one hand be convenient to suppress clustering.
On the other hand, clustering in the sheared billiard might result in an interesting example
of transient chaos.

3.1 The system
Shearing as implemented by Lees-Edwards boundary conditions (Sec. 1.1.4) only affects
the latter but leaves the other events, i.e. collision and bridge rupture unchanged. In-
stead of static periodic images the periodic images at the two Lees-Edwards boundaries
of the billiard box parallel to the shear layer are taken to be moving with a shear speed
s (Fig. 3.1). Crossing a Lees-Edwards boundary thus means a coordinate transforma-
tion into a moving frame of reference and results in a change of velocity. The shearing
motion introduces a direct time-dependence into the billiard dynamics. Nevertheless it
is still convenient to maintain the post/pre-collision Poincaré section and the number of
collisions as resulting evolution variable: Unnaturally high weighting of long collision-free
flights that arises from the unavoidably infinite horizon of the shearing geometry is thus

43
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Figure 3.1: Sinai billiard with Lees-Edwards boundary conditions. The periodic images
attached to top and bottom move with shear speed s. When crossing the Lees-Edwards boundary
the trajectory is thus transformed to a moving frame of reference. This results in a change of
the velocity component parallel to the direction of shear.

prevented. The real time t is accounted for by an additional phase-space dimension.

Mapping. Performing a boundary crossing according to Lees-Edwards boundary con-
ditions only affects the velocity component parallel to the boundary and leaves the per-
pendicular one unchanged. Lees-Edwards boundary conditions are thus a concept that
is easier described in cartesian coordinates than in the (b, θ, E)-coordinates used so far.
To be able to compare to the previous results it is nevertheless convenient to have a de-
scription of Lees-Edwards boundary conditions in those coordinates. We will obtain this
description by formulating Lees-Edwards boundary conditions in Cartesian coordinates
and then perform a transformation of coordinates. As Lees-Edwards boundary conditions
affect the speed v = |v| =

√
2E we will use v or E equivalently in this chapter, starting

with v in the following derivation. To avoid confusion we recall that the sheared billiard is
symmetric with respect to π-rotation (see Fig. 3.1) and restrict this derivation to θ ∈ [0, π]
and positive shear speed s > 0.

The sheared billiard dynamics still consists of line segments (Fig. 3.1). As described
in Sec. 2.1.1 the direction is given by θ while b = I/ |v| defines its position with respect
to the origin. From a “Cartesian” viewpoint |v| and θ are the polar representation of a
velocity vector ~v = (vx, vy). They define the slope of the trajectory while b is related to
the axis intercept ∆x (Fig. 3.2, left). Transforming between these representations of the
trajectory segments is possible by means of

T (θ, b, v) = (vx, vy,∆x) =
(
v cos θ, v sin θ, b

sin θ

)

T−1 (vx, vy,∆x) = (θ, b, v) =
(
atan

(
vy
vx

)
,∆x sin

[
atan

(
vy
vx

)]
,
√
v2
x + v2

y

)
.

To derive the Lees-Edwards-boundary-map we describe the line segments constituting the
billiard dynamics as (Fig. 3.2, left)

x (y) = ∆x+ y
vx
vy
.
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Crossing the Lees-Edwards boundary corresponds to a coordinate transformation into a
new frame of reference moving with velocity ~s = (s, 0). The centers ~O (t) = (Ox(t), L) of
the top row boxes (with respect to the old origin) are displaced as

Ox(t) = Ox(0) + st = zL+ st, z ∈ Z,

where the boxes are assumed to be aligned to the center row at time t = 0. Note that at
this point “real” time as opposed to the number of collisions n that served as time-variable
so far is introduced to the sheared billiard. At the Lees-Edwards boundary one of the
two adjacent boxes will be entered. Which of the two depends on the x-coordinate of the
crossing point, xc := x(y = L/2), so that the x-coordinate of the new origin, ∆Ox(t), is
determined from

∆Ox(t) =

(st mod L) if |xc − (st mod L)| < L
2

(st mod L)− sgn (s)L else
. (3.1)

Using this and Fig. 3.2 (right) to illustrate the new representation of ∆x, the coordinates
the Lees-Edwards boundary boundary map is given by

LE|∆Ox(tb) (vx, vy,∆x) =
(
vx − s, vy,∆x + L

2

(
vx
vy

+ vx − s
vy

)
−∆Ox(tb)

)
.

Applying this transformation to the Lees-Edwards-boundary map L yields the desired
formulation:

(θ, b, v) 7→ T−1 · LE|∆Ox(tb) · T (θ, b, v) (3.2)

=
(
θ′, sin θ′

[
b

sin θ −∆Ox (tb) + L

2

( 1
tan θ + 1

tan θ′
)]
,
√

(v sin θ)2 + (v cos θ − s)2
)
,

where ∆Ox (tb) as in Eq. 3.1 and

θ′ = arctan
(

v sin θ
v cos θ − s

)
.

The boundary map derived only applies for the two sides of the square billiard box that
are parallel to the shearing motion. For the remaining two sides the boundary conditions
of the sheared billiard are completed by plain periodic boundary conditions (Eq. 2.5).

Phase space. The sheared billiard has a four-dimensional phase space: As the post/pre-
collision Poincaré section no longer coincides with a section of constant energy the latter
emerges as a 3rd nontrivial coordinate besides (θ, b). The fourth dimension is due to the
phase ∆ := ∆Ox (tb), i.e. the offset of the moving Lees-Edwards box that corresponds to
the real time or to the total distance a particles has travelled. The phase space

(θ, b, E,∆) ∈ [0, 2π]× [−R,R]× R×
[
−L

2 ,
L
2

]
(3.3)

is bounded in θ, b and ∆ direction while the energy is not a priori limited. Under what
conditions the energy increases, decreases or finds a steady-state will have to be evaluated.
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Figure 3.2: Sketches to illustrate Lees-Edwards-boundary mapping. Left: A trajectory
segment is equivalently described by an angle θ and the impact parameter b or by the velocity
vector ~v = (vx, vy) and an axis intercept ∆x. Right: Crossing the Lees-Edwards boundary means
a coordinate transformation into a new reference system moving with velocity ~s = (s, 0). The
sketch illustrates how the axis intercept ∆x transforms. It is a snapshot at the time of boundary
crossing tb, i.e. the position of the new origin is depicted at that time: ∆Ox = ∆Ox(tb).

3.1.1 Implementation
The implementation of the sheared billiard emerges from the simple billiard (Sec. 2.1.2)
by expanding the boundary. With “LE boundary” denoting a Lees-Edwards boundary
crossing and “simple boundary” a crossing of the remaining two simple periodic boundaries
the sequence-of-events diagram looks as follows:

collisionclustering bridge

LE boundary

simple boundary

Er > εelse

b < R

b < R

Due to the additional phase space variables a state is now determined by a the four-tuple
as in Eq. 3.3. In the simulations the real time t is used instead of the phase ∆. As for
the simple billiard, type and details of the boundaries are determined by the coordinates.
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Also, for the thick-film billiard additional direct transitions from the boundaries to the
bridge without interjacent collision are again possible.

3.2 Observations
We start the discussion of the sheared wet billiard by presenting the numeric observations.
Before discussing the phase space distribution, it is however at place to trace the setting
and to show that this phase space is unbound on the “new” energy axis and that clustering
remains possible. To place the results obtained for the thin-film sheared billiard, we will
contrast them with the sheared billiards with thin-film, elastic and inelastic interaction.
When referring to “the wet billiards” common results for the thin-film and thick-film
billiards are meant.

3.2.1 Acceleration vs. lifetimes
This section is concerned with the average energy 〈E〉 of the sheared billiards. The average
is taken over an assembly of systems with different initial conditions and only systems
that are not in the clustered state are taken into account. Figures 3.3 to 3.6 show the
numerical results for the sheared systems with thin-film, thick-film, elastic and inelastic
collisions. We point out the following key observations and questions resulting for the wet
sheared billiard that will be explained in the following sections:

• In contrast to the sheared dry case the sheared wet billiard has no stable steady
state (Figs. 3.3, 3.4 and 3.6, top). What difference between the inelastic and wet
dissipation causes this?

• There are two time regimes in which 〈E〉 is a linear function of the number of
collisions n (Figs. 3.3, 3.4 and 3.6, bottom). Is some kind of relaxation into an
asymptotic state taking place despite of the changing energy? Why does this effect
not occur in the elastic sheared billiard (Fig. 3.5)?

• For the wet billiards the energy initially increases for shear speeds larger than a
critical shear speed, s > s0

c and decreases for s < s0
c ≈
√

2 (Figs. 3.3 and 3.4). What
determines s0

c?

• With growing n the energy starts increasing even for s < s0
c (Fig. 3.3 and 3.4).

Why?

The sheared wet billiard constitutes a billiard system whose boundaries are moving (pe-
riodically) in time: Instead of performing the change of coordinate system at the time tb
of boundary crossing (cf. Fig. 3.2, right) it could equivalently be performed together with
the collision. On collision the point particle may then be accelerated (if the boundary
moves towards it) or decelerated (if the boundary retreats). A possibly occurring net
acceleration is called Fermi acceleration after an idea of Enrico Fermi to explain the ac-
celeration of charged particles that collide with chaotically moving magnetic clouds. The
hypothesis currently under investigation is that a billiard geometry that is chaotic if the
boundaries are not moving will show Fermi acceleration for moving boundaries, and an



48 CHAPTER 3. SHEARED WET BILLIARD

important open question in this field is to explore how the acceleration is related to the
properties of billiards and its chaotic dynamics. For further discussion see e.g. [Los07]
and references therein. This background adds the following item:

• The sheared billiards experience Fermi acceleration. How can the observations and
explanations be placed into this field of research?

Similar to the non-sheared billiard (Sec. 2.4), clustering is still observed when apply-
ing Lees-Edwards boundary conditions. How is the occurrence of clustering, however,
influenced by the increasing 〈E〉? We find (Figs. 3.7 to 3.9):

• High average energies do not prevent clustering. This indicates a broad energy
distribution that always covers low energies (Fig. 3.7). On the other hand the
clustering region should affect the energy distribution. How are energy distribution
and clustering interrelated?

• The lifetime distribution decays with a power-law tail (Figs. 3.8 and 3.9). In view
of Sec. 2.1.3 this an unexpected observation. What causes the power-law? What
determines the exponent?



3.2. OBSERVATIONS 49

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0  10000  20000  30000

av
er

ag
e 

en
er

gy
 <

E
>

number of collisions n

sheared thin-film billiard

shear speed
0.5
1.0
1.5
2.0
2.5
3.0

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0  2  4  6  8  10  12  14

en
er

gy
 s

lo
pe

 d
<

E
>

/d
n

(shear speed)2

sheared thin-film billiard

initially, Eini=9000
asymptot., Eini=9000

initially, Eini=1000
asymptot., Eini=1000

0.56 s2 - 1   
0.4   s2        
0.58 s2 - 0.8

Figure 3.3: Sheared thin-film billiard: Average energy. The ensemble average of the
system energy 〈E〉 does not relax to a steady-state value (top). Two regimes in which 〈E〉 is a
linear function of the number of collisions n are identified. The slopes d〈E〉/dn are proportional
to the shear speed s (bottom). Initially it is 〈E〉 ∝

(
s2/2− 1

)
, i.e. there is critical shear speed

s0
c ≈
√

2 so that 〈E〉 decreases for s < s0
c and increases for s > s0

c . For larger n, 〈E〉 grows even
for s < s0

c (The phase space plots Figs. B.6 to B.8 confirm that this is a typical behavior and not
caused by remaining atypical trajectories). For the slope d〈E〉/dn ∼ s2 remains but the exact
form splits up into two regimes. These are not exactly separated by s0

c but rather by s∞c = 2.
The results appear independent of the initial energy 〈Eini〉. Simulation details. Average over
non-clustered out of 3 · 104 initial conditions, initial energy constant Eini = 1000 or uniformly
distributed in [7000, 11000] (due to high energies the latter not expected to differ much from
isoenergetic case), nmax = 5 ·106 and nmax = 3 ·104 steps, respectively. To keep statistical errors
small all data points displayed are averaged over at least 1000 trajectories. The uncertainty
expressed by the error bars is dominated by the variability due to different fitting intervals for
the energy slope. Apart from mentioned, default parameters were used (cf. Appendix A).



