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1 Introduction

1 Introduction

1.1 Motivation

The motivation of the present project to advance investigating of the formation of warm
clouds' and their precipitation by an experimental and a numerical approach. The lack
of comprehension of the microphysical processes in clouds are key uncertainties in weather
and climate prediction [24]. Clouds and precipitation play a key role for the energy budget
of the earth [10, pp. 94-95] and about 30% of global rainfall happens in warm clouds
(primarily in tropical areas)[24]. Therefore comprehension of the formation and precipitation
of those clouds is essential for understanding the consequences of anthropogenic emissions
of greenhouse gases on the earth’s climate.

On the large scale precipitation arises due to an uprising of a humid air mass in the
atmosphere. Due to the pressure drop the air parcel expands and reduces its temperature
by adiabatic cooling [19, p. 261].. The decrease of temperature in real atmosphere can be
assumed to be linearly with height with about 6...7 k% [21, p. 45]. Eventually, rise leads to
condensation of water droplets when temperature drops below the saturation temperature.

The uprising of wet air parcels is enforced for example by a rising terrain as mountains
(orographic rain) or due to the clash of a warm and cold air front [18].

Additionally to the net-rising of the air masses I have to consider turbulences and large-
scale convective cells within the clouds. The convective cell implicate a periodic up- and
downrising of air parcels and thereby an oscillation of temperature on temporal scales of the
order of magnitude of the duration of the formation of the clouds and spatial scales of the
order of the cloud height. The investigation of convective cells within clouds appears as an
essential question for the comprehension of clouds.

The leading question of this thesis is the comprehension of the effect of large-scale convec-
tive cells on the evolution of the droplet sizes. How does an occasional increase of temper-
ature in contrast to the ordinary net-decrease effect the droplet size distributions especially
regarding shrinkage and evaporation of droplets? How do temperature oscillations change
the duration of the droplet growth from nucleation to precipitation? Can I observe phase and
frequency locking of those time durations with the characteristic periodic of such oscillations
and apply the theory of synchronization here?

In the present thesis I will address these questions using a model system constituting a
binary fluid with significant similarities to the system of warm clouds. For better under-

standing I will now give an overview of the basic ideas and concepts used later in this thesis.

'Warm clouds are defined by the absence of ice crystals during the formation and precipitation. The
droplets stay liquid all the time. [10, pp. 94-95]
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Along these lines I go into the demixing in binary fluids, one model for droplet growth and

the theory of synchronization.

1.2 Demixing and episodic precipitation in binary fluids

This section is about the dynamics of phase seperation in binary systems and the episodic
precipitation occurring when using specific temperature ramps. In figure 2 I show own
measurements of episodic precipitation in an exemplary binary fluid using an experimental
approach described in section 3. Demixing of binary systems is an universal concept and I
can apply it to binary fluids and the system of water and air in clouds.

Figure 1 shows the phase diagram of an generic system in the parameter space of temper-
ature T and composition ¢ (mass fraction of one of the substances). The phase diagrams
visualize the qualitative state in equilibrium for a set of parameters. The blue line represents
the coexisting curve or binodal. The region below the curve is called miscibility gap where
a homogenous mixture of the two substances is not stable and it demixes into two different
compositions. In equilibrium the two coexisting phases have the compositions ¢;(7") and
©r(T') of the left and the right branch of the binodal at the current temperature 7. The
single phase region is above the binodal. (see [26])

Within the miscibility gap the green line denotes the spinodal between which the diffusion
coefficent is negative and demixing unfailingly occurs. Small variabilities of composition will
increase between those lines and fast seperation into the two phases occurs. This process is
called spinodal decomposition [4] and is shown in the figure (red).

If the state of the system lies between the binodal and the spinodal it is metastable and
seperates into two phases of the composition ¢; and ¢, through nucleation of droplets (orange
in the figure). Those droplets grow by diffusion of supersaturation and by merging with other
droplets due to interfacial energy. Supersaturation is a measure for the imbalance between
the current composition and the composition in thermodynamic equilibrium (binodal). (see
26])

In figure 1 the red line represents the path of the system in the phase diagram during
episodic precipitation: The decline of temperature is firstly leading to supersaturation which
facilitates demixing and therefore induces nucleation of droplets. Those droplets will grow
through diffusion and after reaching the critical radius r;, respectively growing beyond the
size of Brownian particles they will sediment either upwards or downwards depending on the
density differences of the two phases. During the sedimentation the droplets will grow rapidly
by coalescence and reduce the droplet number density in the system. After sedimentation
which can be denoted as precipitation takes place the composition is on the binodal again

and the episodic process can start again. After some time the lighter phase will stay above
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Figure 1: Sketch of a phase diagram of a generic binary fluid and the path of the composition
of the coexisting phases during a temperature ramp if increasing temperature. We see the binodal
(blue), the spinodal (green), the fast cooling and spinodal decomposition (red). The outward motion
(orange) marks the average composition during the episodic precipitation. (Adapted from [20, p.

19)).

the other phase and I can observe episodic precipitation in both phases. (see [11, p. 86])

The shown sketch of a phase diagram is generic for binary fluids. Phase diagrams of similar
shapes are occurring for example in a binary system of water and air (see figure 3(b)) or in
a model system of methanol and hexane which is studied experimentally in [1].

Figure 2 shows the evolution of a precipitation event in an iBE/water system acquired by
my own. In the beginning there are only a few droplets from the previous event. After 400s
we observe many small, newly nucleated droplets which are growing and merging within the
next 800s. In the last two images we see that the number of droplets is decreasing rapidly
due to coalescence and sedimentation. In the occurring experimental system the droplets

never vanish completely but the nucleation of the next droplets starts before.

1.3 Model system and phase diagram

In this section we will consider the experimental system to model warm clouds. As described
in [13, 20, 22| a system of iso-butoxyethanol (iBE) and water in a small test-tube is convenient
for an experimental approach and shows some similarity to the system of water and air in
real warm clouds.

The typical transition temperatures between the homogenous and heterogeneous state of

the iBE/water system lie in the temperature range of 25 to 50 °C. This range is convenient

o
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Figure 2: The images show the evolution of a precipitation event in the binary fluid iBE/water
over a time duration of 2000s. They are acquired using the method described in section 3.1 and
shown after just inverting them. The used temperature ramp corresponds a constant driving of
£=25% 10'5é beginning with Ty = 26 °C (see section 3.1.4).

for experiments because this is near to room temperature.

Figure 3(a) provides the phase diagram of the considered system. Above the binodal curve
the system seperates into two phases with different compositions. The composition of those
states in equilibrium are given by the two branches corresponding to a specific temperature
in the phase diagram through the lever rule. Below the curve the system is in a homogenous,
single-phase mixture. The critical temperature is about T, = 25.5 °C [13].

In figure 3(b) we see the air-rich branch of the phase diagram of water and air (e.g. in
real clouds) to enable a comparision. After reversing the temperature axis the shapes of
both diagrams are looking in principle the same. The demixing occurs here for states in the
phase diagram which lie below the curve while by the homogenous state is encountered for

the larger temperatures.

This similarity motivates our choice of the model system although we are aware that
a similar phase diagram must not lead to the same dynamics. A significant difference of
the systems is given by the ratio of the densities of the substances. For a temperature of
To = 25 °C we get [7]:

LQiBE ~0.9 and

Owater Owater
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In contrast to the water/iBE system the mass fraction of water in the air-rich branch is much
smaller than the fraction of iBE in the water-rich branch.

To examine the qualitative behaviour of such systems the exact phase diagram or occurring
temperatures are not important but rather the qualitative shape.

Analogously to clouds — where cooling of the systems leads to demixing — the rising
of temperature in the iBE/water system induce phase seperation. We can observe episodic
seperation as described in the previous section, too. Because the iBE-rich phase has a lower
density there will be an iBE-rich phase above a water-rich phase in a test tube which contains
the model system after a transient time. Droplets in the iBE-rich phase in the upper layer
are sedimenting downwards, and droplets in the water-rich phase (bottom layer) are rising.
The rising droplets are transporting iBE from the bottom to the upper layer. The resulting
counterflow mixes water into the sample that enters from the top phase. Altogether this

transport leads to a divergence of the average composition of the two phases [11, p. 86].
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(a) Phase diagram of the model system. (b) Phase diagram of water and air.

Figure 3: (a) Phase diagram of the investigated iBE/water system. The single-phase region lies
below and the biphasic region above the curve. (Adapted from [13]) (b) Air-rich phase of the phase
diagram of a water/air system (e.g. in warm clouds). The single-phase region lies above and the
biphasic region below the curve. The diagram is created by Martin Rohloff using the formula for
the saturated vapor pressure of water in air from [3]. To get the mass fraction the partial pressure
of air has to be considered wherefore we use the approzimation of pair =~ 1 x 10° Pa.

1.4 Model for droplet growth

In this section I describe a model and a differential equation for droplet growth with a
constant and positive external driving and a constant droplet number density. In this sense

I consider a system with an increasing amount of saturation. The radius growth described in
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the differential equation refers to the radius of the characteristic size of the largest droplets
within the system. The approach is adapted from Tobias Lapp [12].

Beginning with nucleated droplets and a supersaturated system the supersaturation is
decreased by diffusion towards the droplets. After a while the droplets reach a critical
radius and start to sediment. This leads to coalescence where the sedimenting droplets
collect smaller droplets due to the indifferent sedimentation velocities. This process entails
rapid growth of the larger droplets and a fast decrease of the number of droplets.

In figure 4(a) I show the growth rate of the characteristic droplets in dependence of their
radius. Both values are normalized using the bottleneck radius r, where minimal growth rate
occurs (See section 2.1.1 on that account). For either small and large droplets the dominant
effects are illustrated.

Droplets whose radius is smaller than the bottleneck radius are mainly growing by diffusion
of supersaturation in their neighborhood. The diffusional volume growth V occurs to be

independent of the droplet radius r and is given by
V =dnr¥ =2 (2)

where £(t) describes the time-dependent increase of the droplet volume fraction within the
observed phase and n the constant droplet number density. This entails that 7 o r—2.
Consequently diffusive growth is a fast process for small radii.

It becomes negligible for radii above the bottleneck radius with respect to the dominating

coalescence. The sedimenting droplets will undergo a velocity
Used = —KT° (3)

due to Stoke’s buoyancy formula whereby k represents a pre-factor [2, p. 234]. The constant

k is given by the relation (2, p. 234]

_2Apg
=

K (4)
where g is the gravitational acceleration, Ap the difference of the mass densities of the two
states and p the corresponding viscosity.?

At that velocity a droplet crosses a volume of dViross = |Useq| 7r?dt = wrimr?dt per unit
time with the cross section 772 of the droplet.

