Supporting Information for

Quantitative Understanding of Energy Transfer between Fluorescent Proteins Connected via Flexible Peptide Linkers

Toon H. Evers, Elisabeth M.W.M. van Dongen, Alex C. Faesen, E.W. Meijer and Maarten Merkx

Laboratory of Macromolecular and Organic Chemistry, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Figure S1. Vector map of pET28-CLY9, indicating the open reading frame of CLY9 and various other features.

		Me	etGlySerSer <u>HisH</u>	<u>isHisHisHisHi</u>
TCTAGAAATAAT	TTTGTTTAACTTTAAGA	AGGAGATATACTA	GGGCAGCAGC CATC	ATCATCATCATCA
Xba I		sta	art	
sSerSerGlyLe	uValProArqGlySerH	lisMetValSerLy:	GlyGluGluLeuPh	eThrGlyValVal
CAGCAGCGGCCT	GGTGCCGCGCGGCAGCC	ATATGGTGAGCAA	GGCGAGGAGCTGTT	CACCGGGGTGGTG
ProIleLeuVal	GluLeuAspGlvAspVa	lAsnGlvHisLvs	PheSerValSerGlv	GluGlvGluGlvA
CCCATCCTGGTC	GAGCTGGACGGCGACGT	AAACGGCCACAAG	TCAGCGTGTCCGGC	GAGGGCGAGGGCG
spAlaThrTyrG	lyLysLeuThrLeuLys	PheIleCysThrT	nrGlyLysLeuProV	alProTrpProTh
ATGCCACCTACG	GCAAGCTGACCCTGAAG	TTCATCTGCACCA	CCGGCAAGCTGCCCG	TGCCCTGGCCCAC
rLeuValThrTh	rLeuThrTrpGlyValG	lnCysPheSerArd	TyrProAspHisMe	tLysGlnHisAsp
CCTCGTGACCAC	CCTGACCTGGGGGCGTGC	CAGTGCTTCAGCCG	CTACCCCGACCACAT	GAAGCAGCACGAC
PhePheLysSer	AlaMetProGluGlvTv	rValGlnGluArq	ChrllePhePheLvs	AspAspGlyAsnT
TTCTTCAAGTCC	GCCATGCCCGAAGGCTA	CGTCCAGGAGCGC	ACCATCTTCTTCAAG	GACGACGGCAACT
yrLysThrArqA	laGluValLysPheGlu	GlyAspThrLeuVa	alAsnArgIleGluL	euLysGlyIleAs
ACAAGACCCGCG	CCGAGGTGAAGTTCGAG	GGCGACACCCTGG	'GAACCGCATCGAGC'	TGAAGGGCATCGA
pPheLysGluAs [.]	pGlyAsnIleLeuGlyH	lisLysLeuGluTy:	AsnTyrIleSerHi	sAsnValTyrIle
CTTCAAGGAGGA	CGGCAACATCCTGGGGC	CACAAGCTGGAGTA	CAACTACATCAGCCA	CAACGTCTATATC
ThrAlaAspLys	GlnLysAsnGlyIleLy	sAlaAsnPheLys	[leArgHisAsnIle	GluAspGlySerV
ACCGCCGACAAG	CAGAAGAACGGCATCAA	GGCCAACTTCAAG	ATCCGCCACAACATC	GAGGACGGCAGCG
alGlnLeuAlaA	spHisTyrGlnGlnAsr	ThrProIleGlyA	spGlyProValLeuL	euProAspAsnHi
TGCAGCTCGCCG.	ACCACTACCAGCAGAAC	CACCCCCATCGGCG	ACGGCCCCGTGCTGC'	TGCCCGACAACCA
sTyrLeuSerTh	rGlnSerAlaLeuSerI	ysAspProAsnGl	lLysArqAspHisMe	tValLeuLeuGlu
CTACCTGAGCAC	CCAGTCCGCCCTGAGCA	AAGACCCCAACGA	GAAGCGCGATCACAT	GGTCCTGCTGGAG
PheValThrAla	<u>AlaGlyIleThrLeuGl</u>	yMetAspGluLeu	[yrLysSerGlyIle]	ArqGlyGlySerG
TTCGTGACCGCC	GCCGGGATCACTCTCGG	CATGGACGAGCTG	TACAAGTCCGGAATT	CGTGGTGGATCCG
			EcoR	I BamH I
lyGlySerGlyG	lySerGlyGlySerGly	GlySerGlyGlySe	erGlyGlySerGlyG	lySerGlyGlySe
GTGGATCAGGTG	GATCCGGTGGTAGTGGI	GGATCCGGAGGTT	CTGGTGGATCCGGTG	GTTCAGGTGGATC
В	amH I	BamH I	BamH I	BamH
rGlyGlySerGl	yG1ySerG1yG1ySerG	GiyGiySerGlyGly	/SerGlyGlySerGl	yGlySerGlyGly
CGGTGGATCTGG	TGGATCCGGTGGTAGTG	GTGGATCCGGTGG	ATCTGGTGGATCCGG'	TGGTAGTGGTGGA
I	BamH I	BamH I	BamH I	Bam
SerGlyGlySer'	ThrMetValSerLysG1	yGluGluLeuPhe	ThrGlyValValPro	IleLeuValGluL
TCCGGAGGTAGC.	ACCATGGTGAGCAAGGG	CGAGGAGCTGTTC	ACCGGGGGTGGTGCCC	ATCCTGGTCGAGC
ΗI	NCO I			