50 CHAPTER 3. SHEARED WET BILLIARD

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0  500  1000  1500  2000

av
er

ag
e 

en
er

gy
 <

E
>

number of collisions n

sheared thick-film billiard

shear speed
0.5
1.0
1.5
2.0
2.5
3.0

-1

 0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5  6  7  8  9

en
er

gy
 s

lo
pe

 d
<

E
>

/d
n

(shear speed)2

sheared thick-film billiard

initially, Eini=1000
asymptot., Eini=1000

initially, Eini=1e4  
asymptot., Eini=1e4  

0.51 s2 - 1
0.51 s2     

Figure 3.4: Sheared thick-film billiard: Average energy. Like the thin-film billiard
(Fig. 3.3) the thick-film billiard has no stable steady states but shows two regimes of linear
dependence 〈E〉 (n) (top). The initial slopes are essentially as described for the thin-film billiard
(bottom). For large n, however, the situation appears to be simpler: d〈E〉/dn ≈ s2/2 uniformly
for large and small s. Again the results appear more or less independent of the initial energy
〈Eini〉 and the uncertainty expressed by the error bars are obtained by different fitting intervals
for the energy slope. Simulation details. Average over remaining non-clustered systems out
of 3 · 104 and 2 · 104 initial conditions, respectively, with initial energy Eini = 1000 and 104,
nmax = 104 and 2 · 106 steps, respectively. To keep statistical errors small all data points dis-
played are averaged over at least 1000 trajectories with different initial conditions. Apart from
mentioned, default parameters were used (cf. Appendix A).



3.2. OBSERVATIONS 51

 0

 2000

 4000

 6000

 8000

 10000

 0  500  1000  1500  2000  2500  3000  3500  4000

av
er

ag
e 

en
er

gy
 <

E
>

number of collisions n

sheared elastic billiard

shear speed
0.5
1.0
1.5
2.0
2.5
3.0

 0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5  6  7  8  9

en
er

gy
 s

lo
pe

 d
<

E
>

/d
n

(shear speed)2

sheared elastic billiard

initially
asymptot.

0.58 s2

Figure 3.5: Sheared elastic billiard: Average energy. Due to the absence of dissipation
energy input from shearing always heats up the system (top). The average energy linearly
increases proportional to the square of the shear speed, 〈E〉 = 0.58 · s2 · n (bottom). As for the
wet billiards (Figs. 3.3 and 3.4) this seems reasonable because s2/2 is the average energy input
from the Lees-Edwards boundary conditions. The proportionality constant 0.58 coincides with
the one found in the large-n regime of thin-film billiard. Simulation details. Average over
104 isoenergetic initial distribution with Eini = 1000, nmax = 104 steps. Apart from mentioned,
default parameters were used (cf. Appendix A).
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Figure 3.6: Sheared inelastic billiard: Average energy. The average energy 〈E〉 of the
inelastic billiard quickly approaches a steady state (top). The steady-state energy value appears
independent of the initial energy and proportional to the shear speed s2 (bottom). Simulation
details. Average over 2 · 104 initial conditions with initial energy Eini = {1000, 12000}, nmax =
1000 and 104, respectively, coefficient of normal restitution α = 0.5. Apart from mentioned,
default parameters were used (cf. Appendix A).
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Figure 3.7: Clustering despite of acceleration for the thin-film billiard. For broad
energy distributions that always cover very low energies clustering is possible despite of very
high average energies. The top figure indicates a standard deviation σ linearly growing with the
average energy 〈E〉 and illustrates variability within the assembly. As to be expected for (quasi-)
ergodic dynamics, the large energy fluctuations can also be observed over time as the bottom
figure showing energy trajectories for individual thin-film billiards depicts. For all systems the
horizontal lines that are eventually encountered for large n amount to clustered systems with
remaining energy E < Ec, where Ec is the critical energy from Eq. 2.9.



54 CHAPTER 3. SHEARED WET BILLIARD

 0.1

 0.2

 0.3

 0.4

 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1000  10000  100000  1e+06

su
rv

iv
al

 p
ro

ba
bi

lit
y 

P
(n

)

number of collisions n

sheared thin-film billiard

speed
0.75
1.00
1.50
2.00
2.50
3.00

 0.1

 0.2

 0.3

 0.4

 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1000  10000  100000  1e+06

su
rv

iv
al

 p
ro

ba
bi

lit
y 

P
(n

)

number of collisions n

sheared thick-film billiard

speed
0.75
1.00
1.50
2.00
2.50
3.00

Figure 3.8: Survival probability of sheared wet billiards. In spite of increasing average
energies (see Fig. 3.3) there remains a probability for individual systems to end up in the clustered
state. For both wet billiards the survival probability P (n) for a system with arbitrary initial
condition not to be in the clustered state after n collisions decays with a power-law tail. In
other words 1−P (n) is the cumulative lifetime distribution. In view of Sec. 2.1.3 the power-law
lifetime distribution is an unexpected observation. Comparing the wet billiards the thick-film
billiard experiences a higher probability to cluster. This is not unexpected because clustering
may occur for all energies in the thick-film billiard (cf. Eq. 2.12). Simulation details. See
Figs. 3.3 and 3.4 for 〈Eini〉 = 9000 or 104, respectively.
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eye. Simulation details. See Fig. 3.8.
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3.2.2 Phase space and energy distribution
As discussed in the previous section clustering is still present in the sheared wet bil-
liard. It therefore is a transiently chaotic system and we discuss phase space distribu-
tions on the chaotic saddle of non-clustered states (cf. Sec. 2.1.3). The phase space is
4-dimensional and as a consequence of the Fermi acceleration unbound in the energy co-
ordinate1. Conveniently, the energy distribution, i.e. the projection of the phase space
distribution onto the energy coordinate is asymptotically found to scale with the average
energy 〈E〉 (Figs. 3.10 and 3.11). Thanks to this scaling behavior, a stationary “natural”
phase space distribution can at least be observed on the rescaled phase space (θ, b,∆, Ẽ)
with Ẽ := E/〈E〉.

Energy distribution. The energy distribution is assumed to be basically relaxed
as soon as scaling occurs. For initial energies in the range of 103 to 104 this is the case
after ns ≈ 5 · 104 to 105 collisions. To ensure proper sampling especially of low energies,
E/〈E〉 ∈ [0, δ], the simulation should be continued for about two recurrence times nr into
that region, ∆n = 2 · nr. The recurrence time can be calculated from the escape rate κ
[AT09], nr ∼ κ−1. From Sec. 3.4 and Fig. 3.9 we find ∆n ∼ ns/7 ∼ ns. Consequently,
the energy distributions displayed should be sufficiently relaxed and well sampled. Fur-
thermore, the simulations for s = 2, 3 were initialized with an exponential distribution of
energies (〈Eini〉 = 104) to show that the deviation of the resulting distribution will not
vanish by further relaxation. For s = 1 an isoenergetic initial distribution was chosen to
show relaxation towards an almost exponential distribution. We summarize the following
observations for the energy distribution of sheared billiards (Figs. 3.10 to 3.12):

• For the thin- (Fig. 3.10) and thick-film (Fig. 3.11, top) as well as for the elastic
billiard (Fig. 3.11, bottom) the energy distribution asymptotically relaxes towards
a distribution that scales with the average energy 〈E〉. Figure 3.13 illustrates that
the two different times regimes found for the development of 〈E〉 in Figs. 3.3 and 3.4
seem to correspond to the relaxation towards and the asymptotically relaxed energy
distribution, respectively.
The initial energy development as introduced in the previous section seems to cor-
respond to the relaxation towards the scaling distribution (see Fig. 3.13).

• The shape of the rescaled energy distribution roughly resembles an exponential
function (Figs. 3.10 and 3.11),

ρ〈E〉 (E) ≈ 1
〈E〉

exp
(
− E

〈E〉

)
. (3.4)

The speed distribution consequently resembles the 2-dimensional Maxwell distribu-
tion as

ρ〈E〉 (E) dE ≈ 1
〈E〉

exp
(
− E

〈E〉

)
dE =⇒ ρ〈E〉 (v) dv ≈ v

〈E〉
exp

(
− v2

2〈E〉

)
dv.

• There are noticeable deviations from the exponential distribution (Fig. 3.12).
1It should be recalled at this point that high energies are from a physical point of view outside the

range of applicability of the thin-thread model to wet granular matter (cf. Sec. 1.1.2).
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Natural distribution. Except for the energy coordinate the phase space distribution is
found to be about uniform (see Appendix B.2). With the rescaled volume element

dΓ̃ = dθ db d∆d E
〈E〉

the natural distribution reads

ρ
(
θ, b,∆, Ẽ

)
dΓ̃ = ρθ (θ) ρb (b) ρẼ(Ẽ)ρ∆ (∆) dΓ̃ = 1

2π
1

2R
1
L
f(Ẽ)dΓ̃, (3.5)

where f(x) ≈ exp(−x) denotes the scaling function of the energy distribution.
Concerning the ∆-coordinate this result is in contrast to previous results for a Lorentz

gas sheared by an extended version of Lees-Edwards boundary conditions that enforces
steady states [PIM94]. For this system the authors observed a strong structuring of
the phase space in the ∆-dimension. The reasons given, however, seem to be rather a
pathology of the algorithm than a property of the sheared Lorentz gas. Therefore it is no
surprise to find different results for the simple Lees-Edwards boundary conditions.

From the previous chapter no significant structure but roughly uniformity was to be
expected for the θ-b planes and projections. The stripe pattern related to the 2→1-
mapping of the thin-film interaction (Sec. 2.3) will in principle not be suppressed by the
shearing although the geometrical origin is complicated. Detecting it in a 2-dimensional
section of the 4-dimensional phase space requires huge assemblies, however. As no new
insights related to this effect are to be expected from studying it in the sheared system we
will not further investigate this matter. Instead we concentrate on the energy distribution,
which is also connected to understanding the observations from the previous section. The
main questions arising is how the energy distribution and the scaling property can be
understood from the underlying billiard dynamics. If the deviation from the exponential
distribution are caused by correlations it seems especially interesting to identify these:
Figure 3.12 indicates that liquid bridges decrease such correlations.
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Figure 3.10: Normalized cumulative energy distribution R(x) of the sheared thin-film
billiard for different shear speeds s in the asymptotic regime. For high as well as
low s the energy distribution scales with the average energy 〈E〉. Note that in the asymptotic
regime 〈E〉 increases even for low shear speeds (Fig. 3.3). The rescaled energy x := E/〈E〉
almost follows an exponential distribution as R (x) = 1− exp (−x) =⇒ ρ (x) dx = exp (−x) dx.
There are however deviations from the exponential: The actual energy distribution possesses
an exponential tail but deviates for smaller x. These deviations grow with increasing s, see
Fig. 3.12. Simulation details. For s = 1 (top left) an isoenergetic initial distribution was
chosen to show relaxation towards an almost exponential distribution. The simulations for
s = 2, 3 (top right and bottom, respectively) were initialized with an exponential distribution of
energies (〈Eini〉 = 104) to show that the deviation of the resulting distribution will not vanish
by further relaxation. The distributions are normalized with respect to non-clustered states
so that clustering is not represented. N = 2 · 104 initial conditions for s = 2, 3, N = 4 · 104