In case it is the first sedimenting through this volume the droplet volume fraction ®(¢) for

2To determine x(T') using equation (4) I need the densities of the two occurring phases and the viscosity.
The temperature dependence of those values is given in the appendix.
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the time ¢ and starting time ¢ is

2, (1) = [ &)t ©)

to

because £(t) denotes the change of droplet volume fraction. Using the collection efficency
¢ which describes the fraction of gathered droplets in the volume which is crossed per unit
time I get

V(t) = 4nrr = exr?nr?®,,(t). (6)

Hence 7 o< r? which is irrelevant for small r, and dominant for r = 7.
Combining those two terms the following equation shows the relation between the growth
rate of the droplet radius [11, p. 113]:
, E(t) 1 ek 4
P(t) = T2+ Py (). (7)

- 47 r? 4

1.5 Theory of synchronization

Convective cells in clouds lead to an oscillation of temperature and thereby to a time-
dependent driving &(¢) which is assumed here to be periodic. The fact that even a constant
driving &(t) = & = const results in episodic precipitation with a frequency wy of section
1.2 leads to my interest in synchronization: 1 consider episodic precipitation with constant
driving £ as a forced nonlinear oscillator with frequency wy, and explore the episodic pre-
cipitation affected by an periodic driving, £(t) = & (1 + Acos (wt)) with amplitude A and
frequency w. As background to this I study I will describe some basic concepts and notations
(15, pp. 44-66].

For an amplitude A = 0 the precipitation has a frequency of wy whereby the difference
in frequency of the external forcing and the oscillator w — wy is called detuning. A weak
additional force with amplitude A < 1 will not change the amplitude of the episodic precipi-
tation. However it may change the phase and the frequency. For a positive amplitude A > 0
we get a phase shift ¢ and a frequency shift to €2 whereby in general €2 # wy.

For w = wq one observes phase locking towards a specific phase @, between the driving
and response. Establishing such a phase locking requires longer time for smaller amplitudes.
In case of small detuning (Jwy — w| < wp) we still observe frequency locking €2 = wy for large
enough amplitudes, and thereby phase locking to a phasep = ¢ + Ap.

This results in regions in the parameter space [A, w| where we observe synchronization.
Those regions are called Arnold tongues (see the 1 : 1 region in figure 4(b)). Larger ampli-

tudes of external forcing results in broader Arnold tongues.
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In addition to frequency locking with 2 = wy we also observe Arnold tongues for arbitrary
ratios of frequencies m§) = nw with m,n € N of figure 4(b). In practice only ratios with small
numbers are accessible for experiment. For example the case m = 2 and n = 1 amount to the
case 2() = w there the episodic precipitation arises every second period of the driving &(t).
In general Arnold tongues with larger m,n are smaller which associates to larger necessary

amplitudes to reach synchronization.

diffusion collection A
Y 21 11 23 12
£
=
—
=
r/ry 1/2 1 3/2 2 W/wy
(a) Growth rate of droplets in dependence of radius. (b) Sketch of Arnold tongues labeled by n : m.

Figure 4: (a) Sketch of the growth rate v of the radius of large droplets in dependence of the
radius and a sketch of the dominant effects. The radius is normalized using the bottleneck radius ry,
where minimal growth occurs (adapted from [12]). (b) Sketch of generic Arnold tongues for driving

frequency wio =" and amplitude A (reproduced from [15]).

mn

1.6 Outline

This thesis is divided into two main parts. First I will present a numerical approach to ana-
lyze the synchronization for a periodic driving with small amplitudes in chapter 2. This work
revisits results of Julian Vogel [22] who found first experimental evidence for synchronization
of episodic precipitation. Beginning with the model described in section 1.4 I will compute
and examine the corresponding Arnold tongues. In the second part I will analyze the effect
of larger amplitudes on the evolution of the droplet size distribution using an experimental
approach and a specific model system given by a binary fluid of iso-butoxyethanol (iBE)
and water. I will describe the experimental setup and the methods of image processing
and droplet detection in chapter 3. This work builds on methods established by Martin
Rohloff and Tobias Lapp (see [20] and [11]). Considering their experiments with positive

constant driving I will investigate the evolution of the size distributions especially for shrink-

10
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ing droplets due to negative driving (chapter 3.2). My main results will be discussed in the

conclusions, chapter 4.

11
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2 Synchronization in episodic precipitation with

time-dependent driving

This chapter treats the impacts of small amplitudes in periodic driving on the growth of
droplets in warm clouds. I will apply the concept and framework established in section
1.4 and 1.5. More specifically I will examine the effect of an external, periodic driving on
the growth time which is the time duration between nucleation and the precipitation while
reaching the maximal radius. Small amplitudes mean in the context of this chapter that
the driving £() of the systems remains positive. This corresponds to monotonic change of

temperature in a real system. In that case the model described in section 1.4 can be applied.

2.1 Numerical analysis of synchronization

I will use a numerical approach to investigate the change of growth time and examine syn-
chronization due to a periodic driving of the system. Rather than specifying our system in
detail I will take the perspective of a generic, nondimensionalized model that will be dervied
in section 2.1.1.

The periodic driving will be an alternation between two constant, positive values &,,,, and
Emin Of driving &(t). In figure 5 I show a sketch of this driving type and introduce variables
characterizing its amplitude and period. For comparision, I also examine sinusoidal driving

£(2).

Jr
>
o~

driving £(t)
mm

time t
Figure 5: Sketch of square-wave driving to illustrate the used variables.

First we address the question under which conditions there is synchronization of the growth
time At with the periodicity At of £(¢) and examine the shape of the occurring Arnold

tongues.

13



2 Synchronization in episodic precipitation with time-dependent driving

2.1.1 Nondimensional model for droplet growth

For convenience of the numerical integration of a generic system I rephrase and nondimen-

sionalize equation (7):

The first term in this equation is proportional to 2.

It is not suitable for numerical
integration due to the singularity at » = 0. Instead of looking at the droplet radii I therefore

consider the volume v o< r® | which leads to a constant first with no singularity:

dr? _36(t) | Berdy(t)
E(t) 4w * 4 &
o, (t) = &(1t) (8)

The first term corresponds to the diffusional growth and the second term to the growth by
P . : s 1/4

coalescence. The diffusion dominates for small radii r < r, = [mnext] /* and coalescence for

larger radii r 2 r;, such that 7 is minimal at the bottleneck radius 7,. Note that the radius

ry fulfills the equation
dr

dr

r=ry

I
e

(9)

For non-dimensionalization I use the bottleneck time and radius of the corresponding
system with A = 0. Because the growth by coalescence is negligible for times ¢ smaller than
the bottleneck time ¢, I integrate the first term of (8) to the bottleneck radius r, for constant
driving £(t) = & (amplitude A = 0) and get

3 TS 3 b 3& 3oty
"o -/0 il 0 4?TT£(| § 47T?'L() ( )

with the occurring droplet number density ny. Using r, = [W'rz,f.‘st]lf * 1 obtain

4 ;
4 h)

1/7

« - (Sre) Y
1/7

= (i ‘f”g) (12)

472 ekng

In terms of the resulting nondimensional coordinates

3 ~6/7 »1/7

n r°n t ~ t n
fii=—, Vi=—F—, T:i=1317 &)= dU) and P, (1) = —
ng Ty ty it/ §o oty

=k

14
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and assuming g—'; = 0, I rephrase equation (8) as

dv - 3ty = a3 9€KED o
s T s 222 @ (P et
ar 5(7) Ao Tg (}(T)l 4 Tply
¥ 1
1
dv ~ ~ 14/3
& = = E(T) + @ (1) V7. (14)

To show that the choice of n = const is justified I introduce k which is defined as the ratio
of the average radius (R) and the critical radius R, that seperate growing from shrinking
droplets in an ensembly of droplets performing competitive growth by diffusion. According

to Clark et al.[5] and Vollmer et al. [23] the ratio is given by

(R) . &

k= =
R, " AroDn’

where the Kelvin length sigma and diffusion coefficient D. Only in the regime of small
values of k there is noticeable evaporation of droplets [23| and thereby a decrease of the

droplet number density n. For any k 2 5 there is no evaporation of droplets [23].

In episodic precipitation studies k takes values of about 10%...10° > 1 in the considered
iBE/water system [23] and k& 2 5 in clouds [23]. For these values there is no noticeable
droplet evaporation, such that n=const. Hence, I expect that the results in this chapter
are not restricted to specific binary systems. Rather they apply to broad classes of binary

systems whose droplet growth obeys the theory outlined in section 1.4.

In case of square-wave £(t) shown in figure 5 the relative amplitude A is defined as

2 = ‘Emaa: ik ‘Sa.v ) (15)

Eav
Because I am analyzing synchronization due to oscillation I look at the ratio of the growth

time At(€,,) for constant driving &,, and the period Ate of £(t). Thus I define the value

_At(w)  w

as control parameter of my measurements (of figure 4(b)). Here At(&,,) ox wy ' characterizes
the frequency of the unpertubated episodic precipitation arising for constant £(¢) = &,,, and
Ate oc w™! characterizes the frequency of the pertubation (of figure 5). For example in case

of p =2 we have a full period of precipitation (growth time) in two periods of £(t).

Former studies show that for £(t) = &,, the period is At(&,,) ~ 2.44t, with the bottleneck
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time defined in section 2.1.1 [12]. Using equation (16) leads to the relation

Ate  Ab(,)  2.44

ATE: ; . _
b bP p

which is used for the aim of the numerical integration.

2.1.2 Growth time of droplets

In this section I describe the methods to calculate the dependence of the growth time for
given p and A from the initial phase in the periodic driving f(T) Starting from equation

(14) I numerically compute the growth time A7 using the described dimensionless variables.

In case of the square-wave the function £(7) is given by

e 1—A, for = €[005]|+2Z
E(r) = : J0E g £ 10041 (18)
1+ A, for 37— €[051]+Z

and for sinusoidally shaped £(¢) I use

~ 2T
T)=1—Asin | — |.
Elr)=1 5111( Tg) (19)

Starting from the initial phase 75 € [0,A7¢] I integrate equation (14) in order to determine
the time 7 where the droplet volume diverges. In order to show that the growth time
AT = 11 — 7 is alway finite I use the differential equation (14) for larger volumes v where

the first term & may be neglected. Seperation of variables gives:

T L~ o0 do
/ gmianT < / (I)m(T)dT - j W’

o o v

2 2
s 1Ty 178199
mny < [ = <o (20)

such that 7 is finite in case of positive minimal driving &, > 0.

The algorithm for the numerical integration starts with setting of the parameters p, A
and KT% € [0,1]. Beginning with v = 0 and 7 = 75 I numerically integrate the volume until
v exceeds the threshold v, to estimate the divergence time 7. The threshold is set to
Umae = 1012 and is large enough that a larger volume of v,,,, has no significant effects on 7.