euAspGlyAspValAsnGlyHisLysPheSerValSerGlyGluGlyGluGlyAspAlaThrTyrGlyLy
TGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGCGATGCCACCTACGGCAA
$\verb+sLeuThrLeuLysPheIleCysThrThrGlyLysLeuProValProTrpProThrLeuValThrThrPhe+$
GCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCTTC
${\tt GlyTyrGlyLeuGlnCysPheAlaArqTyrProAspHisMetLysGlnHisAspPhePheLysSerAlaM}$
GGCTACGGCCTGCAGTGCTTCGCCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCA
$\verb+etProGluGlyTyrValGlnGluArqThrIlePhePheLysAspAspGlyAsnTyrLysThrArqAlaGl$
TGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGA
${\tt uValLysPheGluGlyAspThrLeuValAsnArqIleGluLeuLysGlyIleAspPheLysGluAspGly}$
GGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGC
${\tt AsnIleLeuGlyHisLysLeuGluTyrAsnTyrAsnSerHisAsnValTyrIleMetAlaAspLysGlnL}$
AACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGA
ysAsnGlyIleLysValAsnPheLysIleArqHisAsnIleGluAspGlySerValGlnLeuAlaAspHi
AGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCA
sTyrGlnGlnAsnThrProIleGlyAspGlyProValLeuLeuProAspAsnHisTyrLeuSerTyrGln
CTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCTACCAG
SerAlaLeuSerLysAspProAsnGluLysArqAspHisMetValLeuLeuGluPheValThrAlaAlaG
TCCGCCCTGAGCAAAGACCCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCG
lyIleThrLeuGlyMetAspGluLeuTyrLys***
GGATCACTCTCGGCATGGACGAGCTGTACAAG TAA AGCGGCCGC
stop <i>Not</i> I

Figure S2. The DNA sequence between the *Xba* I and *Not* I sites that differs from pET-28a(+) and the amino acid translation of the open reading frame of CLY9 are depicted below. Important features are underlined (His-tag, red; ECFP, blue; linker, green; EYFP, yellow).

Figure S3: Modeling the energy transfer efficiency for CLYx using the Gaussian chain model to describe the peptide linker. (A) Distribution functions showing the probability $P(r_e)$ for each end-to-end distance of the peptide linker for CLY1-9 calculated using the Gaussian chain model assuming a characteristic ratio of 2.3. (B) Plot showing the average energy transfer ($\langle E \rangle$, solid line) and the average interchromophore distance ($\langle r_c \rangle$, dashed line) as a function of r_e . (C) The contribution of each r_e to the overall energy transfer $\langle E \rangle_{ensemble}$, calculated by multiplying the probability of each r_e with the corresponding $\langle E \rangle$.