initial conditions for s = 1 to compensate high clustering probability (see Fig. 3.8); nevertheless
fewer time steps are necessary to retain data quality. Each distribution is based on > 103 initial
conditions. Apart from mentioned, default parameters were used (cf. Appendix A).
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Figure 3.11: Normalized cumulative energy distribution R(x) of the sheared elas-
tic and thick-film billiard in the asymptotic regime. Like the sheared thin-film billiard
(Fig. 3.10) the two other accelerating billiard systems show energy distributions that scale with
the average energy 〈E〉. The deviations from the exponential energy, respectively Maxwellian
velocity distribution (see Fig. 3.10) are more pronounced at smaller shear speeds (see also
Fig. 3.12). Simulation details. Due to the normalization of the distribution clustering in
the thick-film model (top) is not represented. N = 2 · 104 initial conditions for thick-film model
(top) out of which about 600 survived until the last distribution, N = 5 · 103 initial conditions
without loss for the elastic billiard (bottom). Both simulations were initialized with an exponen-
tial distribution of energies (〈Eini〉 = 104 and 103 for thick film and elastic billiard, respectively).
Apart from mentioned, default parameters were used (cf. Appendix A).
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Figure 3.12: Deviation from an exponential energy distribution. As shown in
Figs. 3.10 and 3.11 the sheared billiards possess energy distributions that scale with the average
energy 〈E〉 and have a roughly exponential shape. There are deviations from the exponential,
however. This figure focuses on the deviations by transforming the normalized cumulative en-
ergy distribution R (E/〈E〉) according to the labels. For the thin-film model at shear speed
s = 1 the situation is unclear, but s = 2 strongly indicates a slight deviation that was not visible
in the untransformed representation. For s = 3 there is a notable deviation. This indicates that
the deviation grows with shear speed, which seems reasonable as for very high shear speeds the
liquid bridge interaction should be negligible and the elastic billiard should be approached. The
latter shows strong deviations. The thick-film model features deviations, which are comparable
in strength to the elastic case. Simulation details. See Figs. 3.10 and 3.11.
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Figure 3.13: Normalized cumulative energy distribution for the sheared thin-film
model with low shear speed, initial regime. For small shear rates like s = 1 the average
energy 〈E〉 initially decreases linearly before asymptotically crossing over to linear increase
(Fig. 3.3). The assembly displayed was isoenergetically initialized with a very high initial energy
Eini = 108. Thus, the time of crossover was sufficiently delayed to observe an energy distribution
for the decreasing-〈E〉 regime. In contrast to the asymptotic regime (Fig. 3.10) no scaling
behavior is observed. Instead the distribution broadens, i.e. the standard deviation σ grows
while the mean value 〈E〉 remains fixed. Simulation details. No system loss due clustering.
N = 2 · 104 initial conditions. 1 − exp(−E/〈E〉) was plotted for comparison to the asymptotic
state. Apart from mentioned, default parameters were used (cf. Appendix A).
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3.3 Fokker-Planck approach to the energy dynamics
The energy dynamics described in the previous section can be modeled as a generalized
random walk that corresponds to a diffusion process with drift. We start this section
by recalling how the Fokker-Planck equation formalizes the relationship between random
walks and diffusion processes. Section 3.3.2 then intuitively connects the Fokker-Planck
formalism to the sheared billiard dynamics and gives an overview of how the observation
from Sec. 3.2 can be explained and modeled in principle. In the subsequent sections the
presented ideas will eventually be substantiated.

3.3.1 Background
As discussed in Sec. 1.2.1 microscopic dynamics that are strongly chaotic allow for a
stochastic ansatz in deriving equations for the macroscopic variables. The Fokker-Planck
equation results from such an approach and goes back to Einstein’s treatment of Brownian
motion [Ein05]. Instead of considering the complete microscopic dynamics, the Fokker-
Planck equation offers an equation of motion for the distribution function ρ(x, t) of a
fluctuating macroscopic variable2 (e.g. [Ris89]):

∂tρ(x, t) = −∂x [M(x)ρ(x, t)]︸ ︷︷ ︸
drift

+ D
2 ∂

2
xρ(x, t)︸ ︷︷ ︸

diffusion

. (3.6)

The fluctuations, which are in principle determined by the micro-dynamics, are accounted
for by (approximately Gaussian) stochastic fluctuations and lead to the diffusion term with
constant diffusion coefficient D. The drift term incorporates the directed change of the
macroscopic variable and is characterized by the drift coefficient M . From a transport-
theoretic point of view the Fokker-Planck equation is an advection-diffusion equation
resulting from the continuity equation corresponding to the conservation of probability:

∂tρ(x, t) = −∂xj, j = M(x)ρ(x, t)︸ ︷︷ ︸
advection

− D
2 ∂xρ(x, t)︸ ︷︷ ︸
conduction

The probability current density j consist of an advective and a conductive part corre-
sponding to directed motion and fluctuations.

The drift and diffusion coefficientsM and D can be derived from a stochastic model of
the microscopic dynamics. If, in particular, the microscopic dynamics can be modeled as a
generalized random walk3 the corresponding master equation might4 be approximated by a
Fokker-Planck equation [Gar85, Sec. 7.2.1]. The generalized random walk is characterized
by the transition probability ρ(x′|x) (per unit time) from state x to x′, i.e. the probability
distribution to find a new state x′ given that the old state was x. The drift coefficient M
is the first moment of the increment ∆x = x′ − x,

M (x) = 〈∆x〉 =
∫

∆x ρ (x′|x) dx′, (3.7)

2For simplicity we restrict the discussion to one dimension and constant diffusion coefficients in the
present context.

3A generalized random walk shall denote here a Markovian jump processes, i.e. memoryless stochastic
process that changes its state in discrete steps.

4For strict applicability of the Fokker-Planck equation the transition probability has to fulfill certain
scaling assumptions. On a practical basis, however, the approximation works in most cases.
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and reflects that a drift corresponds to the average change or movement of the macroscopic
variable. The diffusion coefficient, on the contrary, is given as the second moment,

D (x) = 〈(∆x)2〉 =
∫

(∆x)2 ρ (x′|x) dx′, (3.8)

and thus incorporates the stochastified microscopic fluctuations. The Fokker-Planck equa-
tion thus formalizes the relationship between random walks and diffusion processes.

To illustrate this we apply Eqs. 3.7 and 3.8 to a simple random walk with step size s
and transition probability ρ,

ρ(x′|x) = 1
2 (δx′,x−s + δx′,x+s) =⇒M = 0, D = s2

2 .

The corresponding Fokker-Planck equation takes the form of the diffusion equation where
the diffusion coefficient is related to the step size of the random walk. Note that a ran-
dom walk in two independent coordinates can be decomposed to obtain the transport
coefficients as above. Afterwards combining the Fokker-Planck equation for the individ-
ual coordinates yields the 2-dimensional diffusion equation with coordinate-independent
diffusion coefficient D.

We finish by recalling some solutions of the diffusion equation: The fundamental
solution ρf with initial conditions ρf (x, 0) = δ(x) of the diffusion equation in d-dimensions
on (−∞,∞) that vanishes at ∞ is a Gaussian distribution [Tay96, p. 217]:

ρf (~x, t) = 1
(2πDt)d/2

exp
(
− ~x2

2Dt

)
. (3.9)

Note that this solution is also observed asymptotically, t → ∞ and 〈x〉 � x0, for some
localized initial condition. Thus, the asymptotic scaling of the mean-square displacement
typical to diffusion follows:

〈~x2〉 =
∫ ∞
−∞

~x2ρf (x, t) d~x = dDt.

The fundamental solution ρa(x, t) of the 1-dimensional diffusion equation on R+ with
absorbing boundary condition, ρa(x = 0, t) = 0, takes asymptotically the form of the
Maxwell speed distribution in 2 dimensions. This is found from Eq. 3.9 by the method of
mirror images,

ρa(x, t) = N [ρf (x− x0, t)− ρf (−(x− x0), t)]

= N ′ exp
(
−x

2 + x2
0

2Dt

)
sinh

(
x2

Dt

x0

x

)
x0�〈x〉≈ N ′′ x exp

(
− x2

2Dt

)

= 1
Dt

x exp
(
− x2

2Dt

)
with x ∈ R+ (3.10)

where the N are determined from normalization. We note the exact proportionality of
the mean-square displacement to Dt in this case,

〈x2〉 =
∫ ∞

0
x2ρa(x, t) dx = 2Dt (3.11)
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and remark that for algebraic corrections to the Gaussian the above relation holds with
a modified proportionality constant (k > 0, G > −1):

ρc(x, t) =
xG exp

(
−k x2

2Dt

)
∫∞

0 xG exp
(
−k x2

2Dt

)
dx

⇒ 〈~x2〉 = (1 +G)
k

Dt (3.12)

3.3.2 Intuitive picture
Given that the chaotic billiard dynamics ensures undirected motion (i.e. especially that
the θ-distribution is always uniform) Lees-Edwards boundary conditions (Sec. 1.1.4/3.1,
all notation as explained there) can be viewed as causing a random walk with step size s
in the velocity component parallel to the boundary, vx: Crossing a top boundary means
vx → vx+s while crossing a bottom boundary implies vx → vx−s. Further assuming that
the billiard dynamics are sufficiently chaotic to ensure ρ (vy) = ρ (vx), i.e. the collisions
distribute the velocity change in some sense evenly between the velocity components,
the velocity dynamics of the sheared billiard systems can be modeled as an unbiased,
unrestricted random walk in the two velocity dimensions. Following the previous section,
the velocity distribution ρ(vx, vy, t) is consequently expected to be described by the 2-
dimensional diffusion equation

∂tρ (vx, vy, t) = D

2
[
∂2
vxρ (vx, vy, t) + ∂2

vyρ (vx, vy, t)
]
,

with a diffusion coefficient D ∝ s2 and zero-boundary conditions at infinity. From Eq. 3.9
and ρ(t = 0) = δ(vx)δ(vy) the velocity components follow the distribution

ρ (vx, vy, t) dvxdvy = 1
2πDt exp

(
−
v2
x + v2

y

2Dt

)
dvxdvy

⇒ ρ (v, t) dv = 1
Dt

v exp
(
− v2

2Dt

)
dv, (3.13)

which corresponds to the 2-dimensional Maxwell distribution of the speed v. This coin-
cides to a first approximation with the billiard simulations (see Figs. 3.10 and 3.11). It
shows that the energy increase is due to diffusive broadening, which is (asymptotically,
v(0) ≈ 0) given by the mean-square displacement (cf. Eq. 3.11):

〈E〉 = 1
2〈v

2〉 ≈ Dt. (3.14)

The 2-dimensional random walk picture is illuminating to understand how Lees-Edwards
boundary conditions increase the system energy although they appear to be a symmet-
ric concept. For further studying the energy/speed dynamics, however, a 1-dimensional
process is more suitable. Expressing the 2-dimensional diffusion equation in polar coor-
dinates allows to take advantage of the rotational symmetry. Only considering the radial
part v shows that the speed is described by a 1-dimensional diffusion equation with drift
([Gar85, Sec. 5.3.1]):

∂tρ (v, t) = −∂v
D

2vρ (v, t) + D

2 ∂
2
vρ (v, t) .
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As v > 0 and as non-moving particles are removed from the simulations (cf. Sec. 3.1.1)
there is an absorbing boundary at v = 0 for the 1-dimensional diffusion. This boundary
prevents a symmetric broadening as occurring in the 2-dimensional case. Consequently,
the speed/energy distribution is influenced by diffusive broadening (Eq. 3.11) as well as
by the drift. The drift coefficient decreases with increasing speed, reflecting the fact that
the number of states at a given distance v from the origin in the plane increases with v.
Low v are thus less likely, resulting in a drift to higher v. From a geometric viewpoint
the diffusive motion in the plane has been reduced to a diffusive dynamics on [0,∞] with
a potential hump with maximum at 0. Recalling that the average energy increase by a
Lees-Edwards boundary crossing, s2 (Eq. 1.6), is independent of the system speed and
thus insignificant for v � s this seems plausible. Neglecting the drift effects for 〈v〉 � s
asymptotically leaves pure diffusion, and taking into account the boundary (Eq. 3.10)
recovers Eqs. 3.13 and 3.14.