To integrate equation (14) I determine ®,,(7) by analytically integrating % £(r')dr’. For

16
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the sinusoidal driving (19) this yields,

/T: E(r)dr’ = [T’ — AQA;E cos (QAF—;)] (21)

0

and using if-conditions I implement it for square-wave driving, too.

For the numerical implementation of equation (14) I use the classical fourth-order Runge-
Kutta method [9, p. 138] with a time step of A =107*...1073.

In figure 6(a) we exemplary see the dependence of the volume v from time 7 and the used
square-wave & (7) with the parameters p = 2, A = 0.5 and KTE; = 0.2. Because of the wide
range of volumes occurring I use a logarithmic representation where the slope corresponds
to the relative growth rate:

dlogv « ldv 1 ,. 7

dr Ud‘r{xr"‘rr r (22)

We see the three phases of droplet growth: In the first part the relative growth is large because
of the constant volume growth. This effect is decreasing in the region of the bottleneck. After
some time the coalescence term dominates and leads to a rapid increase in relative growth
until the divergence of radius at the finite time 7.

The volume is increasing slowly in the beginning because the second term in the equation
is still negligible and for larger times the growth rises rapidly. At the first jump of € we
observe an change of the slope of the volume because of a changed prefactor of diffusional
growth in the beginning.

Figure 6(b) shows the dependence of the growth time A7 = 7, — 75 from the intital phase
7p for a square-wave f(’r) and parameters p = 1 and A = 0.5. Varying the initial phase
between 0 and 1 leads to changes of the growth time of about 15 % relative to the value for

3 (1) = 1. The plotted times are normalized by the period of the driving I3 (1) such that they

reflect the phase of the periodicity of the signal. When Z%TLE > 1 the phase increases, and

it decreases otherwise. Consequently we obtain pairs of stable and unstable fixed® points
AT <

whenever B intersects 1.

2.1.3 Synchronization

A convenient graphical way to follow the dynamics are phase maps showing the phase A_Ti;

mod 1 € [0,1] after precipitation in dependence of the initial phase & € [0,1]. A few
TE

examples are shown in figures 7(a) to 7(c).

In figure 7(a) we see the phase map corresponding to the plot in figure 6(b). The common

3Slightly differing phases are attracted by a stable and repelled by unstable fixed points.

17
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10° 2 1.3
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(a) Droplet volume v(7) (b) Growth time in dependence of initial phase

Figure 6: In these figures I use a square-wave &(1) with A = 0.5 and (a) p = 2 and (b) p = 1,
respectively. (a) Droplet volume v and driving £ for initial time 1o = 0.2A7¢. The red, dashed line
shows the divergence time 11. (b) Growth time AT = 71 — 79 in dependence of initial phase Kr?r}
(red). The green line is a reference curve for 1 : 1 locking where At = A7e . The filled circles
denotes the stable and the unfilled circles the unstable fized points and the arrows the direction of
the change of phase.

cob-webbing construction [6] nicely shows the approach of the system to the phase-locked
state where ALTE = 0.21 = const. A sufficient criterion for the stability of a fixed point
in phase maps M : [0,1] — [0,1] is given by the absolute value of the derivative of the
map |M”(ZT%)| < 1[6, p. 25| at a fixed point 7, where M({=) = z=. Applied to the

phase maps in figure 7 this requires a crossing of the identity (green line) with an absolute

slope smaller than one. Hence, the fixed point at = = 0.21, is stable and the other one,
A= = 0.75, is unstable. This leads to synchronization of the periods regarding the fixed
point 7,. Analogous behaviour is observed in the phase map for a sinusoidal shape of the
driving (figure 7(b)). Naturally, the shape of the maps are relatively similar, and hence also

the positions of the fixed points do not differ much.

To analyze the existence of stable fixed points numerically we calculate 7, for Ny uniformly
distributed values of K‘% € [0,1]. Within the implementation we do not use phase maps for
this analysis but the divergence time 7 (7) to avoid the jumps occurring in the maps. Now

we check whether there is a phase 73 so that for the previous computed value the growth

time 1 is above p+ <> and for the subsequent value below for one p € Z. This corresponds
Te QTE

ﬁ; mod 1 is crossing the identity and Aé:; crossing an integer from above. Besides that we

evaluate whether the condition for the slope is fulfilled, too.
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Figure 7: Dependence of divergence time KT?"E mod 1 after i = 1 or 2 cycles starting from KT%
(phase map) for different parameters p and A and different shapes of &(7). For this plot the
integration is done for 250 uniformly distributed phases Ty with A = 10~%. The filled circles denote

stable and open circles unstable fized points. In figure (c) I show the stable period-2-cycle.
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2 Synchronization in episodic precipitation with time-dependent driving

Due to the fact that after precipitation of the droplets a new period is beginning we use
the divergence time 7, as the new initial phase and 75 as new divergence time and so on.
This allows phase-cycles of larger period, e.g. we have a period-2-cycle if 7, = 75 mod Are.

Starting from the computed values of 7 (7y) we calculate 7, for m > 1. Using the computed
values of 7,,,_; we plug in Tg‘—;{' mod 1 in 71(7p) due to periodicity of the driving and calculate
the next value. If the required value is not one of the Ny computed values the linearization
between the computed values are used as an approximation. Because the function 7 (7) is
steady in all relevant cases this is justified.

In figure 7(c) we see the phase map for p = 1.5 and A = 0.5. It has no fixed points, and
thereby no period-1-cycle. To look for a period-2-cycle we plot KTEE mod 1 in dependence of
ET?-E mod 1 (figure 7(d)). This map has two stable fixed points at about ZTEQ = 0.2 and 0.67.
During the corresponding period-2-cycle the phase at the time of precipitation/nucleation is
alternating between those two values. This means that the same phase is achieved in every
second precipitation cycle. Numerically the stability of the fixed points in period-m-cycles

is examined as above after calculating 7,,.

2.2 Examination of the Arnold tongues

In this section I show the Arnold tongues for the synchronization of phases. To examine
those tongues I compute the sections in the parameter space of p and A for which we observe
a period-m-cycle. I also study the phase of the stable fixed point in the 1 : m Arnold tongues
form=1---8.

2.2.1 Calculation of Arnold tongues

For the numerical calculation of the Arnold tongues I analyze the existence of periode-m-
cycles as described in the previous section for a huge set of parameters p and A. To reduce
computation time I integrate 71(7p) for Ny = 100 values with an accuracy of A = 1072, 1
calculate the fixed point in period-1-cycles more precisely to enable better analysis of the
results. To achieve this I calculate 71(7y) for 40 values in the neighborhood (£0.02) of the
calculated stable fixed point with an accuracy of A = 107,

Besides the Arnold tongues for a square-wave driving I also calculate the tongues for
sinusoidal shape to examine the impact of the shape of the periodic function £(7) on the

phase locking.
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2 Synchronization in episodic precipitation with time-dependent driving

2.2.2 Arnold tongues in parameter space

Figure 8 shows the computed Arnold tongues for the parameter space for 100 values of the
amplitude A € [0,0.99] and in all 4000 values of p € [0,2] and p € [7,9]. The different colors
mark Arnold tongues corresponding to period-n-cycles for n € [1,2,3] for sinusoidal (bottom)
and square-wave driving (top). respectively. I show the neighborhood of the first period-1

Arnold tongue, and exemplary of the eighth tongue to visualize the difference.

There are Arnold tongues of period-1 near p-values which are integer and period-n Arnold
tongues near values with p = m/n. The tongues are broadening from smaller to larger
amplitudes beginning with a width of 0 for the amplitude A = 0. After all, in case of
constant driving (A = 0) the growth time is A7(&) = 2.44, and according to equation (17)
this corresponds to p periods of the driving (A7e).

The width of the tongues of higher order is smaller, and likewise they are smaller for
sinusoidal as compared to square-wave driving. The gaps within the period-3 Arnold tongues
are probably numerical artefacts arising when the width of the tongue is smaller than the
distance of the computed points in parameter space.

Figure 9 shows the phasemap as introduced earlier for a few succeding values of p (left)
and A (right) whereby the other value is kept constant. For fixed A = 0.5 the curve in the
phasemap (figure 9(a)) has a similar shape for all p, but is displaced parallel in the vertical
direction with nearly constant distances for constant increments of p. There is occurring an

abrupt increase of the slope at 7p = 0.5( mod A7) for all curves. %;”) < 1 for iﬂ; € [0,0.5]

and > 1 otherwise.

Using equation (17) I know for the growth time in case of constant £(7) = 1 that it fulfills
A1 = pAte. This leads to 7y = 79 + pATe, thus explaining the p-dependent shift of the
curves.

For fixed p = 0.9 and increasing amplitudes the smaller slope is decreasing and the larger
slope is increasing further. In the following I will argue why this behaviour is plausible:

We know that @, (1) = [ &(7)dr due to equation (5). T assume £(7) = 1+ A((7)
whereby specific choices of ((7) lead to square-wave (18) and sinusoidal (19) driving. Using
equation (5) I integrate equation (14) beginning from the bottleneck time and neglecting the

diffusional growth,

= ]Oo v v =3 = /Tl ‘i’m(’r)dr
vp=1 Ti



2 Synchronization in episodic precipitation with time-dependent driving

09 = :
08 = E —
0.7 % ———— ———
g = = = =
205 e z =
s 2 = i =
Goaw 1:! = .
03t iii = =
g 1 S =
0 0.5 1 1.5 7.5 8 8.5 9
p
(a) Arnold tongues for square-wave driving
r - _ -
08 : = =
0.7 == =
<08 = =
o g = - =
8 = 5| =
205 = = 3 S
2 = =
5 0.4 = i1 B
03 = =
02 = :
01" 3 = 5
0 ¥ i ]
0 0.5 1 15 75 8 8.5 9

p

(b) Arnold tongues for sinusoidal driving

Figure 8: Arnold tongues for amplitude A € [0,1] and p € [0,2] U [7,9] for uniformly distributed
values in the parameter space. The dots corresponds to stable period-n-cycles, i.e. to Arnold tongues
of period-n-cycles with n = 1 (red dots), n = 2 (green dots) and n = 3 (blue dots), respectively.
Accordingly the tongues for p € [0,2] corresponds to4:1,4:2=2:1,4:3,1:1...4:7 and those
for p € [7,9] corresponds to 4:29, ...4: 35, respectively.
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(a) Phasemap for constant amplitude A = 0.5. (b) Phasemap for constant p = 0.9.

