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Generalized Langevin Equation (GLE) thermostats have been used very effectively as a tool to manipulate and
optimize the sampling of thermodynamic ensembles and the associated static properties. Here we show that a
similar, exquisite level of control can be achieved for the dynamical properties computed from thermostatted
trajectories. By developing quantitative measures of the disturbance induced by the GLE to the Hamiltonian
dynamics of a harmonic oscillator, we show that these analytical results accurately predict the behavior of
strongly anharmonic systems. We also show that it is possible to correct, to a significant extent, the effects
of the GLE term onto the corresponding microcanonical dynamics, which puts on more solid grounds the use
of non-equilibrium Langevin dynamics to approximate quantum nuclear effects and could help improve the
prediction of dynamical quantities from techniques that use a Langevin term to stabilize dynamics. Finally we
address the use of thermostats in the context of approximate path-integral-based models of quantum nuclear
dynamics. We demonstrate that a custom-tailored GLE can alleviate some of the artifacts associated with
these techniques, improving the quality of results for the modelling of vibrational dynamics of molecules,
liquids and solids.

Dynamical properties of the ionic degrees of freedom
of a material or a molecule provide a direct connection to
experimental observables such as vibrational spectra, dif-
fusion coefficients, reaction rates and heat conductance,
among others. Their evaluation from atomistic simula-
tions is typically more challenging than the evaluation of
static ensemble properties, especially when taking into
account nuclear quantum effects (NQEs). To name only
a few reasons for this greater challenge, one must en-
sure sufficient sampling, but in a standard simulation
thermostats often cannot be used to aid this task, since
their presence modifies dynamical properties. Moreover,
no method exists that can include exactly and afford-
ably nuclear quantum effects in the dynamics of com-
plex high-dimensional systems. The many approximate
methods available that are based on path integral molec-
ular dynamics1–3 suffer from one or another unphysical
artifact3–5.

Generalized Langevin Equation (GLE) thermostats
emerged as an efficient tool for the control and evaluation
of static properties in simulations relying on both classi-
cal and quantum descriptions of the nuclei6–8. In order
to obtain a targeted GLE kernel for the static ensem-
ble properties of interest, one can define, in a reasonably
straightforward manner, target quantities that measure
the performance of the GLE dynamics when applied to
the actual system8. By defining different fitting targets,
it is possible to build thermostats that act only on a spe-
cific set of vibrational modes6, that are efficient in a wide
frequency range8, that mimic nuclear quantum fluctua-
tions7, and many other possibilities9,10.

a)Electronic mail: michele.ceriotti@epfl.ch

In this paper, we study and show how GLE ther-
mostats can be used in order to control dynamical proper-
ties of various systems. We develop a framework for the
optimization of GLE matrices where we construct sim-
ple dynamical models and define new target quantities
sensitive to dynamical information. We take as paradig-
matic examples the vibrational spectra of water ranging
from the isolated molecule and protonated clusters, all
the way to the condensed phase. On one hand, we show
how the disturbance due to the GLE dynamics in simula-
tions with classical nuclei can be predicted, and how the
perturbed spectra can be deconvoluted to recover the un-
perturbed density of states. On the other hand, we take
advantage of the freedom that thermostatted ring poly-
mer molecular dynamics (TRPMD)3 leaves in the choice
of the thermostat attached to the internal modes of the
ring polymer in order to design GLE matrices that re-
duce the spurious broadening of high-frequency spectral
features that was observed in the original formulation
based on a white noise thermostat3,11. In both cases, we
demonstrate that the same GLE framework can be used
to manipulate to a considerable extent the dynamical be-
havior of the system.

Throughout this work, we take also special attention
to perform our dynamics using accurate potential en-
ergy surfaces that include all physically relevant effects
for the systems in question. For the molecules, we use
extremely accurate parametrized potentials12,13, and for
the condensed phase simulations we use neural network
potentials fitted to accurate density-functional theory
data14,15. In Section II we explain our models and fit-
ting procedures in detail, showcasing the rationale of
our development with toy examples. In Section III we
first detail how we can predict and deconvolute the GLE
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disturbance on classical molecular dynamics, and then
show how fitted GLE matrices can change the outcome
of TRPMD simulations. Finally, in Section IV we draw
our conclusions.

I. THEORY AND METHODS

The use of a history-dependent Langevin equation to
model the coupling between a system and a canonical
heat bath has been discussed many times16. Such gen-
eralized Langevin equations (GLEs) have been employed
extensively as a tool to study reaction rates17, to model
open systems18, and as a general sampling device whose
properties can be formally quantified19,20. The use of
a GLE as a highly tunable thermostatting scheme for
atomistic simulations has also been discussed at length
elsewhere8,21. For the sake of completeness and to intro-
duce notation, we will briefly summarize the basic ideas,
before discussing in more detail how this GLE framework
can be used to obtain a precise control of the dynamics
of a physical system.