So far neither dissipation due to the wet interaction nor clustering have been discussed.
The former results in a drift towards smaller speeds and is incorporated by modifying the
drift coefficient. As the liquid bridge dissipation is independent of the system energy
(cf. Eq. 1.4) the effects of the liquid bridges should decrease with increasing v just as
the drift effect of the Lees-Edwards boundaries does. Another way to motivate the 1/v
dependence is that the variable transformation from E = v2/2 to v has a factor v in
the Jacobian. Consequently, the modified drift coefficient µ should thus be of the form
µ ∼ (s2− ε)/v. The liquid bridges have no diffusive effect so that the asymptotic diffusion
regime is expected to remain unaffected by incorporation of liquid bridges. In fact, within
the approximation of Eq. 3.13 the energy distributions for the wet and elastic billiard
coincide (see Figs. 3.10 and 3.11).

For the thin-film billiard clustering only occurs below a critical energy Ec (Eq. 2.9) and
thus corresponds to an absorbing boundary close to zero, i.e. the plane or the potential
hump are correspondingly cut out. The thick-film billiard can reach the clustered state
for all energies with decreasing probability (cf. Eq. 2.12). Thus, absorption takes place in
the bulk and not in a boundary region.

While the diffusive effects can be studied well in the asymptotics the drift effects can be
isolated if an assembly is initialized with an energy/speed distribution that does not reach
out to the boundary, e.g. ρ(v, 0) = δ(v− v0) or ρ(v, 0) uniform on some interval separated
from v = 0. In these cases diffusive broadening will initially be symmetric and not affect
the averages. Not having to consider diffusion and circumventing the velocity dependence
in the drift coefficient, the energy development in the drift regime is easiest obtained by a
direct balancing of the dissipation, −εn, and the energy input due to shearing, s2n. This
way the energy is expected to change according to

〈∆E〉+ ε ∝ s2,

where the proportionality is determined by the average number of boundary crossings per
collision. Section 3.3.3 uses this perspective to illustrate the absence of a steady state for
the wet billiards (Figs. 3.3 and 3.4, top).

For the wet billiards the drift and diffusion regime can be told apart from a change
in energy slope (Figs. 3.3 and 3.4, bottom). For the elastic billiard no change is found
(Fig. 3.5). This finding is probably due to the fact that for ε = 0 the drift and diffusion
coefficients are very similar so that the energy increase appears the same in both regimes.
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The sketch of the sheared billiard energy dynamics presented so far will be supported
and concretized in the following sections:

• In Sec. 3.3.4 a stochastic model for the deterministic billiard energy dynamics is
derived. As the deviations from the exponential energy distribution cannot be ex-
plained by a simple random walk as depicted so far a generalization with varying
and velocity-dependent step-size is needed. By simulations the generalized random
walk is shown to reproduce the energy distributions found in Figs. 3.10 and 3.11
qualitatively. In particular, the correlations that cause the deviation from the ex-
ponential distribution of Figs. 3.10 to 3.12 are identified. Quantitative restrictions
are discussed.

• Section 3.3.5 derives the transport coefficients. As discussed, the diffusion coefficient
is shown to be constant while the drift coefficient decreases as 1/v.

• The resulting Fokker-Planck equation is discussed in Sec. 3.3.6. It is exemplarily
solved for the elastic case.

In Sec. 3.4 the power-law lifetime distribution found for the wet billiards (Fig. 3.8) is finally
explained by the unboundedness of phase space, which is caused by Fermi acceleration, and
results in an effectively shrinking leak. The quantitative treatment of the clustering rate
shows possible restrictions of the previous asymptotic discussion of the energy distribution.

3.3.3 Energy balance and acceleration
Instead of finding a steady state as in the dry case (Fig. 3.6) the average energy 〈E〉 of the
wet billiards is asymptotically described by diffusive broadening. This observation can be
explained by considering the transition from an initial distribution localized at (or around)
an energy E0 > 0. Initially diffusion only affects the width of the distribution but not its
mean 〈E〉. Thus energy balancing suffices to describe the change in 〈E〉. The absence of a
steady state in the wet billiards is then readily explained by the fact that they are lacking
a feed-back mechanism to adjust to the steady-state energy. After all, both the energy
input due to Lees-Edwards boundary conditions and the amount of energy dissipated by
a bridge rupture are independent of the system energy. In contrast, inelastic dissipation
is proportional to the energy (Sec. 1.1): For low energies the constant energy input from
the boundary conditions dominates the evolution so that energy rises – for large energy,
dissipation dominates so that energy decreases. For systems with dissipation due to a
finite coefficient of restitution the contributions balance for some intermediate E such
that the dynamics approaches a well-defined steady state.

On average, the crossing of a Lees-Edwards boundary increases the system energy by
(∆E)LE = s2/2 (Eq. 1.6). In an inelastic collision the dissipation is (cf. Eq. 2.8)

(∆E)res = (α− 1) 〈v
2
n〉
2 = − (1− α)E〈cos2 ϕ〉 =: −c (α) · E,

where vn = v cosϕ with the incident angle ϕ is used and the average 〈·〉 is taken over the
phase-space distribution ρ (ϕ). The total energy change per collision is

(∆E)dry = ν
s2

2 − c · E,
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where the average number of boundary crossings per collision, ν = nLEBC/ncoll, has been
introduced to weight the events according to their occurrence (see Fig. B.14 for numerical
data). A steady state (with respect to the number of collisions) fulfills ∆E = 0. In the
inelastic billiard there exists a steady-state energy E0 for all shear speeds s:

(∆E)dry
!= 0 =⇒ E0 = ν

2cs
2 ∝ s2

It is proportional to s2 as confirmed by the simulation results (Fig. 3.6). Note that E0
grows with the boundary crossing frequency ν. Assuming ϕ to be uniformly distributed,
i.e. 〈cos2 ϕ〉 = 1/2, the parameter values α = 1/2, as in Fig. 3.6, and ν = 0.9, from
Fig. B.14, yield: E0 = 1.8s2. This proportionality constant disagrees with the numerical
data in Fig. 3.6. The reason probably is that ϕ is not uniformly distributed: The normal
restitution causes an alignment of collision partners (cf. [PB04, Sec. 6.3]), which results
in a higher population of large impact parameters (Fig. 2.5, bottom).

Similarly, in the wet billiards a bridge rupture decreases the energy by (∆E)bridge = −ε
(Eq. 2.6). The total energy change per collision for the thin-film billiard is thus

(∆E)wet = ν
s2

2 − ε

As observed in the simulations (Figs. 3.3 and 3.4), the steady-state condition is only
fulfilled for a critical shear speed sc that matches the constant dissipation ε:

(∆E)wet
!= 0 =⇒

(
s0
c

)2
= 2ε

ν
≈

2.1 thin film
2.3 thick film

(3.15)

The numerical value has been obtained using ε = 1 and ν = 0.96 for the thin-film and
0.87 for the thick-film billiard (Fig. B.14). The value (s0

c)
2 ≈ 2 coincides with the initial

s0
c from Figs. 3.3 and 3.4. For s = s0

c a steady state should exist. It is not stable, however:
Due to inevitable fluctuations in the dynamics the system will eventually always cross
over to the energy-increasing diffusive regime.

3.3.4 Stochastic model of the speed dynamics
The sheared billiard systems are chaotic and thus feature fast decay of correlations (see
Fig. B.13). Relying on this feature a generalized random walk model for the deterministic
speed dynamics of the sheared elastic and thin-film billiard is derived in the following.
Recall after all that a simple random walk would not reproduce the deviations from the
exponential energy distribution (Sec. 3.3.2). Based on Sec. 3.3.2 the speed v is chosen to
be the random-walk variable while for graphical representations E = v2/2 with its almost
exponential distribution is more convenient.

Deterministic billiard speed dynamics. Before presenting the corresponding sto-
chastic model we review the deterministic billiard dynamics: There are two events affect-
ing the energy or speed, respectively: On the one hand Lees-Edwards boundary crossing
with (cf. Eq. 3.2)

LE (v) =
√
v2 + s2 + 2sv cos θ, (3.16)
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where we recall that the speed dynamics depends directly only on θ and that depending
on θ the speed can increase or decrease. For the wet billiard systems, on the other
hand, bridge rupture decreases the speed without dependence on the other coordinates
(cf. Eq. 2.6):

B (v) =
√
v2 − 2ε. (3.17)

Each collision is followed by a number χ = 0, 1, 2, .. of Lees-Edwards boundary crossings
that is determined by the billiard dynamics (cf. Sec. 3.1.1):

bridge boundary

χ ≥ 1

χ = 0 χ ≥ 2

For the wet billiards the above energy modifications have to be augmented by clustering
of particles. For the thin-film billiard this happens if E < Ec (see Eq. 2.9) with an
energy-dependent probability P (cluster|E) that is given by the size of the clustering
region (Eq. 2.11). The corresponding expression for the speed reads:

P (cluster|v) =


1 if v <

√
2

1− (1 + L)
√

1− 2
v2 if v <

√
2Ec

0 else
. (3.18)

Stochastic modeling. The deterministic θ in LE (v) is replaced by a stochastic one,

LEΘ (v) =
√
v2 + s2 + 2sv cos Θn,

where Θn is a random variable that is assumed to be uniformly distributed in [0, π] as
it substitutes a post-collision angle (see Appendix B.2 for numerical data). Due to the
π-rotation symmetry of Lees-Edwards boundary conditions it is again sufficient to restrict
the discussion to the first and second quadrant while s > 0. All Θn are assumed to be
uncorrelated, incorporating the fast decay of correlations (Fig. B.13).

For the bridge map no stochastification is necessary as it only depends on v and the
parameter ε, not on the other coordinates. Thus, Eq. 3.17 is maintained in the stochastic
model.

For simplicity we assume that a collision is either followed, χ = 1, or not followed,
χ = 0, by a single Lees-Edwards boundary crossing. This is modeled by a binary random
variable X with X = 1 for boundary crossing and X = 0 for two consecutive collisions,
respectively:

bridge boundary

X = 1

X = 0

The boundary crossing thus becomes optional:

LEΘ,X (v) =
√
v2 +X (s2 + 2sv cos Θn).
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to LE boundary

L

x

R-x

R-x

x

θ

Figure 3.14: Lees-Edwards boundary crossing probability as function of θ. Based on
Appendix B.2 it is assumed that the post-collision impact parameter b is uniformly distributed
in [−R,R] where R is the radius. For the elastic billiard the probability that a collision is
followed by a Lees-Edwards boundary (X = 1) is then given by P (X = 1|θ) = R−x

2R = L|sin θ|
2R

as long as |sin θ| ≤ 2R
L . For 2R

L ≤ |sin θ| < 1 the boundary will be crossed irrespective of b,
i.e. P (X = 1|θ) = 1. Equation 3.19 follows with R = 1. For the thin-film billiard the ar-
gument above has to be based on the post-bridge instead of the post-collision situation. The
values of b and θ are still uniformly distributed here, but the impact parameter is spread on
[−R/

√
1− ε

E , R/
√

1− ε
E ] (see Eq. 2.7). In the sketch this only affects the post-collision part,

i.e. the left scatterer and P (X = 1|θ) = L|sin θ|
2R

√
1− ε

E . For 〈E〉 � ε as in the scaling regime
the correction is small, however, and the elastic approximation is sufficient for qualitative con-
siderations.

The probability of finding a boundary crossing (X = 1) depends in principle on θ as well
as on b. Assuming b to be uniformly distributed (Appendix B.2) it is possible to average
out the b-dependence. Figure 3.14 derives this correlation for the elastic billiard. As the
spatial dynamics is only slightly influenced by the bridge-rupture map for 〈E〉 � ε, the
expression is also a sufficient approximation for the thin-film billiard:

P (X = 1|θ) =


L
2 |sin θ| if |sin θ| < 2

L

1 if |sin θ| ≥ 2
L

. (3.19)

This correlation of X on Θ will prove to be responsible for the deviations from the
exponential energy distribution.

Clustering as described by Eq. 3.18 could be included by means of a third random
variable. For simplicity P (cluster|v) from Eq. 3.18 is instead replaced by step function
with P (cluster|v < C) = 1 and P (cluster|v > C) = 0 where C is some suitable constant.
For the elastic case C = 0 implements an absorbing boundary at v = 0. There exists an
absorbing boundary because the state v = 0 may only be reached by particles parallel to
the Lees-Edwards boundary that happen to cross due to numerical imprecision. These
pathological non-colliding trajectories are filtered in the simulation (cf. Sec. 2.1.2). In the
wet case the clustering constant C should be determined such that the absolute clustering
probability is preserved,

P (cluster) =
∫ √2Ec

0
P (cluster|v) ρ (v) dv !=

∫ C

0
ρ (v) dv.