Figure 9: Phasemap for (a) a fived value of the amplitude A = 0.5 and different values of p and
(b) a fized value of p = 0.9 and different amplitudes.

whereby ®((7) = ®,,—(7). The integration of the volume is independent of time and there-

fore I' is constant. I assume the term (7, — 7) (B(,(Tn) to explain the qualitative behaviour

of 7(7p) in figure 9(b). First we know that for zero amplitude di:f:;‘:') = 1. In addition to
that we know that %’n(:'—”} = £(m). In case of square-wave or sinusoidal driving we therefore

know that for 0 < A < 1 and {2 € [0,0.5] one has 0 < % < 1 and for {2 € [0.5,1] one
- e 70 Te
has 93m) > 1,

dmp

In case of constant driving (A = 0) we know that A7 = const and thereby g—?“— = .

Because I' := 3 in equation (23) and ®o(7) and 7 are positive a larger increase of ®y(7p)

(%T?) > 1) leads to g—;ﬁ < 1 which occurs for o [0,0.5]. For L [0.5,1] we analogously
dr
get 3= > 1.

Starting from that I expect that the phase of the stable fixed points of period-1 Arnold
tongues are always within the interval [0,0.5] because otherwise the absolute value of the
slope would be larger than one. Because for increasing p the curve 7 (7p) is shifted upwards
the phase increases from 0 to 0.5 for increasing p and constant amplitude.

In first approximation I assume that the slope and thereby the range of p with synchro-
nization is increasing linearly with increasing amplitude A. Therefore, I expect the width of
the Arnold tongues increases linearly in dependence of the amplitude.

Secondly we observe in figure 9(b) that there are two phases 79 where 7y is nearly in-
dependent of the phase and all curves have a common intersection point. To explain this
behaviour I assume that there is an intersection point [7y,7;| of the curves for A = 0 and one

arbitrary amplitude 0 < Ay < 1. Inserting equation (5) and £(7) = 1+ A¢(7) in to equation
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2 Synchronization in episodic precipitation with time-dependent driving

(23) for A =0 and A = Ay we conclude that

[Tl /T 1d7'dr = /T] /T 1+ Ag¢(7")dr'dr (24)
Jry Iy n Jn

b <70

and thereby [' [T ((7')d7’dT = 0. Hence, the curves 7i(79) have a common intersection

point independent of the amplitude A.

2.2.3 Width of period-1 Arnold tongues

In this section I will analyze the shape of the period-1 Arnold tongues, by examining the
width and the asymmetry of the tongues on the p-axis in dependence of the amplitude A.
To precisely compute the left and right edges of the tongues we start from an uniformly
distributed scan of the parameter space for A € [0,1] and p € [0,10]. For each of the nine
resulting period-1 Arnold tongue I examine the amplitude dependence of highest and lowest
p that are still in the tongue. Beginning with those values I use nested intervals to approach
the edge of the tongue with an accuracy of Ap = Qia Based on those values more accurate
left I(A,n) and tighe border r(A,n) of the n-th Arnold tongue I also calculate the midpoint
m(An) = w and the width w(A,n) = r(A) —I(A) in dependence of the amplitude.
In figure 10 we see the left and right border of the fourth Arnold tongue (n = 4) in the

p,A-space and the corresponding width and midpoint.

left border midpoint  right border  width

o o
o @

amplitude A
o
-

0.2

0 0.2 0.4 0.6
p-4 or width

Figure 10: Left and right border (blue) of the fourth period-1 Arnold and the the corresponding

middle point (red) and the width (green) of the tongue in dependence of the amplitude A. For those
dependencies I use a linear fit.

Using the fact that the width of the tongues is zero for A = 0 I observe that for the left

and right border a linear fit is a good description of the data. I therefore use Matlab to fit
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2 Synchronization in episodic precipitation with time-dependent driving

[(An) = n+ A and r(A,n) = n + A and compute the corresponding functions w(A,n)
and m(An).

The calculated fit for the first tongue is indicated in figure 10.

I compute the fit parameters of the midpoint and the width for sinusoidal and square-
wave driving for the first nine period-1 Arnold tongues to characterize the broadening of the
tongues. Figure 11 shows the calculated values whereby the error of the fit parameter for

the width are in the range of 107 to 1073,

0.7
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Figure 11: Fit parameters for the first nine period-1 Arnold tonuges for the dependence of the
width and the position of the midpoint from the amplitude. For the n—th tongue I use the relation
m(A,n) = n+mpA for the midpoint and w(A,n) = woA for the width. The blue points show wy(n)
for square-wave driving, the green points for sinusoidal driving, and the red points mo(n) for both
cases. The error bars of the points are of the order of 10~% to 1073, i.e. too small to be visible.

The fit parameter of the midpoint is very small compared to the width of the period-1
Arnold tongues. Hence, there is no relevant asymmetry.

Due to this the expectation that the width is growing linearly in dependence of the am-
plitude is justified. We observe that the prefactor wy in case of square-wave driving is
wp(1) = 0.572 for the first tongue and wy(n > 1) = 0.498 for larger tongue numbers which
corresponds to a nearly constant broadening. For sinusoidal driving we see similar behaviour:
wo(1) = 0.383 and wy(n > 1) = 0.319 for higher tongue numbers. Moreover, the curves ap-
pear to differ by a constant factor of the order of 1.5.

To make plausible that the tongues for the sinusoidal driving are narrower by a con-

stant factor I consider ®o(7) = [7 (1+ A¢(r'))d7’. In case of sinusoidal driving I use
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(') = sin (i”:) and for square-wave driving I use ((7') = —1 for 7_\% [0,0.5] and +1
for 7{%{ [0.5,1] due to the equations (18) and (19).

Integrating [ ¢(7')d7’ I get an amplitude (difference of maximal and minimal value) of
the resulting function of ’5_1:'{ for sinusoidal and % for square-wave driving. Hence, we get a
factor of about ﬁ between the width of the tongues. Comparing both series of that parameter

I gain a factor of about 1.49 for the first tongue and 1.564 £ 0.006 ~ 7 between the width

of square-wave and sinusoidal driving.

2.2.4 Phase of stable fixed points in period-1-cycles

In figure 12 I show the evolution of the phase for the first and the eighth tongue in case of

square-wave driving.
As expected we observe that the phase of the fixed point is increasing from the left to the

right border of the Arnold tongues from 0 to 0.5.
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Figure 12: Phase of the stable fived point (f.p.) in the first and the eighth period-1 Arnold tonuge
as a colormap for a square-wave driving. The phase is always in the interval [0,0.5] and thereby in

the part with smaller driving.

To analyze the behaviour of the phase in the tongues I show the dependence of the phase
from the parameter p for a constant amplitude A = 0.5 in figure 13. For better comparision
I shift the curves of the different tongues such that they are lying on top of each other. To

obtain that I just draw the dependence of the phase from p — n for the n-th tongue.
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2 Synchronization in episodic precipitation with time-dependent driving

We observe that the phase is increasing nearly linearly from 0 to 0.5 whereby the curvature
of the first tongue is larger (the second derivative is positive). This corresponds to a more
frequent appearence of phases near 0.5. This is plausible because in case of square-wave

driving (18) the time 7, — 79 is minimal here due to the larger driving in the beginning.

0.5
9
0.45
8
04 §
7D
5.0.35 " €
-— —
® qal 60
D g3 k)
0
g :
® 025 5<
— i
] ©
Q02 LIRS
© o)
e N o
8.0.15 W E
2
0.1
2
0.05
.
82 015 01 -o0s 0 0.05 0.1 0.15

<

Figure 13: The dependence of the phase of the stable fized point in the first nine period-1 Arnold
tongues. The tongues are shifted so that the integer values of p are lying on top of each other for
comparision and they are color-coded to distinguish them.

Additionally I show the dependence of the phase of the stable fixed point for the first
tongues from the amplitude. In figure 14, I show the resulting phase in dependence of p — n
which is normalized to values from 0 to 1.

Analogously to figure 13 I see that the dependence of the phase from p is nearly linear
and the curvature is larger for the first tongue than for the eighth tongue. Additionally I

observe in figure 14(a) that the curvature increases slightly with growing amplitudes.

2.2.5 Second order Arnold tongues

In order to have a deeper look into Arnold tongues for square-wave driving corresponding

to period-2-cycles I show the dependence of the phase for period-2 Arnold tongues in figure
1
2
and p = % In this case the phase of the smaller fixed point is in the interval [0,0.5] and the

15. I show the dependence of both stable fixed points on p and A for the tongue near p =

phase of the larger fixed point in the range of 0.5 to 1. Moreover, to the period-1 Arnold
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(a) First period-1 Arnold tongue. (b) Eighth period-1 Arnold tongue.

Figure 14: Dependence of the phase of the stable fived point in period-1 Arnold tongues for different
values from a normalized p and the amplitude. For each amplitude and tongue p is stretched such
that the width of the tongue is 1 and the left border corresponds to O and the right border to 1. The
dependencies for different amplitudes are marked with different colors.

tongues above the phase is increasing from the left to the right borders of the period-2 Arnold
tongues.
Moreover, the second tongue is much smaller than the first tongue, and there is a drift to

smaller p for the first tongue.

2.3 Discussion

Remarkably, my numerical results do not fit the experimental observations. At least there
is the similarity that we observe synchronization and phase locking in both the experiments
and the numerical model.

In order to explore how my numerical results compare to experimental observation on
synchronization I compare them now to data obtained by Julian Vogel in his bachelor thesis
[22]. He observed the turbidity of the sample of a iBE/water system subjected to square-
wave driving to examine whether there is synchronization for specific p and A. The turbidity
increases if more droplets are present.

Firstly Julian observed phase locking in a period-1-cycle for p = 1 and several different
amplitudes A up to 12 succeding periods of episodic precipitation. It may be noted that
experimental constraints prevent measure of periods because the sample reaches the maximal
temperature of the setup of about 50 °C. Julian observed a phase of about 0.8 which lies in
the regime of larger driving & for the time of minimal turbidity and thereby the begin of the

next precipitation cycle. There is good case to believe that this phase of minimal turbidity
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Figure 15: dependence of the phases of the two stable fized points in period-2 Arnold tongues. In
the left plot the phase of the smaller fived point of the tongues at p = 1/2 and p = 3/2 are and in

the right plot the larger f.p. is shown. Note that the scale of the p-axis is constant and partially
interrupted.

does not coincide with the phase of the nucleation of the droplets in my model. The turbidity
is not increasing until the droplets approach radii of several hundred nanometer where they
scatter visible light. Because of that I assume that the phase of nucleation is slightly before
the phase of minimal turbidity which does not explain the deviations regarding my numerical

results where the phase of nucleation is always in the regime of smaller driving. This leads
to the question how to explain this deviation.