Here ρ (v) is the velocity distribution for very small velocities. However, nothing is known
about the energy distribution for low energies as the numerical data does not properly
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resolve very small energies/speeds. Therefore C >
√

2ε has to be chosen more or less
arbitrarily. The present model thus only qualitatively captures clustering.

The elements just discussed can now be combined to describe a (one-step) stochastic
process. One possibility to do so is the following:

vn+1 =


0 if vn ≤ C

LEΘ,X(B(vn)) =
√
v2
n − 2ε+X

(
s2 + 2s

√
v2
n − 2ε cos Θ

)
else

Here the bridge rupture is performed before the (possible) boundary crossing. This order
of events is in accordance with the post-collision Poincaré section of the billiard dynam-
ics: Starting in a post-collision position bridge rupture comes before boundary crossing.
Moreover, the clustering condition is checked before the bridge, i.e. the bridge rupture
and boundary crossing cycle is only performed if the speed was high enough to rupture
the bridge.

A slightly different version to set the stochastic process up is the following:

vn+1 =

0 if LEΘ,X(vn) ≤ C

B(LEΘX(vn)) =
√
v2
n +X (s2 + 2svn cos Θ)− 2ε else

.

In this version the (possible) boundary crossing is performed first, followed by the bridge.
This shifted sequence is no problem, however, as it only corresponds to increasing the
initial energy by 2ε. The price to pay for the reversed order of events is the complicated
clustering condition. As C must be estimated anyway, it does not harm to handle the
clustering condition roughly by introducing some other constant C ′ ≤ C:

1) vn+1 =

0 if vn ≤ C ′ or vn /∈ R√
v2
n +X (s2 + 2svn cos Θ)− 2ε else

. (3.20)

The clustering condition is loosened to compensate for situations with vn < C < LEΘ,X(vn).
If LEΘ,X(vn) < C < vn the radicand might become negative, which is also filtered. The
(asymptotic) results presented in the following are, however, insensitive to the implemen-
tation of the clustering condition.

Figure 3.15 compares the rescaled energy distribution obtained from simulating the
stochastic model Eq. 3.20 (type 1) with ε = 0 = C ′ to the billiard simulations for the elastic
case. The deviations from the exponential distribution are qualitatively reproduced. The
figure also illustrates that the model can be further simplified (type 2) without loss of
performance by replacing the binary variable X with its expectation value,

〈X〉 =
∫ π

0
P (X = 1|θ) ρ (θ) dθ = 2

∫ π/2

0
P (X = 1|θ) ρ (θ) dθ with ρ (θ) = 1

π
. (3.21)

The expectation value 〈X〉 is a constant depending on the system parameters L and R
and the simplified process used from now on reads:

2) vn+1 =

0 if vn < C ′ or vn /∈ R√
v2
n − 2ε+ 〈X〉 (s2 + 2svn cos Θ) else

(3.22)
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A third variant of the process (type 3) illustrates that the correlation between Θ and X
(Eq. 3.19) causes the deviation from the exponential as the θ-dependent crossing proba-
bility transforms the uniform post-collision θ-distribution into a non-uniform one at the
boundary: Reconsider the type-1 stochastic process Eq. 3.20 but replace the correlated
binary variable X by an uncorrelated X̃ with P (X̃ = 1|θ) = P (X̃ = 1) = 〈X〉 such that
the expectation value does not change:

3) vn+1 =

0 if vn ≤ C ′ or vn /∈ R√
v2
n + X̃ (s2 + 2svn cos Θ)− 2ε else

For this process the crossing probability is θ-independent, which keeps the uniformity
of θ also at the boundary and results in an exponential speed distribution. Note that
the type-3 process is merely a formal example. Its billiard counterpart would require an
unnatural non-uniform θ-distribution in the post-collision section.

Figure 3.16 compares the rescaled energy distribution obtained by the type-2 stochastic
process Eq. 3.22 with ε = 1 and C ′ =

√
3 to the billiard simulations for different shear

speeds. The qualitative dependencies of the extent of the deviations seem to be met:
Increasing shear speed s increases the dimension of the deviation and the presence of
bridge dissipation decreases it.

Except for its shape given by rescaling E/〈E〉 the energy distribution is characterized
by the average energy 〈E〉. Figure 3.17 shows that the average energy increases linearly
with a slope that is proportional to s2. The proportionality constants, however, strongly
deviate from the ones found in the billiard simulations (Figs. 3.3 and 3.5).

To understand the limitations of the stochastic model and especially the poor capture
of the average energy it is useful to recall the assumptions behind the stochastic model:

• In between two Lees-Edwards boundary crossings the billiard dynamics is suffi-
ciently chaotic to replace the deterministic θ in the energy change on Lees-Edwards
boundary crossing by a stochastic one without memory; correlations as in Fig. B.13
can be neglected. Substituting a post-collision angle, θ is assumed to be uniformly
distributed in [0, 2π] (see Sec. B.2 for numerical data).

• For the thin-film billiard the energy-dependent clustering probability Eq. 3.18 was
replaced by a simple removal of systems with E smaller than a somewhat arbitrary
constant.

• In the deterministic billiard dynamics several boundary crossings may occur in be-
tween two collisions. For the stochastic model it was in contrast assumed that
a collision is either followed or not followed by a single Lees-Edwards boundary
crossing. To obtain a probability for crossing that only depends on θ the impact
parameter b is assumed to be uniformly distributed (Sec. B.2).

Besides the fact that clustering is not modeled very accurately, the modified sequence
of events in the last assumption clearly is the weakness of the stochastic approach as
far as the energy distribution is concerned. In particular, assuming a maximum of one
Lees-Edwards boundary in between two collisions prevents the model from exhibiting the
same number of boundary crossings per collision ν = nLEBC/ncoll as found for the billiard
simulations (Fig. B.14). As the value of ν greatly influences the energy input it is not to
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be expected that the stochastic model quantitatively reproduces the energy increase. The
same applies via Eq. 3.11 or Eq. 3.12, respectively, to the diffusion coefficient. It should
be noted that simply setting 〈X〉 = ν does not solve the problem as this way the num-
ber of (subsequent) collisions is reduced instead of introducing consecutive Lees-Edwards
boundaries. Furthermore the non-uniformity of the θ-distribution at the boundary would
be affected by this approach.

Nevertheless, connecting the diffusion coefficient of the speed dynamics to the ge-
ometry-dependent quantity 〈X〉 and thus to the spatial diffusion in the Lorentz grid
is an achievement: In the asymptotic scaling regime particle speeds are usually very
large as compared to the shear speed. Thus, the Lorentz grid is hardly moving and
results from the literature on spatial diffusion in the (non-sheared) Lorentz gas should
apply. In [KD00] the authors discuss the effects of correlations and collisionless passing of
symmetry cells onto the spatial diffusion coefficient. In [KD00, Fig. 1(a)] they find that
the corrections increase the diffusion coefficient by about 50% for a triangular lattice with
a gap size between scatterers of 0.3 radii. This quantitatively resembles the difference
between Figs. 3.5/3.3 and Fig. 3.17. For lack of other explanations we also attribute the
two different acceleration regimes found for the asymptotic thin-film billiard (Fig. 3.3) to
correlations affecting the diffusion coefficient.

Note that the apparent underestimation of the deviation from the exponential energy
distribution found in Figs. 3.15 and 3.16 is likely caused by comparing shear speeds instead
of diffusion coefficients.

In the following we will not detail on this quantitative matter. Instead we concentrate
on the scaling shape of the energy distribution and show that the stochastic process and
consequently the billiard dynamics it models indeed corresponds to a generalized diffusion
as proposed in Sec. 3.3.2.
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Figure 3.15: Stochastic model vs. billiard simulations: Shape of elastic energy dis-
tribution for different model types. The figure compares the rescaled cumulative energy
distributions of three slightly different stochastic processes designed to model the billiard energy
dynamics (see main text) are compared to the billiard simulations for the elastic case. The
stochastic models differ in how the sequence of collisions and Lees-Edwards boundaries is deter-
mined (see main text). The energy distributions of processes 1 and 2 coincide. Qualitatively,
their distributions show the same deviation from an exponential distribution as for the billiard
simulations. The billiard simulations yield are stronger deviation, however, at least if the com-
parison is based on the shear speed s. Comparing diffusion coefficients instead might give a
different picture. The type-3 stochastic process results in an exponential energy distribution.
Simulation details. Energy distribution after nmax = 8 · 104 steps, s = 2, ε = 0. For billiard
data details see Fig. 3.11, the stochastic process was initialized with N = 104 initial energies
distributed as exp (E/1000).
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Figure 3.16: Stochastic model vs. billiard simulations: Shape of thin-film energy
distribution for different shear speeds. The figure compares the energy distribution re-
sulting from the stochastic process Eq. 3.22 designed to model the billiard energy dynamics and
the billiard results for different shear speeds s. As observed for the deterministic billiard dy-
namics (Fig. 3.12) the liquid bridge dissipation brings the distribution closer to the exponential
(compare pink and orange). Similar to the elastic case (Fig. 3.15), the stochastic model under-
estimates the degree of deviation (compare blue and turquois). The qualitative dependence of
the deviation on s is however reproduced: It increases with increasing s. Simulation details.
For billiard data details see Fig. 3.10. When comparing diffusion coefficients instead of shear
speeds, low s in the stochastic process correspond to even lower s in the billiard (see main text).
The noisy data is thus due to strong clustering. For ε = 1 and s > 2 (s = 2) the stochastic
process was initialized with N = 1 (4) · 104 initial energies distributed as exp (E/1000).



3.3. FOKKER-PLANCK APPROACH TO THE ENERGY DYNAMICS 75

 0

 2000

 4000

 6000

 8000

 10000

 0  2000  4000  6000  8000  10000

av
er

ag
e 

en
er

gy
 <

E
>

number of collisions n

elastic stochastic process

shear speed
1
2
3

 0

 2000

 4000

 6000

 8000

 10000

 0  2000  4000  6000  8000  10000
av

er
ag

e 
en

er
gy

 <
E

>
number of collisions n

thin-film stochastic process

shear speed
1
2
3

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  1  2  3  4  5  6  7  8  9

en
er

gy
 s

lo
pe

 d
<

E
>

/d
n

(shear speed)2

Substitutional stochastic process: energy slope

elastic
0.39 x

thin film
0.30 x

Figure 3.17: Stochastic Process: Average energy development. In addition to the sta-
tionary shape of the rescaled energy distribution the development of the average energy 〈E〉 is of
interest. The figure shows that 〈E〉 grows linearly (top) with a slope that is asymptotically pro-
portional to s2 (bottom) for the elastic (top left) as well as for the thin-film (top right) stochastic
process. (Note that the initial regime found for the billiard simulations in Figs. 3.3 and 3.5 is
not observed due to initialization with an exponential distribution.) Thus, the stochastic model
reflects the qualitative characteristics of the asymptotic energy development. It fails, however, in
quantitative terms: The proportionality constants cstoch

thin ≈ 0.3 and cstoch
elastic ≈ 0.4 for the thin-film

and elastic billiard, respectively, differ in value and ratio from the billiard values cbilliard
thin ≈ 0.6

and cbilliard
elastic ≈ 0.5 from Figs. 3.3 and 3.5. Simulation details. The stochastic model Eq. 3.22

was used with ε = 1 for the thin-film case. It was initialized with N = 104 initial energies
distributed as exp (E/1000) and propagated for nmax = 104 collisions. For the thin-film data
about 1000 systems survived up to nmax. In the bottom plot asymptotic slopes obtained by
fitting a linear function to the complete data set are displayed.
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3.3.5 Drift and diffusion coefficients
The stochastic model process for the speed dynamics introduced in the last section is a
generalized random-walk (cf. Sec. 3.3.1) with an absorbing boundary. The corresponding
speed distribution can approximately be described by a Fokker-Planck equation (Eq. 3.6).
Before solving the Fokker-Planck equation in Sec. 3.3.6 the transport coefficients need to
be derived. Following Eqs. 3.7 and 3.8 the drift coefficient M and diffusion coefficient D
are given by the first and second moment

M = 〈∆v〉 =
∫

(∆v) ρvn+1 (vn+1|vn) dvn+1 =
∫

(∆v) ρΘ (θ|vn) dθ = 1
π

∫ π

0
(∆v) dθ

D = 〈(∆v)2〉 =
∫

(∆v)2 ρvn+1 (vn+1|vn) dvn+1 =
∫

(∆v)2 ρΘ (θ|vn) dθ = 1
π

∫ π

0
(∆v)2 dθ

of the speed increment from Eq. 3.22,

∆v := vn+1 − vn =
√
v2
n − 2ε+ 〈X〉 (s2 + 2svn cos Θ)− vn.

Note that the calculation of the expectation values is simplified by using the transition
probability density ρΘ that was found to be uniform (Sec. B.2) and that Θ was assumed
to be independent of v when deriving the process. To facilitate the calculation, ∆v is
expanded for v � 1. This step is well justified as the Fermi acceleration quickly results in
average speeds that are large compared to the shear speed s. Naturally, this approximation
does not model clustering properly. This is no real loss of predictive power, however, as the
stochastic model severely approximates clustering anyway. The approximate increment
reads

∆v = − ε
v

+ 〈X〉s
2

2v + s〈X〉 cos θ − 〈X〉
2s2 cos2 θ

2v +O
( 1
v2

)
,

so that the resulting coefficients are (up to O (v−2)):

M =
〈X〉

2 s2 − 〈X〉
2

4 s2 − ε
v

, D = 〈X〉
2

2 s2. (3.23)

The coefficients depend on ε as well as on s and via 〈X〉 and Eq. 3.21 on R and L so that
all billiard parameters are included. They follow the form predicted in Sec. 3.3.2.

We remark that the property of the diffusion coefficient to be constant motivates the
preference for the speed v above the energy E = v2/2 as variable for the Markov process.
In fact, the corresponding energy process results in an energy-independent drift coefficient
ME while the diffusion coefficient DE becomes energy-dependent:

ME = 〈X〉2 s2 − ε, DE =
(
〈X〉

2 s2 − ε
)2

+ 〈X〉
2s2

2 E ∼ E.
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3.3.6 Fokker-Planck equation
As the Fokker-Planck equation is a continuous-time approximation to the master equation
describing the generalized random-walk Eq. 3.22 (cf. Sec. 3.3.1), the number of collisions
n passes over to a continuous time t. With the drift coefficient M =: µ/v and the
diffusion coefficient D as derived in the last section the Fokker-Planck equation for the
distribution function, i.e. the relative number density, of non-clustered systems, n(v, t),
which corresponds to the energy distribution ρ〈E〉(E), reads:

∂tn(v, t) = −∂v
(
µ

v
n(v, t)

)
+ D

2 ∂
2
vn(v, t)

= −µ
v
∂vn(v, t) + D

2 ∂
2
vn(v, t) + µ

v2n(v, t). (3.24)

Due to clustering, n(v, t) is “normalized” to the relative number of systems remaining
unclustered, N(t)/N(1). For the elastic case (bridge rupture energy ε = 0), no clustering
occurs so that N(t) = N(1) while for the thin-film billiard clustering can only decrease
the particle number:

N(t)
N(1) =

∫ ∞
0

n(t, v) dv ≤ 1 with ∂tN(t)

= 0 ε = 0
< 0 else

, lim
v→∞

n(v, t) = 0, (3.25)

As the transport coefficients were derived assuming v � s and even diverge for v → 0 also
the above partial differential equation only provides a proper description in this regime.
In particular, it is unclear whether it properly accounts for the absorbing boundary at zero
or close to zero, for the elastic or thin-film billiard, respectively. This problem is avoided
by a scaling ansatz that conveniently reduces the partial differential equation Eq. 3.24 to
an ordinary differential equation, which implicitly accounts for the absorbing boundary
condition. Figures 3.10 and 3.11 suggest x := E/〈E〉 = v2/(2kDt) as scaling variable
where the second equality is due to Eq. 3.12. To account for the absorbing boundary,
i.e. clustering, assuming N(t)/N(1) ∝ t−γ seems asymptotically appropriate in the light
of Fig. 3.8. Note that this factor is hidden in Figs. 3.10 and 3.11 due to the enforced
normalization. With α = −(1/2 + γ) to ensure “normalization” according to Eq. 3.25 the
ansatz

n(v, t) = tαf

(
v2

2kDt

)
with α

= −1
2 ε = 0

< −1
2 else

(3.26)

reduces Eq. 3.24 to an ordinary differential equation in f(x):

0 = ∂2
xf +

(
k + 1− 2G

2x

)
∂xf −

(
G

2x2 + kα

x

)
f, G := µ

D
. (3.27)

With this and Eq. 3.23 f only depends on

G = µ

D
= 1
〈X〉
− 2ε
〈X〉2s2 −

1
2 ,

which is via 〈X〉 (Eq. 3.21) connected to the billiard geometry. For the elastic billiard
with ε = 0 the ordinary differential equation does only depend on the billiard geometry
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and is independent of the shear speed s. For this case s enters the solution only via
normalization. The scaling solution f inherits its normalization from n, i.e. (Eq. 3.25):

t−γ = N (t)
N (1) =

∫ ∞
0

n (v, t) dv = t−γ
√
kD

2

∫ ∞
0

f (x)√
x

dx ⇒ 1 =
√
kD

2

∫ ∞
0

f (x)√
x

dx.

(3.28)

The constant k that connects the coefficient of diffusion to the average energy is deter-
mined by

2Dkt = 2〈E〉 = 〈v2〉 =
∫ ∞

0
v2ñ(v, t) dv =⇒ 1 =

√
kD

2

∫ √
xf̃(x) dx (3.29)

where ñ(v) = n(v) · N(1)/N(t) and accordingly (cf. Eq. 3.28) f̃(x) = tγf(x) have been
introduced to obtain probability densities for the averages.

As the dependence of the survival/clustering exponent γ on the parameters is unknown
we only discuss the solution of Eq. 3.27 and Eq. 3.24, respectively, for the elastic case.
In the next section an expression for γ will be derived. This expression depends on the
energy distribution ρ〈E〉 = ñ, however, so that it would be of little practical use in the
present context. For the elastic billiard, i.e. ε = 0 and α = −1/2, we find with the help
of Mathematica that the integrable part of the general solution to Eq. 3.27 is given by

f(x) =
√

2
D
· kG

Γ
(
G+ 1

2

) · xG · e−kx (3.30)

We use Eq. 3.29 for a billiard geometry of R = 1 and L = 3 to compare this solution
to the simulations from Sec. 3.3.4. Keeping in mind ε = 0 for the elastic case, values
G ≈ 0.78 and k = 1.28 result. Thus, the energy is expected to grow as

〈E〉
t

= Dk = 1
2〈x〉

2 · k · s2 ≈ 0.39 · s2,

which perfectly corresponds to Fig. 3.17. To compare the shape of Eq. 3.30 to the simu-
lations (cf. Fig. 3.15, types 1 or 2, respectively) it is necessary to keep in mind that the
data has been normalized. Thus the corresponding probability density is

ρ〈E〉(x) =
√
kD

2
f(x)√
x

with
∫ ∞

0
ρ(x) dx = 1,

which does not depend on D ∝ s2 due to Eq. 3.28. The cumulative distribution function
R(x) displayed in Fig. 3.15 is for G ≈ 0.78 and k = 1.28 expected to be

R(y) =
∫ y

0
ρ(x)〈E〉 dx = Γ̃(1.28, 1.28y), (3.31)

where Γ̃(a, x) = 1
Γ(a)

∫ x
0 t

a−1e−t dt is the normalized lower incomplete Γ-function. Fig-
ure 3.18 shows that the shape of the energy distribution is well described. Also, the
(normalized) simulation results are indeed independent of the shear speed s. We stress
that this is a feature specific to the elastic case: For ε > 0 Eq. 3.27 does depend on s and
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Figure 3.18: Simulation vs. Fokker-Planck equation for the stochastic model of the
elastic sheared billiard. For the elastic case the Fokker-Planck equation describing the sto-
chastic model of the billiard dynamics results in the scaled energy distribution Eq. 3.30. The
plot compares the normalized cumulative distribution R(x) of this solution (Eq. 3.31) to simu-
lation results obtained from the type-2 stochastic process as in Fig. 3.15. Analytic solution and
simulation results fit very well. The normalized R(x) is independent of s as expected(see main
text).

ε. Consequently, also the shape of the energy distribution is expected to vary with this
parameters as observed in Fig. 3.16.

The Fokker-Planck equation 3.24 discussed so far describes the elastic and the thin-
film sheared billiard. It can, however, easily be adapted to the thick-film interaction. The
main difference between the thin- and thick-film thin-thread model relevant for the energy
distribution lie in the clustering behavior (Eq. 2.12): While for the thin-film billiard clus-
tering is restricted to a boundary region the thick-film billiard features bulk-absorption.
This can be accounted for by an explicit absorption term A(v), which is added to Eq. 3.24.
The absorption A is given by the clustering probability Eq. 3.32. Expanding for large
speeds yields:

A(v) = 1−
√

1− 2
v2

v2�1≈ 1
v2

Thus, Eq. 3.24 changes only slightly to become

∂tn(v, t) = −µ
v
∂vn(v, t) + D

2 ∂
2
vn(v, t) + µ− 1

v2 n(v, t),

which does not harm the scaling ansatz.
In conclusion, we recall that the analytic treatment of the energy dynamics found in

the sheared billiards discussed so far holds in the asymptotic regime v � 1. To describe
the boundary region, v ∼ 1, the transport coefficients (cf. Sec. 3.3.5) and thus the Fokker-
Planck equation need to be approximated in this limit case. In the boundary regime,
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scaling behavior is not a priori expected, which would complicate the solution to the
Fokker-Planck equation. In any case, such an approach will only give qualitative results
due to the very rough clustering condition underlying the stochastic process in Sec. 3.3.4.

3.4 Clustering and power-law lifetime distribution
Figure 3.7 (bottom) demonstrates that clustering occurs despite of high average energies
caused by the Fermi acceleration. At first sight this is surprizing. However, assuming
ergodicity it is reasonable for a broad energy distribution like the exponential-type distri-
butions that have been found in Figs. 3.10 and 3.11 and were explained in the previous
sections: For an exponential distribution the standard deviation σE increases like the
average (Fig. 3.7, top),

〈E〉 = σE ∝ n

Unexpectedly for a strongly chaotic system the lifetime distribution of non-clustered sys-
tems is found to decay with a power-law tail (Fig. 3.8) and not exponentially as in the
standard setting (Sec. 2.1.3). Also the exponential was in principle observed for the freely-
cooling case (Sec. 2.4). When on the other hand adjusting the argument in Sec. 2.1.3 to
the situation of an unbound phase space as present in the sheared billiard,the power-law
decay occurs naturally: As the effectively occupied phase space is growing as 〈E〉 ∝ n the
relative size of the fixed clustering region is decreasing. The measure of this leak, i.e. the
decay rate κ is obtained by applying the phase-space distribution (Sec. 3.2.2),

ρ (θ, b,∆, E) dθ db d∆dE = dθ
2π

db
2
d∆
L
ρ〈E〉 (E) dE,

to the clustering region (Sec. 2.3),

[0, 2π]× ([−1,−bc(E)] ∪ [bc(E), 1])× [0, L]× [0, Ec],

bc(E) =

0 E < 1
(1 + sc)

√
1− 1

E
1 < E < Ec

, (3.32)

and reads:

κ (n) =
∫ Ec

0

(
2
∫ 1

bc(E)

db
2

)
ρ〈E〉(E) dE =

∫ Ec

0
[1− bc (E)] ρ〈E〉(E) dE.