Secondly Julian observed frequency locking in case of p = 0.89 and A = 0.1, p = 0.81
and A = 0.2 for about 4 to 5 periods. Due to the fact that there are phase slips in those
cases it is probable that the synchronization is not stable here. Additionally he observed
a 1 : 1 synchronization for p = 0.5 and A = 0.5 for about 5 periods and possibly a 2 : 1
synchronization in case of p = 1.5 and A = 0.5 for about 7 periods. The latter case is
doubtful due to some smaller peaks of turbidity between the major peaks. In contrast there
is no period-1-cycle in my numerical results for those four cases which lie far outside of the
period-1 Arnold tongues. I emphasize especially the measurements for p = 0.5 and p = 1.5
because my results would predict period-2-cycles.

Actually I would expect even thinner and not broader Arnold tongues because in the

experimental realization intended square-wave driving is flattened due to the slackness of
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the thermostat: Due to the fact that the computed Arnold tongues for sinusoidal driving are
much thinner I expect that flattened square-wave driving would lead to a width in between
square-wave and sinusoidal driving,.

In equation 14 we see that the model for droplet growth has no dependence on specific
parameters. Therefore the comparision above suggests that the model, which only predicts
the growth of the characteristic large droplets, is not sufficient to describe episodic precipita-
tion with time-dependent driving and thereby the droplet growth in cases of time-dependent
driving.

This result motivates me to experimentally investigate the effect of diffusion, coalescence
and sedimentation on a more fundamental level: I detect single droplets and their radii
to evaluate the droplet size distribution. To avoid non-essential complexity I run simplied

temperature ramps with only a single decrease of driving.
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3 Evolution of droplet size distributions

3 Evolution of droplet size distributions

In this chapter I will present my experimental results of the evolution of droplet size dis-
tribution subjected to a nontrivial step-like driving, £(¢), shown in figure 17(a) especially
for negative driving. I use a model system of iso-butoxyethanol (iBE) and water in a small
test-tube as described in section 1.3.

In section 3.1 I present the experimental and numerical procedure which is used to deter-
mine the evolution of the droplet size distributions for different types of temperature ramps
in section. I discuss the experimental setup, the measurement protocol and sketch the algo-
rithm used to detect droplets in the acquired images. The emphasis of this discussion is on
problems in the experiment and the data analysis.

In the beginning of my project I made a few test measurements to analyze episodic pre-
cipitation by observating the turbidity in the sample with the dark-field setup described in
[22, 12]. After some efforts to develop an experimental setup [11, 13, 20] which allows us to
observe turbidity and single droplets simultaneously Martin Rohloff and I revived the setup
developed by by Martin Rohloff and Tobias Lapp to analyze single droplets. I adapted the
software and computed specific temperature ramps to use them in the experiment. To ana-
lyze the images and detect single droplets I adapted the Matlab scripts developed by Lapp
and Rohloff. I changed the scripts and varied a number of parameters in the algorithm to
optimize the detection of single droplets.

Secondly I will examine episodic precipitation for a temperature ramp corresponding to
a positive, constant driving to reproduce the studies from Martin Rohloff et al. [20]. After
that I will show the characteristic behaviour of the evolution of droplet size distributions
for constant and decreasing temperatures after evolving a size distribution through positive
driving for a specific time. At last I will try to describe a model to collapse those evolutions.

During my thesis I made about 50 measurements corresponding to different times for the

heating and either negative or zero driving after it.

3.1 Experimental approach

3.1.1 General measurement procedure and setup

The main part of the experimental setup where the demixing of the binary fluid and the
nucleation and merging of droplets occurs is a flourescence cell 117.100F-QS with a size of
10 x 10 x 35 mm by Hellma GmbH. After cleaning the cell with destilled water and getting
rid of small water droplets through ventilation with compressed air we pipette a defined

amount of water and iBE into the cell near the composition of the critical point in figure
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3(a). We pour in an overall volume of 2ml with about 30 volume percent of a mixture of
iBE and the flourescent dye nile red. The exact composition is computed by weighing the
cell using a scale with an uncertainty of 0.0001g. Subsequently we add a small stirring bar
(about 6 mm length and 3 mm diameter) for later homogenization the binary fluid, and seal
the cells with teflon tape to ensure that no water is invading.

Nile red absorbs light primarily in a wavelength interval of 500 to 590 nm (green or yellow
light) and emits this light due to flourescence in the interval 580 to 700 nm which corresponds
to orange/red light. The influence of the dye being in solution on the phase diagram depicted
in figure 3(a) is negligible (see [11, 20]). The flourescent dye nile red is dissolved in the iBE
near complete saturation to increase the contrast between the two separated phases in order
to enable the detection of droplets. The dye is preferentially soluble in the iBE-rich phase
and therefore droplets of the iBE-rich phase will be brighter than the water-rich background
if illuminated with an appropriate light source.

The measurement cell is mounted at the edge of a water bath filled with destilled water of a
size of 14 x 34 x 16 cm and a controlled temperature. The cell is attached to a shift mechanism
in a manner that we can control the position in all three directions with micrometer screws.
The large size of the water bath should reduce unintended variations of the temperature on
small time scales and is needed for the cooling device and the thermostat. On that account
we use a Haake FK20 immersion cooler which is running all the time with a constant power
of 300 W. The cooling coil is mounted within the water bath and the cooler itself on a second
table to reduce vibrations which were disturbing the detection of single droplets. Moreover
a Huber C'C-E immersion thermostat is used to control the preset temperature. Precise
temperature measurements near the sample were taken with a PT100 temperature sensor.
The thermostat is provided with a pump to circulate the water, and spatially homogenize the
temperature in the water bath. To avoid vibrations we have to restrict the strength of the
pump to the minimal possible value of 1500 rpm. In order to automatically homogenize the
sample before and in between measurements we place the magnetic stirrer IKAMAG RET
control-vise C' below the bath under the measurement cell. It allows stirring rates from 50
to 1500 rpm.

3.1.2 Optical setup

The droplets in the sample are illuminated through a thin and vertical slit with a bright,
green mercury short arc lamp (Hg-light source) from LOT-Oriel and a power of 100 W at
an angle of 90 deg relative to the observance angle. Figure 16 shows a sketch of the optical
setup and the cell. The lamp has emissions lines of 546, 577 and 579nm.* The light is

see: http://physics.nist.gov/PhysRefData/Handbook/Tables/mercurytable2.htm
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first collected by a collimator lense C. Then a green band-pass filter GF (FF01-562/40-25)
by Semrock allows only the double line 577 and 579 nm to pass which lies in the excitation
band of nile red. After that a spherical lens L1 (f = 200mm) and a cylindrical lens 1.2
(f = 80mm) are focusing the light to attain homogenous illumination of maximum intensity

on the thin slit where we measure a focus width of about 2mm and a height of 4 mm.

measurement cell

L2 L1 GF
- L:—r""'l’ i A—Hl A
) s E|U U ﬂ ®
L3 Hg arc lamp
RF
camera

Figure 16: Sketch of the optical setup. The light from a Hg arc lamp is firstly collected by a
collimator lense (C) and is passing a green-filter (GF). After that the light is focused with a spherical
and a cylindrical lense (L1 and L2) and is reaching the measurement cell within the water bath
through a thin slit. The CCD camera is observing the flourescent light in the sample through a
zoom lense (L3) and a red-filter (RF). The figure is adapted from [11, 13].

The sample is observed using the CCD camera BM-500CL° which is mounted with a
micrometer screw adjustment and has a resolution of 2456 - 2048 pixel. Starting from the
measurement cell the light has to pass a circular aperture with a radius of about 2.8 mm a
zoom lens L3 and a long-pass red filter RF by Semrock (BLP01-594R-25) only which allows
the emitted light of the flourescent dye to pass. Length scales in the images are calibrated by
a caliper: I measure the distance I have to move the measurement cell to change the position
of a specified point in the gathered image about some range, and compute the conversion
factor between real size in the sample and pixels in the images, yielding a resolution of
1.7(1) %

The observation with the camera takes place in the bottom layer of the measurement
cell, i.e. in the water-rich phase where the nucleated droplets are iBE-rich and thereby

show brighter flourescence. The contrast between the droplets and the surrounding phase

Ssee: http://www.jai.com/en/products/bm-500cl
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makes it possible to observe single droplets. The thin slit with a width of about 100 pm®
on a black plate is mounted directly in front of the measurement cell within the water bath.
The position of the measurement cell is adjusted in a way that the thin slit effects in an
illuminated plane in the front of the cell looking from camera direction. If we would observe
a plane which has a larger distance from the wall the emitted flourescence light would have
to cross many droplets and would thereby be scattered such that we cannot reliably trace
individual anymore.

[ use a LabVIEW programm to enable automated measurements where we control the
thermostat, the magnetic stirrer, the light source and the camera. I adapt the program to

run 1y owll temperature ramps.

3.1.3 Data acquisition

The LabVIEW programm performs the following tasks:

e Mix the binary fluid using the stirring bar at 1500 rpm and a temperature of about

23 °C < T, for about 60 min. After this time the fluid is homogenized.

o For about 180 min the temperature is kept constant at least (.2 K above the transition

temperature. Hence, the phases seperate macroscopically and reach equilibrium.

« The light source is switched on, a temperature ramp is run and image acquisition begins
using a constant frame rate of about 500 mHz. During the measurement LabVIEW is
logging the temperature of the thermostat and the PT100 sensor for later control of

the temperature ramp.

It occurs that there is a significant and systematic shift of transition temperatures rel-
atively to the theoretical transition temperatures corresponding to the actual composition
from figure 3(a). I assume that the phase diagram is just constantly shifted by this tem-
perature difference. The causes may be impurites within the used iBE or a systematic shift
in the measurement of the temperature. To adjust the computed temperature ramps I
thereforehave to determine the occurring temperature shift Ty 7 for every sample [13].

The transition temperature is determined through slow heating with maximum stirring
rate and direct observation. I estimate an occurring uncertainty of about 0.1 K. It can be
seen clearly when the droplets are emerging because the binary fluid is getting turbid rapidly.
We have to observe this directly because a more accurate measurement of the turbidity is
not possible with the mounted setup. A determination through the droplet size distribution

is unconvenient because in the beginning the nucleated droplets are far too small to detect.

5T measured the width of the slit using diffraction of laser light.
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3.1.4 Temperature ramps

In our model system we induce phase seperation by changing the temperature of the sample.
In this section I show my approach to determine temperature ramps which generate specific
time-dependent driving £(t) [1, 13, 20].