At this point a problem arises: In the above calculation the energy distribution for low
energies is needed. The considerations in the previous chapter were approximations for
high energies, however, and the numerical results do not have high enough accuracy in
the low-energy regime either. It is not even clear whether the scaling behavior strictly
applies in the boundary region of low energy.

Therefore, a uniform energy distribution ρ〈E〉(E) = 1/〈E〉 = 1/(Dn) is assumed to
demonstrate the principle: It leaves the integral to be some 〈E〉-independent constant c
and gives the decreasing decay rate,

κ0 (n) = c

Dn
= γ

n
,

1
γ
∝ D ∝ s2, (3.33)
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which results in a power-law decay of the number of non-clustered systems N :

Ṅ (n) = −κ0 (n)N (n) ⇒ N (n)
N0

= exp
(
−
∫ n

1
κ0 (n′) dn′

)
= n−γ.

The picture remains qualitatively unchanged when using the low-energy approximation
of the scaling exponential energy distribution (Eq. 3.4) with 〈E〉 = Dt (Eq. 3.14),

ρ〈E〉(E) = 1
Dn

exp
(
− E

Dn

)
≈ 1− E

Dn
,

which results in:

κ1 (n) = c1

Dn
+ c2

D2n2

n� c2
c1D≈ c1

Dn
,

1
γ
∝ D ∝ s2. (3.34)

From these considerations (cf. Eqs. 3.33 and 3.34) the survival exponent γ is expected to
respect the condition: γ · s2 = const. Figure 3.9 (bottom, red symbols) shows that this is
indeed the case for low shear speeds but does not hold for high s. A possible explanation
for this finding is based on the size of the clustering region relative to the boundary region
in which the energy distribution is unknown: For very small s, i.e. slow acceleration, the
clustering region is still large enough to be properly modeled by the asymptotic energy
distribution while for large s it is so small that neglecting the special situation at the
boundary just fails. A second possibility to explain Fig. 3.9 is that it simply does not
show the true survival exponent because the very small clustering region is insufficiently
sampled for high s. Both considerations might be backed by noting that the high and low
energy regime are separated by the initial critical value s0

c (Eq. 3.15), which discriminates
cases where the drift is pushing towards or away from the boundary. Furthermore it is
interesting to note that the survival exponent of the thick-film model shows a uniform
behavior (Fig. 3.9, bottom, green symbols). In the context of the present discussion this is
reasonable since clustering is not restricted to a confined boundary region here (Eq. 2.12).
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Chapter 4

Summary and outlook

The freely-cooling wet billiard is a very unusual dissipative dynamical system:

• The piecewise-Hamiltonian dynamics results in a switching of energy shells that
corresponds to a homogenous rescaling of phase space.

• The wet interaction according to thin-film models is non-injective.

• This non-injectivity causes a double-folding of the phase space, which results in a
fractal natural distribution.

It seems not appropriate to place the double-folding in the usual line of dissipative dy-
namics where dissipation contracts phase space and thus represents irreversibility. These
expectations are already satisfied by the homogenous rescaling. The non-injectivity caused
by the hysteresis of the thin-thread model constitutes a new element that is not a pathol-
ogy of the model but inherent to the physics of wet granular matter. Nevertheless, con-
servation of angular momentum I presumably requires such hysteretic interactions to be
dissipative: Next to spatial splitting of the interaction event into collision and bridge
rupture, the non-injectivity requires an increase of the impact parameter b, which has to
be compensated by a decrease in speed v:

I = v · b 7→ I ′ = v′ · b′, ∂tI = 0 and b′ > b⇒ v′ < v

The standard theory of dynamical systems is mainly developed for injective maps and is
thus not a priori applicable to the wet billiard. For example, the sum of the Lyapunov
exponents as a measure of phase space compression (e.g. [Eck85, Sec. III.D.1]) will in the
case of the wet billiard only account for the general rescaling of phase space but not for the
double-folding. The apparent symplecticity of the wet interaction [HF07, Sec. 4.6] prob-
ably emerges for similar reasons. Consequently, when working with dynamical systems
that include wet interactions, standard tools should not be trusted without additional
care.

Furthermore, the freely-cooling wet billiard indicates that the challenges in formulating
the statistical mechanics of wet granulates do not primarily emerge on the microscopic
level of the phase space distribution:

• The wet Sinai billiard is strongly chaotic.
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• In spite of phase space structure the natural distribution is supported on the whole
energy surface.

• Projections of the natural distribution are uniform.

• For the purpose of calculating averages of smoothly varying observables, a uniform
distribution on the energy surface is a good assumption as illustrated for the clus-
tering probability.

Being strongly chaotic on the complete surface determined by its current energy, the
wet billiard fulfills the basic assumptions of statistical physics. After having confirmed
these basic properties, a possible next step could be to set up a Boltzmann equation
for the wet granular gas that takes the hysteresis into account. In a previous approach
[Röl10, Appendix A] to the Boltzmann equation of wet granular matter the hysteresis has
been neglected so that the wet interaction reduces to an energy-dependent coefficient of
restitution. The results presented in this thesis should form a good basis to approach the
hysteresis. In the context of the Boltzmann equation it should be mentioned that in view
of Appendix B.1 the same corrections due to post-collision correlations as found for the
dry granular gas [PBS03] are to be expected for the wet granular gas.

The sheared wet billiard combines two effects that are of considerable interest in
dynamical-systems research:

• The application of Lees-Edwards boundary conditions to the Sinai billiard results in
Fermi acceleration. The diffusion coefficient of the energy dynamics is connected to
the well-studied diffusion coefficient of spatial motion. Correlations caused by the
billiard geometry increase the diffusion coefficient in comparison to the correlation-
free case.

• The sheared wet billiard is an interesting new example of a transiently chaotic
system in which Fermi acceleration results in an algebraic lifetime distribution.

Finding Fermi acceleration in the sheared Sinai billiard is well in line with [LRA99] where
the authors study Fermi acceleration in the periodic Lorentz gas with infinite horizon
(Sec. 1.2.2) and radially expanding and contracting (“breathing”) scatters. For periodi-
cally perturbed boundaries, in particular, correlations are observed. The origin of these
correlations, however, is different from the correlations in the sheared system. In this
context it seems interesting to explore what causes the correlations that have recently
been found by Vollmer and Oliveira in a Lorentz gas with periodically vibrating scatters
(see Appendix B.5).

Opening up other systems experiencing Fermi acceleration such that they become
transiently chaotic would be interesting to check generality of the algebraic lifetime dis-
tribution. In particular, the structure of the chaotic saddle deserves further investigation.
It should be rather atypical as the exits do not, at least not in a typical way, emerge from
a boundary crisis. In this respect, higher-dimensional systems should also be taken into
consideration as for a random walk in d > 2 dimensions the return probability to the
origin, i.e. the low-energy clustered state, is no longer unity.
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In conclusion, the sheared wet billiard in itself is an interesting problem in dynamical-
systems research. Extending the results obtained for the two-disk system to realistic
many-particle wet granulates, however, poses a number of questions and restrictions that
will have to be clarified in follow-up studies:

• Fermi acceleration. Due to Fermi acceleration particle speeds are expected to
quickly reach regions where the velocity-independent dissipation caused by the wet
interaction can be neglected in comparison to the high kinetic energies so that only
assuming elastic collisions would be sufficient. When modelling wet granular matter
such that the model compares to experiments, however, the effects of inelasticity of
collisions cannot be neglected for high impact speeds (Sec. 1.1.2, [Röl10, Sec. 3.3]).
Thus the inelasticity of collisions is expected to soon dominate dissipation, prevent
Fermi acceleration and ensure a steady-state according to Sec. 3.3.3.

• Steady-state condition. The sheared wet billiard has a trivial collision frequency.
Thus an important adjustable value is missing in the energy balance as compared to
many-particle systems. Consequently, the arguments given to explain the absence
of a steady-state in the billiard are not directly extendable. We note that this
restriction of the billiard system cannot be solved by considering real time instead
of the number of collision: Considering real time corresponds to weighting individual
trajectories according to their free-flight time and thus basically reflects the billiard
geometry; the absence of a meaningful collision frequency is rather a restriction of
the few degrees of freedom in the billiard system. The minimal model that allows
for a dynamical collision frequency requires at least three disks. In this setting
correlations of the collision dynamics and in particular clustering affect the mean
free-path such that it is changing in the course of time.

• Clustering. The freely-cooling wet billiard allows to study the probability of two
wet particles to cluster in a collision with a certain kinetic energy (cf. Sec. 2.4).
In [UAR+09, UAZ+09] this quantity is used when determining the temperature
evolution in a simulated wet many-particle system (cf. Sec. 1.1.4). For the sheared
wet billiard, on the other hand, the observation that clustering follows a power-law
distribution cannot immediately be applied for many-particle systems: Future work
will have to clarify whether the power-law is a peculiarity of the two-disk system or
has consequences also when a two-particle cluster might break up in collisions with
a third particle.

The restriction of not taking into account three-particle interactions can be relaxed by
considering a high-density sheared Lorentz gas. If the ratio of radius R, box size L and
bridge rupture distance sc is chosen such that R < L/2 < R+sc, Lees-Edwards boundaries
are still applicable as neighboring rows can pass each other but the point particle may
form bridges with two different neighbors at a time, which allows to cross boundaries
and regain energy although in the clustered state. So far it is unclear, however, what
happens to the ratio of boundary crossings and bridge ruptures in this setting and if
strong correlations between these events and the position of the scatterers occur.
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In summary, the presented study of the freely-cooling wet billiard lays a solid foundation
for kinetic theories of wet granular matter. The sheared wet billiard exhibits fascinating
effects whose generalization to many-particle systems requires to extend the analysis of
this thesis from two to three disks.



Appendix A

Simulation details

Software. All numerical simulations were realized using the C programming language
and may be obtained from the author. For all graphical displays the gnuplot Software
was used.

Parameter values. The following default parameters have been used for the simula-
tions if not mentioned otherwise:

scatterer radius R = 1 (cf. Fig. 1.6)
billiard box size L = 3 (cf. Fig. 1.6)
bridge rupture distance sc = 0.1 (cf. Fig. 1.1)
bridge rupture energy ε = 1 (cf. Fig. 1.1)
coefficient of restitution α = 0.5 (cf. Eq. 2.8)
initial position of Lees-Edwards boxes ∆ = L/2 (cf. Fig. 3.1)

Verification. In addition to automatized functionality tests of all subroutines and man-
ual verification of individual trajectories by visualizing, phase-space distributions were also
verified with regards to symmetries and the reproduction of known results: The natural
distribution of the freely-cooling billiard is symmetric with respect to π/2-rotations as
well as inversion symmetric, while the sheared billiard is only symmetric with respect to
rotations through π. For the freely-cooling billiard the expected uniform distribution was
obtained for ε = 0 and the freely-cooling case is retained for s = 0 in the sheared system.
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B.1 Phase space of freely-cooling billiards
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Figure B.1: Projections of the natural distribution onto the b-axis for the (thin-
film) wet and dry freely-cooling billiard. For the dry billiard an overpopulation of large
impact parameters b is observed in the post-collision Poincaré section (bottom left). This finding
corresponds to [PBS03] and occurs because b always decreases in a collision (Eq. 2.8). In the pre-
collision section (bottom right) the correlation is absent due to the chaotic dynamics in between
collisions. For the wet billiard Eq. 2.7 indicates that an overpopulation of high impact parameters
should be observed. This would, however, only be the case in a “post-bridge” section. The pre-
as well as the post-collision sections (top) are both “pre-bridge” sections so that the chaotic
dynamics has blurred the correlations resulting from the last bridge. Simulation details.
Note that the symmetry reduced phase space distribution is used (cf. Sec. 2.2). Apart from
mentioned, default parameters were used (cf. Appendix A).
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Figure B.2: Projections of the natural distribution onto the θ-axis for the (thin-film)
wet and dry freely-cooling billiard. In the post-collision Poincaré section the wet as well
as the dry billiard show uniform projections. In the pre-collision section, however, the dry
billiard shows overpopulation at θ ≈ 0, π/4, π/2. This is probably due to the billiard geometry
as illustrated in Fig. 2.11. For the wet billiard this structure might be guessed but is hardly
visible. Simulation details. Note that the symmetry reduced phase space distribution is used
(cf. Sec. 2.2). Apart from mentioned, default parameters were used (cf. Appendix A).
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B.2 Phase space of sheared billiards
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Figure B.3: Cumulative distribution functions R of phase space projections on b-, θ-
and ∆-coordinate for the sheared thin-film billiard. While the phase space projection on
the energy coordinate relaxes towards an almost exponential distribution (Fig. 3.10) the projec-
tions onto the θ- (top), b- (middle) and ∆-coordinate (bottom) result in uniform distributions.
Simulation details. Only the remaining non-clustered system out of 2 · 104 initial conditions
with an initial energy Eini distributed as exp