Let ¢; and ¢, denote the fraction of iso-butoxyethanol in the left and right branch of the
phase diagram respectively. Hence, the half width of miscibility gap in the phase diagram
3(a) is

@O(T) ' @?‘(T) ;Y-”‘I(T)

According to the lever rule in Maxwell’s theory of phase coexistence a temperature ramp

(25)

results in the following change of the droplet volume fraction for the bottom layer:

i 1 de(T) (26)
Using the chain rule d‘gcfi# = %% the slope of the temperature ramp is given by:
dt f—l‘% '

Starting from this differential equation we obtain the ramp 7'(¢) by numerical integration
of (27) using Euler-stepping.

To analyze the effect of large amplitude A > 1 which corresponds with intermittently
negative driving £(¢) on the evolution of droplet size distribution I use simplified temperature
ramps to gain basic understanding of the effects of £(f) < 0 and the thereby occurring
shringing and evaporation of droplets.

First I use temperature ramps with a constant driving £(t) = €4 = 2.5 x 107°1/s for
a long time Aty = 2 x 10*s to enable comparision of the effects of negative and positive
driving,.

Figure 17(a) shows the temperature ramp for a characteristic time-dependent driving &(t).
Beginning with a positive driving of &4 for a time of Af4 the driving jumps to the value
&g < 0 which will lead to shrinking and evaporation of droplets. The first part corresponds
to an increase and the second part to a decrease of temperature because the slope of T'(t)
is proportional to £(¢). The time Atp of the second part is choosen long enough that all
droplets are vanished at the end of the measurement.

In figure 17(b) I show an exemplary comparision between an intended and the obtained
temperature ramp 7T'(t) measured by the PT100. The experimental data nicely follows the

desired temperature evolution. The variations of the measured values of the PT100 are
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Figure 17: (a) Temperature ramp for time-dependent driving. The temperature T(t) (blue) is
increased from Ty to Ty with a driving of £(t) = €4 in the time-interval [0,t4]. In the second part
a non-positive driving £p is used and the temperature is decreasing. (b) Exemplary comparision of
the intended (red) and the obtained temperature ramp (blue) measured by the PT100.

about 0.02 K.

3.1.5 Droplet detection

In this section I consider the algorithm to detect single droplets in the image sequences.
Except for small modifications the algorithm developed by Tobias Lapp and Martin Rohloff
is used as introduced in [13, 11, 20]. I use and adapt their MATLAB scripts to preprocess the
images and to analyze the radius and the position of the single droplets. Because there are
at least 4000 images per measurement the scripts are run on the Cluster of the Max-Planck
Institute for Dynamics and Self-Organization.

Because of the complexity of the algorithm I will only sketch the approach which is de-
scribed in more detail in [13]. Firstly the acquired images are preprocessed to get images
where the droplets are visible more clearly to enable the algorithm to find them. In figure
18(a) we see an exemplary image before and in 18(b) we see this picture after preprocessing.”
Starting from that preprocessed image two methods are used to find potential droplet can-
didates. We observe that far too many droplet candidates are noticed. Therefore we have to

define a measure® of the quality of a candidate based on the image — candidates where this

"In contrast to Lapp et al. who uses ¢ = 100 for the isotropic, low-pass Gaussian filter I use o = 40 to get
rid of significant part of the noise.

SWithin this measure Lapp uses the intensity within a ring of 3 px (pixel) around the droplets. In contrast
to that I use a radius-dependent ring-width of W (r) = 3 px + 0.1r because larger droplets are empirically
detected better herewith.
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(a) Raw image before preprocessing. (b) Image after preprossing with detected droplets.

Figure 18: Ezemplary image from the bottom layer where the droplets are iBE-rich.

matching value exceeds a threshold® are seen as droplets. '

In figure 18(b) I show the detected droplets. I note that I cannot sufficiently detect
droplets with radius smaller than the minimal radius ry;, &~ 8 px and therefore I only consider
detected droplets if they are larger. Above this threshold most of the droplets are detected
and there are only a few false positives. Due to Rohloff we obtain a relative uncertainty of

about 20% for r < 20 um and about 4 ym for larger droplets [20, p. 41].

9In contrast to that Lapp et al. who delete all droplets which do not reach the threshold 0.08 I choose 0.06.

10In many images we observe that there are small droplets at the edge of larger droplets which cannot be
seen in the image although they exceed the threshold. Because this problem is just occurring at the
edge of droplets I delete the small droplets whose centre is inside a larger droplet to reduce that error
uncertainty in droplet size distribution.
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3.2 Evolution of droplet size distributions with time-dependent driving

3.2.1 Calculating droplet size distributions

Important characteristics of droplet size distributions are the droplet volume and the droplet
number density per radius. The droplets are detected in the focus plane of the camera,i.e.
in a clearly defined area A which is given by the image size. To determine the depth of the
detection volume it is not sufficient to take the width of the thin light sheet used for droplet
illumination, which is about 100 gzm which because I am not able to detect all droplets within
this volume: On the one hand the depth of the focus plane is smaller than the width of the
light sheet. On the other hand droplets may be behind one another. Following Tobias Lapp
I hence assume that the probability to detect droplets of a radius r is proportional to that
radius. To compute the depth he uses d = ﬁ[lL p. 101] and therefore I obtain the overall
droplet number and volume density n(t) and v(t) corresponding to an image at the time ¢

by
1 4w}
4r;A 3 3A

n(t) = and v(t) = (28)

4'!'?;.(4
where r; is the radius of the i-th droplet detected in the field of view of the sample area A.

These droplet number densities should be considered as a lower estimate of the real values.
Lapp estimated, d = ﬁ, is an upper limit of the depth, and because I do not detect droplets
smaller than r.,;, and there are only a few false positives.

To investigate the time evolution of droplet size distributions I use a representation of a
two-dimensional histogram. I use linear time bins with a duration of 100 s which corresponds
to 50 images and 20 logarithmic radius bins from 8 px & 5 um to 80 px. Smaller droplets are
not detected accurately, and only rarely there are larger droplets occurring. To compute the

droplet number density for radius bin [Ry,, Ry,] for an image I use

1 1
wBel) = 2 AR R

”5'-1 <ri<Rp,

(29)

After that I average the number densities for all acquired images in one time bin which is
necessary to reduce the noise in the signal. Effects on n,(r,t) appearing on time scale s
smaller than 100s will not be resolved.

3.2.2 Characteristic velocities in the model system

In the model described in section 1.4 the droplets with radius larger than the bottleneck

radius 7, experience sedimentation and growth by coalescence. Lapp estimates that r;, for
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the water/iBE-system will be about 10 gm, and he measured the collision efficiency to be
1 to 3% for smaller radii[ll, p. 90]. Using equation (3) I calculate the sedimentation
velocites for temperatures of about 27 °C which are typical in my temperatures ramps: Small
droplets with 7 & 1 um have a sedimentation velocity of about usq =~ 0.07 £*, droplets with
r ~ 10 um of about ugeq ~ 75", and for r ~ 30 um one finals ugq ~ 60 £=. Characteristic
droplet sizes in my measurements lies in the regime of 5 um to 20-40 pm.

Because of temperature gradients there is a convective cell in the bottom layer of the test
tube which features turnover velocities of the flow field of about 5 to 20 #* [20, p. 50].
The flow runs downward in the window for image sequences observing the bottom layer:
Hence, I find that larger droplets move upwards due to sedimentation while small droplets
are advected downwards. A comparision of the sedimentation velocities and the velocities
of the flow field suggests that both velocities are of the same order of magnitude.

To estimate the time scale of a complete demixing of the system I use the typical flow field
velocities of about 10 ”"ﬂ and a length scale of the test tube of about 1 cm. This leads to time
scale of 1000s which is in the order of magnitude of the precipitation periods in episodic
precipitation. Consequently, nucleated droplets are transported throughout the complete
sample during one precipitation cycle.

To examine whether small scale turbulences lead to relevant effects in the model system [
estimate the Reynolds-Number using
pvd _ pusa”  pET®
R

Re = (30)
where d denotes a characteristic length scale of a moving object with velocity v. n is the
viscosity and p the density of the surrounding fluid. For temperatures of about 27 °C I
obtain Re ~ 2 x 1072 and for 40 °C I get Re =~ 8 x 1073. Both values are several orders of
magnitudes smaller than critical Reynolds number which are in the order of the magnitudes
of 1000. Therefore we do not have to consider turbulences on small spatial scales — which I

additionally do not see in the image sequences — in the model.

3.2.3 Evolution for constant driving

In figure 19 I show experimental results for a temperature ramp corresponding to a constant
driving £(t) = 2.5 x 10751 for a time duration of 2 x 10%s. The sample volume is about
3ml the height of the meniscus is at about 1.5 cm.

In figure 19(a) we see the overall droplet volume fraction in the system. The density is zero
in the beginning because measurements started in a phase-sperated equilibrium state where

there are no droplets. Subsequently it features repeated minima and maxima, of about 1.5 %
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Figure 19: Measurement for a constant driving &(t) = 2.5 x 10_5é for about 20000s. (a) The
overall droplet volume density in dependence of the time. (b) I show the mean radii (r) and (r3)/3.
(c-f) I show the droplet volume density per radius and time bins: (c¢) The image show the two-
dimensional histogram for all 20 radius and 200 time bins. (d-f) The images show the evolution
of droplet volume distribution during single precipitation events whereby I average over four time
bins (400s) for each curve and over three of the 20 radius bins to smooth the curves. Between the
color-coded lines is a constant time of 400s. The images corresponds the first, third and fourth
precipitation event.
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near the maxima. There are seven peaks within the first 1.5 x 10*s with decreasing period.
After this time the volume density has no clear peaks anymore. I attribute the oscillations
to episodic precipitation with a period of about 2000 s.

In figure 19(b) I show the mean radii (r) and (r*)}/3. We observe seven maxima in that
time, too, and see that the mean radius (r) is fluctuating between 10 ym and 17 ym except
for the beginning where are only small droplets. At this point it is important to note that
we detect only droplets larger than 7y, &~ 5pum. Therefore the mean radius (r) of the
droplets must be larger than r.;,, and it overestimate (r). Because of this I also show
(r®)1/3 because the neglection of smaller droplets has a smaller effect on this value. It is
more robust regarding the minimal radius. This value lies during except for the beginning
in the interval from about 12 um to 20 pum.

We see that (r®)!/? > (r) because larger droplets have more weight in the first term. In
the course of the precipitation events both values show a similar behaviour. The mean radii
are nearly constant for later times which is consistent with the observation that we cannot
distinguish possible precipitation events in figure 19(a), too.

The mean radius is characteristically increasing slightly after the increase of the overall
volume fraction. This is plausible due to collection: Large droplets are collecting smaller
droplets whereby the volume density is constant but the number of droplets is decreasing
thereby the mean volume and (1*)1/3 is increasing.

In figure 19(c) I show a two-dimensional histogram of the droplet volume density per
radius for the complete duration and 20 radius bins. We observe the precipitation events,
too and see that the regimes of larger droplet volume density go off slightly skewed to larger
radii. This corresponds to the increase of the characteristic radii during the precipitation
events.

In figure 19(d) to 19(f) I show the evolution of the droplet volume density per radius for
single precipitation events for deeper insights:

Figure 19(d) shows the beginning of the measurement and the first oscillation: At early
times there are no droplets and after 400 s we observe that there is a small peak in the regime
of 10 um (dark blue). During the following 800s the droplet volume density is increasing
rapidly and the maxima of the distribution is shifting to a radius of about 20 gm (light blue).
After that we see an reduction of the droplet volume density and a further shifting of the
maximum of the distribution to about 30 ym (yellow). Following further reduction of the
density with constant maxima we observe that the number of smaller droplets is beginning
to increase rapidly and the distribution is shifting towards smaller radii.

To explain this behaviour I have a look on the diffusional growth in equation (2). Using

typical droplet number densities of about 0.5 x 107¢ um=3 and £(¢) = 2.5 x 10~° % I compute
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Va5 %‘3 which corresponds to V' 2 5000 um? after 1000s, corresponding to droplet radii
of about 10 um. And after another 1500s they grew to 14 um. Subsequently, diffusional
growth can no langer account for the observed large droplet volume.

In the beginning we observe that droplets are growing by diffusion and thereby reach radii
of about 10 um but to explain radii of 25 ym in further evolution about 10 droplets with a
radius of about 15 gm have to merge due to collection whereby diffusion would not be able
to explain this behaviour.

[ attribute the observed growth by collection to collection of smaller droplets which are
not detected because there is no noticeable reduction of droplet volume density per radius
for the observed droplets.

In the further evolution large droplets sediment and rapidly are increasing in size due to
collection. Eventually, all visible droplets are sedimented, and a new cycle of nucleation, sub-
sequent growth by diffusion and collection, and sedimentation starts. Eventually the volume
density is therefore decreasing while the size of characteristic large droplets is increasing.

When the next cycle is beginning, small droplets have to come into being by the demixing
in the sample. The turnover time scale of the convection is on the order of magnitude of
about 1000 to 1500s, such that the flow disperses the small droplets homogenously in the
sample even when they come forth by heterogeneous nucleation or compley process at the
interface during sedimentation.

In figure 19(e) we see a similar evolution for another precipitation event. It may be
noted that there is a bimodal distribution in the beginning. At time ¢ = 7600s it occurs
that large droplets of the previous event are not sedimented yet while small droplets of the
next precipitation already reach a relevant volume density. This means that the events are
overlapping in time and therefore we never see that all droplets are vanishing again.

In figure 19(f) I show the next cycle shows a similar evolution. Our observation of single

precipitation events is robust, and not occurring by luck one time.

3.2.4 Evolution for non-positive driving

In the following I will study the evolution of droplet size distributions in case that there is
no positive driving but either a constant temperature and thereby zero driving or negative
driving. The experiments are performed using a starting temperature of 26.9 °C (The mea-
sured temperature shift of Ty, = 0.9 °C is included.) and using an overall volume of about
2ml which corresponds to a height of the meniscus of about 1 cm.

In the figures 20 I show the comparision of two similar measurements whereby I use positive
driving &4 = 2.5 X 10_5% for t4 = 2000s in both cases and after that either £ = O%

(example a)or {5 = —1 x 1071 (example b). I show histograms of the droplet volume
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density (top), the evolution of the mean radii (mean) and the evolution of the droplet
number density for ¢ > t4 (bottom).!!

In the first 2000 s the driving is still constant, and as before the mean radius is increasing
to a value of about (r) ~ 14 ym. At a time of ¢ = 1000 there is a rapid increase of droplet
volume density which peaks for radii of about 12 to 14 ym. The radius of the line of constant
volume density (equidensity-line) per radius (yvellow) for the characteristic largest droplets
is increasing linearly whereby extrapolating this line leads to a value of 5 um for time Os.
(Compare this behaviour to 19(d).).

In the succeding 2000 s that equidensity-line is decreasing whereby the mean radius stays
constant at about (r) &~ 14 ym. In example (b) with negative driving this decrease is nearly
linear and much stronger than in example (a).

In example (a) the mean radius is decreasing to about 9 ym within the next 1000s and
at that time the droplet number density deceed 1% of the peak value and after a few hun-
dreds seconds all droplets are vanished. The fact that the driving is negative leads to an
evaporations of droplets which explains that behaviour besides the occurring sedimentation.

In example (b) the mean radius is decreasing rapidly to about 12 ym at the time 4000s
and is fluctuating between 11 and 13 gm within the remaining time. The overall droplet
number density is fluctuating near the value 8% of the maximal value during this time. A
characteristic, fluctuating behaviour can be seen in the histogram 20(a), too.

The period of that variations is in the order of magnitude of about 1000s which corre-
sponds to the order of magnitude of the period of the convective cell in the bottom layer
of the test tube. Because it is plausible that there is a non-constant droplet distribution
within the sample I form the hypothesis that regions of characteristic droplet distribution
are episodically reaching the observed area due to the convective flow in the cell. Addi-
tionally I observe that the period is increasing (see 20(c¢)) which may occur due to change
of the the convection velocity: I expect the velocity to shrink due to a decreasing of the
temperature gradients in the system because the temperature variations are dying out due
to the constant temperature in the water bath and the flow is slowing down due to viscosity.
Actually the amplitude of this effect should decrease due to mixing of the particles within

the flow but in figure 20(c) the amplitude is nearly constant over time. One possible expla-

11t may be noted that the droplet density in case of negative driving (é5 < 0) is consequently larger by
a factor of about 3 although the initial part of the temperature ramp is the same. The peak of the
number density is in the order of 3 x 107¢ ym~2 and in the other case in the order of 0.8 x 10~¢ yym—2
regardless of similar shape for ¢+ < t4. Direct comparision of the acquired raw images show that for
&p < 0 the illumination is much stronger whereby the droplet size distribution is looking quite similar.
I therefore assume that the larger illuminuation leads to an increase of the probability that droplets are
illuminated sufficiently strong to be detected. Because the behaviour is similar in both cases I assume
that the change of detection probability is independent of the radius. The change in the distribution is
limited to an adaption of the normalization constant — its shape is not affected.
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Figure 20: In the figures I compare example (a) in the left figures (a,c.e) and example (b) in the
right figures (b,d,f). (a-b) I show two-dimensional histograms of the droplet volume density. (c-d) I
show the mean radii (r) and (r3)}/3. (e-f) I show the time evolution of the droplet number density
per radius bin for the time t > ta. The values are averaged over 300s.
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nation might be that the sedimentation velocity in fluids is increasing for increasing number
densities of particles[8, p. 296]. Because the flow field is near-wall directed downwards and
the sedimentation upwards this leads to a focusing of the number densities which may ex-
plain the observed effect that there are regularly bunches of droplets with non-decreasing
amplitude.'?

The described behaviour is robust and similarly occurring in about 70 to 80% of the 20
measurements I have done for £ = 0.

Indeed I expect that the droplets should vanish after some time due to sedimentation.
However, apparently this cannot be seen in the evolution because the measurement ends too
early after 8000 s.

I observe in the evolution of the droplet number density for ¢ > t4 in figure 20(e) and
20(f) are remarkable also for another reason: Immeadiately of the jump of &, for about
2000s, the number densities are decreasing with substantially constant shape for all radii.
In example (a) the droplets are vanishing after that and in example (b) the distribution is

staying substantially constant for ¢ > 5700s after averaging the distributions for 300s.

3.2.5 Collapse of the droplet size distribution

To analyze the evolution of the droplet number density per radius n,(r,t) for larger droplets
(r > ;) in case of no or small negative driving I assume again that the large droplets sediment
towards the meniscus and are thereby growing by collection of smaller droplets. I assume
growth by collection is dominant that there is no evaporation in the system such that for
both the large droplets and the collected droplets one may safely disregard are shrinking due
to diffusion. Furthermore I assume that the considered large droplets will not be collected
by even larger droplets.

I assume that the volume growth by collection is proportional to the volume crossed per
unit time.

= S (31)
when the constant proportional factor, ¢y > 0, accounts for the volume fraction of small
particles that probably will be collected.

Further I assume that the decrease of droplet number density due to sedimentation is
proportional to the ratio of sedimentation velocity |usq| = #7? and a characteristic length
scale L which should be of the order of the sample height. I define ny,(r,t) as the droplet
number density which derives from this theoretical model whereby n,.(r,t) is the droplet

number density per radius in the real system. Neglecting the diffusion term I hence obtain

12This effect is occurring in a glass of Guinness, too where small bubbles form waves with a characteristic
wave length(8, p. 296].
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the convection-diffusion equation:
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kr2 ot ) ~ 4 01 (54
and substituting with p := ﬁ due to o >0and L > 01 get
am(pt) K (p*Leo\’ [om(p.t)

Assuming that I can separate m(p,t) = m,(p) m(t) I use the ansatz m(pt) = =™ exp [f(p) + at]

with the decay constant a and get

Kk (Lpop 6f(p)
a__E( 4 )[ap ] (30)

Hence, I obtain

i aL( 4 Y
Flo) = — 14— (L%p”
2
S flp) = *p+%(;;0) (37

and therefore

; Lf{ a Y
m(p,t) nn? % exp [—p 42~ (—) + at]

kp \ Lo
. 4 4a 1
=My = L 1;”0 exp l—_—?" + —a'_— + at] : (38)
r wol ok

By inspection one readily verifies that this function solves equation (33).

The overall droplet number density of the detected droplets is given by n(t) = [;° nygdr.
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3 Evolution of droplet size distributions

Using equation (38) I obtain

dn(t) d frmax
= d
dt dt Tmin R
Tmax anth
= d
/ ot <
Finax L 4 da 1
= e‘”‘] m02 exp [—- T+ ¢ —]dr
Tmin KT Lo L SDD KT
— Ceat
=n(t) = mnee*". (39)
where ng = n(t = 0) and ¢ = any.
Therefore I get
T Men e e 4r 4a 1
n(t) "I T oL T ot
% Ny 4 4a 1
1 i e | e 2 40
Og(n(t) BT | T oL T ponr (40)

Plotting log (’2—2(})’41) as function of r should therefore yield a collapse of all distributions
for all times. After all the right hand side of equation (40) is independent of the time and
depends only on r and the constants ¢y, a and L.

In figure 21 I show the resulting plot of example (a) and (b).

2 n(r.t)/ n(t)
>

r n(r.t)/ n(t)
>

107"t 107}
_2‘ —2|.
10 0 10 20 30 40 10 0 10 20 30 40
radius [um) radius [um]
(a) Collapse in example (a). (b) Collapse in example (b).