(
−E/104) are considered. The distribution func-

tion is normalized to the number of remaining non-clustered systems. Apart from mentioned,
default parameters were used (cf. Appendix A).
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Figure B.4: 2-dimensional phase space projections for the sheared thin-film billiard.
Shown are the six 2-dimensional projections of the 4-dimensional phase space in the asymptotic
scaling regime n � 1, E � 1. Assuming E ∼ exp (−E/〈E〉) (see Fig. 3.10) the energy values
have been transformed to yield a uniform distribution. The 2-dimensional projections show no
structure. Simulation details. Only the remaining non-clustered system out of 2 · 105 initial
conditions with an initial energy Eini distributed as exp

(
−E/104) are plotted after n = 1e5

collisions. Apart from mentioned, default parameters were used (cf. Appendix A).
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Figure B.5: 2-dimensional phase space sections for sheared thin-film billiard. To
prevent averaging out of possible phase space structure by projection some phase space sections
are shown. Together with the uniformity of the 1-dimensional and 2-dimensional projections
(Figs. B.3 and B.4) they propose that the phase space of the sheared thin-film billiard is not
significantly structured in the asymptotic scaling regime n� 1, E � 1. If found in the indicated
phase space region the state of non-clustered systems is plotted after n = 105 collisions. The
number of dots may vary as the regions have different measures. 2 · 105 initial conditions with
initial energy Eini distributed as exp (−E/1e4). Apart from mentioned, default parameters were
used (cf. Appendix A).
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Figure B.6: Cumulative distribution functions R of phase space projections on b-,
θ- and ∆-coordinate for the sheared thin-film billiard with subcritical shear speed.
Asymptotically, an energy increase is observed for low shear speeds s < s0

c (Fig. 3.3) that
could be caused by selection of special trajectories. The phase space data shown here and in
Figs. B.7 and B.8 do, however, not support that scenario: Like the asymptotic energy distri-
bution (Fig. 3.10), which is qualitatively the same for low and high shear speeds, the other 1-
dimensional phase space projections do not differ: The projections onto the θ- (top), b- (middle)
and ∆-coordinate (bottom) obtained from shearing with s = 1 result in uniform distributions
like the one for s = 2 (Fig. B.3). Simulation details. Only the remaining non-clustered system
out of 4·104 initial conditions with an initial energy Eini distributed uniformly in [7000, 1000] are
considered. The distribution function is normalized to the number of remaining non-clustered
systems. Apart from mentioned, default parameters were used (cf. Appendix A).
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Figure B.7: 2-dimensional phase space projections for the sheared thin-film bil-
liard with subcritical shear speed. Shown are the six 2-dimensional projections of the
4-dimensional phase space in the scaling regime n � 1, E � 1. Assuming E ∼ exp (−E/〈E〉)
(Fig. 3.10) the energy values have been transformed to yield a uniform distribution. As for
s = 2 (Fig. B.4) the 2-dimensional projections show no structure. Simulation details. Only
the remaining non-clustered system out of 4 · 105 initial conditions with an initial energies Eini
uniformly distributed in [7000, 11000] are plotted after n = 2 · 104 collisions. Apart from men-
tioned, default parameters were used (cf. Appendix A).
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Figure B.8: 2-dimensional phase space sections for the sheared thin-film billiard with
subcritical shear speed. To prevent averaging out of possible phase space structure by
projection some phase space sections are shown. Together with the uniformity of the 1- and
2-dimensional projections (Fig. B.6 and B.7) they propose that the phase space of the sheared
thin-film billiard remains not significantly structured also for subcritical shear speeds in the
regime n� 1, E � 1. The somewhat unexpected increase of the average energy in this regime
(Fig. 3.3) does therefore probably not stem from some remaining atypical systems. Simulation
details. If found in the indicated phase space region the state of non-clustered systems is plotted
after n = 2 · 104 collisions. The number of dots may vary as the regions have different measures.
4 · 105 initial conditions with initial energy Eini distributed uniformly in [7000, 11000]. Apart
from mentioned, default parameters were used (cf. Appendix A).
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Figure B.9: Cumulative distribution functions R of phase space projections on b-,
θ- and ∆-coordinate for the elastic billiard. While the phase space projection on the
energy coordinate relaxes towards a roughly exponential distribution (Fig. 3.11) the projection
onto the θ- (top left), b- (top right) and ∆-coordinate (bottom) result in uniform distributions.
Simulation details. The cumulative distributions are normalized to the number of 2·104 initial
conditions with initial energy Eini distributed following exp

(
−E/104). Apart from mentioned,

default parameters were used (cf. Appendix A).
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Figure B.10: 2-dimensional phase space projections for the elastic billiard. Shown are
the six 2-dimensional projections of the 4-dimensional phase space in the asymptotic scaling
regime n � 1, E � 1. The energy values have been transformed like in the wet case. Due
to the deviations from the exponential distribution (Figs. 3.11 and 3.12) there are deviations
from uniformity. Apart from this the 2-dimensional projections show no structure. Simulation
details. n = 105 collisions. 2 · 105 initial conditions with initial energy Eini distributed as
exp

(
−E/104). Apart from mentioned, default parameters were used (cf. Appendix A).



B.2. PHASE SPACE OF SHEARED BILLIARDS 101

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

b/
R

θ/π

sheared elastic billiard

0.45 < R(E/<E>) < 0.55 and 0.45 < ∆/L < 0.55

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

1-
ex

p(
-E

/<
E

>
)

θ/π

sheared elastic billiard

0.45 < b/R < 0.55 and 0.45 < ∆/L < 0.55

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

∆/
L

θ/π

sheared elastic billiard

0.45 < b/R < 0.55 and 0.45 < R(E/<E>) < 0.55

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

1-
ex

p(
-E

/<
E

>
)

b/R

sheared elastic billiard

0.45 < θ/π < 0.55 and 0.45 < ∆/L < 0.55

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

∆/
L

b/R

sheared elastic billiard

0.45 < θ/π < 0.55 and 0.45 < R(E/<E>) < 0.55

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

∆/
L

1-exp(-E/<E>)

sheared elastic billiard

0.45 < θ/π < 0.55 and 0.45 < b/R < 0.55

Figure B.11: 2-dimensional phase space sections for the elastic billiard. To prevent
averaging out of possible phase space structure by projection some phase space sections are
shown. Together with the uniformity of 1- and 2-dimensional projections (Figs. B.9 and B.10)
they propose that the phase space of the sheared elastic billiard system is not significantly
structured in the asymptotic scaling regime n � 1, E � 1. Simulation details. If found in
the indicated phase space region after n = 105 collisions the state of a system is plotted. The
number of dots may vary as the regions have different measures. 2 · 105 initial conditions with
initial energy Eini distributed as exp

(
−E/104). Apart from mentioned, default parameters were

used (cf. Appendix A).
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B.3 Correlations
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Figure B.12: For caption and continuation of the figure see next page.
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Figure B.13: Correlation functions C for sheared billiard simulations. The figures show
the correlation function C (i) = 1

(n−i)σ2
∑n−1
k=1 (Xk− < X >) (Xk+i− < X >) where σ2 is the

variance for X = θ, b,∆. The correlation function is qualitatively the same for the wet billiards
and the elastic billiard. The spatial coordinates θ and b decorrelate rapidly as is to be expected
from the chaoticity of the billiard dynamics. Note that the slight anti-correlation is reasonable as
a collision following a Lees-Edwards boundary crossing is likely to “mirror”. The phase ∆ shows
periodic correlations that are due to the periodicity of the sheared lattice. The correlation period
∆nc ≈ 100 gives an estimate of the mean free path f : The phase ∆ returns with a temporal
period ∆T = L/s where L is the box size and s the shear speed. Within ∆T a particle with
speed v travels a distance ∆x = v∆T . The mean free path f connects ∆x to the correlation
period: ∆nc = ∆x

f = vL
sf . With L = 3 and s = 2 this yields f = 1.5. As the minimum distance

between two scatterers is 1 for L = 3 this result seems plausible. Simulation details. {Xi}
was obtained by following a random initial condition for nmax = 104 collisions. Apart from
mentioned, default parameters were used (cf. Appendix A).
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B.4 Collisions vs. Lees-Edwards boundary crossings
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Figure B.14: Number of Lees-Edwards boundary crossings per collision in the bil-
liard simulations. On average, crossing a Lees-Edwards boundary increases the system energy
(Eq. 1.6) while a collision decreases it (Eq. 2.6, except for the elastic case). To estimate the
energy change on the level of averages it is therefore interesting to know the number of Lees-
Edwards boundary crossing per collision, ν. The figure shows the ensemble and time averaged
value 〈〈ν〉〉 for the two wet, the elastic and the inelastic sheared billiard. The values of the
thin-film and the elastic billiard coincide while the thick-film billiard experiences more collisions
relative to the number of boundary crossings. This is to be expected as for the thick-film billiard
“number of collisions” in fact refers to number of boundary crossings, which will be larger than
the actual number of collisions (Sec. 2.5). For the sheared billiard with inelastic collisions and
no bridge a value in between is observed. Furthermore, ν seems to be independent of the shear
speed s. The fact that no change in ν is observed between the initial and the asymptotic regime
for s = 1 is another indicator (see also Figs. B.7 to B.8) that the asymptotic increase of energy is
not caused by atypical trajectories. The ratio ν will depend, however, on the billiard geometry,
i.e. the length of the periodic box L relative to the scatterer radius R, which also determines
the density. Throughout Chapter 3 the geometric parameters R = 1 and L = 3 have not been
varied. As shear speeds show the same ν within the error bars the different slopes in Fig. 3.3 do
not stem from differing ν. Simulation details. Considered are remaining non-clustered sys-
tems. The error bars are ±1/

√
n ·N (n) where N (n) is the number of remaining systems. The

thin-film and elastic billiard were initialized with Eini uniformly distributed in [7000, 11000], the
thick-film billiard was isoenergetically initialized with Eini = 104. For the inelastic billiard only
data with nmax = 1000 was available. As ν does not depend on s and as ν does not change with
n ∝ E the initial energy should be unimportant. Apart from mentioned, default parameters
were used (cf. Appendix A).
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B.5 Vibrated elastic Sinai billiard
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Figure B.15: Energy dynamics in the vibrated Sinai billiard with elastic collision. A
Sinai billiard or Lorentz gas with scatterers that are vibrating, i.e. periodically moving about
their resting position, shows an energy dynamics that closely resembles that of the sheared
(elastic) billiard discussed in Sec. 3.2. The top-row plots compare to Fig. 3.5 where the shear
speed s is replaced by the vibration amplitude. The bottom plot resembles Fig. 3.11 (bottom).
Note the linear axes as well as the slightly different scaling variable E/n ∝ E/〈E〉.
The plots are used by courtesy of Jürgen Vollmer and Diego F. M. Oliveira. They
have been presented as part of a poster contribution (Franziska Glaßmeier, Jürgen Vollmer,
Diego F. M. Oliveira: “A billiard model for wet granular matter: Acceleration, lifetimes, and
transients”) to the workshop “Exploring complex dynamics in high-dimensional chaotic systems:
From weather forecasting to oceanic flows”, which was held at the Max-Planck-Institute for the
Physics of Complex Systems, Dresden, in January 2010.
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