Figure 21: Collapse of the droplet size distribution for the first 2000s after the of the driving for
example (a) and (b). I also show a linear fit for larger radii described in section 3.2.6.

I see that in principle the curves a collapsing at least for parts of the time in those two

expamples. In it seems sufficient for the time of 2000 s and for all radii smaller than 30 pm.
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3 Evolution of droplet size distributions

In the collapse seems to be sufficient at least for a time of 1200s and for all radii. This
collapse time is in the order of magnitude of the time of single precipitation events which as
about 2000s (see section 3.2.3).

3.2.6 Scales of the system

Equation (40) has three free parameters which will be determined as follows:

To obtain the decay constant a I plot the overall droplet number density log [n(t)] in

dependence of the time ¢ and compute the slope m,. Due to equation (39) we know

= My (41)

In figure 22 I show the progression of n(t) for 2000s after ¢4 in the two exemplary mea-
surements (a) and (b) where n(¢) is calculated for the corresponding time bins. Equation
(39) provides a good description of n(t) for a time of an order of magnitude of 1000 to
2000s in that example. The decay constant yields about —1.0 x lD_Si in example (a) and
—1.3 x 1073 1 in example (b).

droplet number density [|.1m3]
droplet number density [um®]

-8 -7 .
1074 - : ‘ - 1075 ' ‘ ’ ;
0 2000 2500 /3000 3500 4000 8 2000 2500 3000 3500 4000
time [s] time [s]
(a) n(t) in example (a). (b) n(t) in example (b).

Figure 22: The fit fo the exponential decay of the overall droplet number density fit for a time
interval of 2000s after the jump of the driving in example (a) and (b).

To calculate the length scale L, I start from equation (40) and calculate the radius r. at

48



3 Evolution of droplet size distributions

the maximum of the right side via

yielding
Ko kT2
fim = a  mn (43)

In the collapsed graphes 21 I examine the value r. where the normalized distribution

ny(r,t) 72
n(t)

which I cannot explain using the equation. Because the derivation of L is considering the

has the maximal value. Firstly I observe that there is a local minima for about 18 pm

maximum of *—i‘fg which has no local minima there I estimate the maxima by extrapolating
the two branches of the remaing, collapsed data. I obtain r. = 17(3) pm in example (a)
re = 16(3) um in example (b) and thereby length scales L = 1.2(4) cm (example a) and
L = 0.8(3) cm. The uncertainty of r. is dominating the error in L such that the error of s
and m, need not be addressed here.

Those values are in the order of magnitude of the height of the bottom layer in the sample
which seems justified.

To obtain the collection constant g I use the asymptotic slope for large radii in equation
(40),

4
Tn.?->?-1 e _
wo L
g, S (44)
P = Mysry L

To get a valid estimate of the slope I have to restrict the regime of the used time and
radius bins. To this end I check for how long the curves agree with the asymptotic regime.
In example (a) I use t4 = 2000s < t < 4000s and 20 ym < r < 40 um and in example
(b) ta <t < 3500s and 20 yum < r < 32pum. This yields to collection constants of ¢y =
(7£3)-10~* in example (a) and (20+7)-10~* in example (b) whereby the error is estimated
by propagating the error of L.

This values seem to be in a justified order of magnitude because the overall droplet volume
density lies in the regime of 1 to 3% in the maximum and we expect that only a fraction of
the droplets will be collected by larger droplets.

In figure 3.2.5 with negative driving (example b) I see that the branch of the collapsed
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3 Evolution of droplet size distributions

graph for larger radii is shifting towards smaller radii. Because the shrinking of droplets
with a radius in the regime of 20 to 40 um due to the negative driving of £ = —1 x 107 %
is not dominant the shifting may be explained due to a reduction of ¢y which may occur
through diffusion of the smaller droplets which are collected and by the collection of those

droplets during the sedimentation.
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4 Conclusion

4 Conclusion

4.1 Summary

In section 2 I observe synchronization of episodic precipitation in a binary fluid and square-
wave external driving if we numerically integrate the model described in section 1.4. I
show that this model leads to Arnold tongues for period-n-cycles for n € [1,2,3] where
the with of the period-1 Arnold tongues increases linearly for increasing amplitude of the
external driving. Besides smaller differences the phase of the stable fixed point within the
computed period-1 Arnold tongues shows an universal behaviour: The phase is increasing
nearly linearly from 0 at the left border to 0.5 at the right border of the tongues independently
of the amplitude and the tongue. Regarding the size of the synchronization regime and the
phase of the stable fixed points my results are in contrast to experimental work done by
Julian Vogel in [22] who observed synchronization even for parameters which are far beyond
my Arnold tongues and phases which are systematically shifted.

In section 3 I reproduced episodic precipitation experimentally and examined the char-
acteristic behaviour of the evolution of droplet size distribution for positive and constant
driving as described by Martin Rohloff in [20].

Subsequently, I examined the evolution of droplet size distribution for negative and zero
driving and used a model to collapse the size distributions successfully on each other for
a time scale of the order of magnitude of single precipitation events. This model neglects
diffusion and assumes that the considered large droplets are sedimenting length scale and
thereby are collecting droplets with a constant volume density of collected droplets. I hereby
get another parameter which describes the decay of the overall droplet number density which
[ can fit using the data but its meaning and dependencies from other parameters that so far
have been completely unknown.

Using two exemplary measurements I obtain sedimentation length scales of about 1cm,
which corresponds to the height of the considered layer of my test tube, and I get values for
the volume density of collected droplets of the order of magnitude of 10~* which is about

one order smaller than the measured ovall volume density.

4.2 Outlook

The discrepancy in my numerical results on synchronization and Julian VOogel’s experi-
mental results calls for further studing to facilitate deeper insights into the droplet growth
and episodic precipitation in binary fluids. In particular I suggest to examine the Arnold

tongues occurring in the experimental model system which would turn out to be effortful



4 Conclusion

due to the necessary scanning of the parameter space. In particular it would be of interest
to check whether Julian’s observations of frequency locking even in cases which lie far out-
side the computed Arnold tongues are reproducable and whether one can observe Arnold
tongues of higher order at all. Within that scope it would be worthwile to study the phase
of nucleation in the period-1 Arnold tongues to examine whether we observe a characteristic
universal behaviour comparable to my numerical results. In particular one could use the
experimental method used in the second part of the present thesis to examine whether the
phase of nucleation is systematically in the regime of larger driving.

For further analysis of the evolution of the droplet size distribution I want to under-
stand the considered decay constant and whether and how it depends on the sedimentation
velocities. To address this problem we need measurements different temperatures and corre-
spondingly different velocities. In addition it would be interesting to study the behaviour of
the volume density of the collected droplets in dependence of the sedimentation time and the
rate of diffusion. I have done about 50 further measurements which I could use to analyze
whether the observed effects and values for the length scale and volume density of collected
droplets is robust and to investigate the parameters.

In contrast to the model described in section 2 this model depends on the size distribution
and not only on a characteristic droplet size. This motivates me to further investigation of

that new approach depending on the distribution and several parameters.
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A Appendix

Material Constants of Iso-Butoxyethanol and Water

This chapter is a copy from the Bachelor thesis of Julian Vogel [22] where he reproduced the
data for material constants. Those data have been collected and measured by T. Lapp et.
al. [12].

The index i € {IBE,W} will be used to refer to material properties of IBE and water,
respectively, and in accordance with the phase diagram 3(a) the concentration are always
given in terms of ¢ = ¢ipg.

Density (based on [7])

The densities of the phases are determined by the composition, thermal expansion and molar
excess volume,

r (,bm (1 _ (.'I)m) ( Qﬁm (1 _ Gz)m)) l_l
o™, ) = + + + Ve . 45
e T) PIBE pw Migg My . 48)

where p; = p;(T) are the (temperature-dependent) densities of the pure substances, M; their
molar masses, and Vi = V#(¢") is the molar excess volume.

The molar masses, M; are 18.01528 g/mol for water[16] and 118.17416 g/mol for IBE[17],
respectively.

The temperature dependence of the density, p;(T), of the pure substances is linearly
approximated around Ty = 25°C,

2i(TY = pil(Ty) 05 (T —Tp) (46)

with fit parameters for p; and «; given in table 1.

pi(Ty) [gem™] | a; [gem™ KU
water 0.997043 0.2571 x 10—2
IBE 0.886255 0.968 x 10~

Table 1: Densities and thermal expansion coefficients for water and IBE [according to 7]



Moreover, the molar excess volume is fitted like [7]:

65”' 1 —on" ~ ~
@) = g (b A ) 47)

with ¢ = 1-—2¢"

and G = 00975,
A, = -3.079 cm®/mol,
A; = 1.801 cm®/mol,
Az = 0.839 cm®/mol.

A slight temperature dependence of these fit parameters was reported by [7]. However, it is
so small that we need not take it into account here.

To get the dependence of the density difference on the reduced temperature the dependence
o(0) (coexistance curve) has to be inserted into equation 45.

Viscosity (own measurements augmented by data of [25] and [14])

We first provide the data of the pure phases, and then obtain the viscosity of the mixture
by appropriate interpolation.

The viscosity of IBE was measured with an Ubbelohde viscosimeter type 537 10/I made
by Schott. The temperature dependence of the viscosity 7 is fitted by

Bj-(Tg—T)—C;-(Ty—T)?

n:(T) = A; x 10 Dy (48)

with Ty = 20° C and coefficients given in table 2. The values for water are taken from [25].

A lkgm s | B C [(°C)|D P (]
water | 1.002 x 1072 1.3272 | 0.001053 105
IBE | 3.36 x 1073 1.730 | 0.001 108

Table 2: Fit coefficients for the viscosity of water and IBE, defined by equation (48), the data is
taken from [25]

To interpolate the viscosities for a mixed phase of given mass fraction ¢™ we use the
composition-dependent viscosities at 25°C for a homogeneous mixture in the single-phase
regime, as provided by [14]. The data is fitted with a fifth order polynomial

n(¢™, T = 25°C) = —40.66 (¢™)° 4 103.44 (¢™)* — 100.32 (¢™)?
+39.35 (¢™)* + 0.17 ¢™ + 0.91. (49)

Assuming that the coefficients of interpolation are not changing substantially in the temper-
ature range of our measurements, a rescaled viscosity 77(¢™) is defined. It only depends on



the composition ¢™

(@™ T) = (™) - mee(T) + [1 — 7(¢™)] - nw(T) - (50)

To check the strong assumption entering this interpolation, we also measured the viscosity of
the two phases at 7" = 40°C. For both phases the prediction of (50) was accurate to within
2%. This is sufficient for our means.
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