A. A Generalized Langevin Equation Thermostat

The generalized Langevin equation for a particle with
unit mass in one dimension, subject to a potential V (q),
is given by the non-Markovian process

q̇ = p

ṗ = −V ′(q)−
∫ t

−∞
K(t− s)p(s)ds+ ζ(t)

(1)

where K(t), is the memory kernel that describes dissi-
pation, and ζ(t) is a Gaussian random process with a
time correlation function H(t) = 〈ζ(t)ζ(0)〉. Throughout
this paper, we consider unit mass in all equations. The
numerical integration of this equation is computationally
challenging since it requires the knowledge of the entire
history of the particle’s trajectory. However, exploiting
the equivalence between the non-Markovian dynamics of
Eq. 1 and Markovian dynamics in an extended space, n
auxiliary degrees of freedom s can be coupled linearly to
the physical momentum, which results in the Markovian
Langevin equation

q̇ =p(
ṗ
ṡ

)
=

(
−V ′(q)

0

)
−
(
app aTp
āp A

)(
p
s

)
+

(
bpp bTp
b̄p B

)(
ξ

)
.

(2)

Here ξ is a n+1 dimensional vector of uncorrelated Gaus-
sian numbers. In order to label the portions of the ma-
trices that describe the coupling between the different
components of the extended state vector x ≡ (q, p, s)T ,

we use the following notation:

q p s

q mqq mqp mT
q

p m̄qp mpp mT
p

s m̄q m̄p M

}
Mp

Mqp

(3)

Upon integrating out the auxiliary degrees of freedom,
equation 1 is recovered with

K(t) =2appδ(t)− aTp e
−|t|Aāp

H(t) =dppδ(t)− aTp e
−|t|A [Zap − dp]

(4)

where Z =
∫∞
0
e−AtDe−A

T tdt and Dp = BpB
T
p . This

implies that by tuning the elements of the matrices Ap

and Bp, a Generalized Langevin equation with the de-
sired friction kernel and noise correlation can be approx-
imated within a Markovian framework. Note that al-
though we focused on a one-dimensional case to simplify
the notation, it is also possible to apply Eqn. (2) to each
Cartesian coordinate of an atomistic system. Since the
overall dynamics is invariant to a unitary transformation
of the coordinates, the response of the system would be
the same as if the GLEs had been applied in e.g. the
normal modes coordinates.

B. Controlling Classical Dynamics

Let us consider a particle subject to a harmonic poten-
tial V (q) = 1

2ω
2
0 , and coupled to a GLE. The time evo-

lution of its state vector x = (q, p, s)T can be expressed
as: q̇
ṗ
ṡ

= −

 0 −1 0
ω2
0 app aTp

0 āp A

 q
p
s

+

 0 0 0
0

Bp0

 0

ξ

. (5)

Since the force is linear in q, equation 5 takes the form
of an Ornstein-Uhlenbeck process, that can be written
concisely as

ẋ = −Aqpx + Bqpξ. (6)

Since its finite-time propagator is known analytically22,
it is possible to compute any time correlation function in
terms of the drift and diffusion matrices Ap and Bp. For
instance, the vibrational density of states can be com-
puted exactly by taking the Fourier transform of the
velocity-velocity correlation function, and reads:

Cpp(ω, ω0) =
1

[Cqp(ω0)]pp

[
Aqp(ω0)

A2
qp(ω0) + ω2

Cqp(ω0)

]
pp

,

(7)
where the stationary covariance matrix can be obtained
by solving the Riccati equation AqpCqp + CqpA

T
qp =

BqpB
T
qp.
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FIG. 1. Various regimes of the white noise thermostat acting on the harmonic oscillator. The left, central and right panels,
respectively representing the under-damped (γ = 0.1), optimally-damped (γ = 1) and over-damped limits (γ = 10), show the
velocity auto-correlation functions (top) and GLE metrics (bottom) for various values of the physical frequency. We choose
three values for the physical mode ω0, labeled in the picture and shown with different colors. The GLE metrics as defined by
equations 11, 12 and 13 are represented by circular, plus shaped and cross shaped markers respectively.

It is useful to perform a spectral decomposition of Eq.
7 in order to gain more insight into the spectrum a GLE-
thermostatted oscillator. It is straightforward to show
that by writing Aqp(ω0) = O diag(Ω)O−1 where O is the
matrix of eigenvectors and Ω a vector containing the cor-
responding eigenvalues, the expression for the velocity-
velocity correlation function can be written as

Cpp(ω, ω0) =
∑
jr

Opj
Ωj(ω0)

Ω2
j (ω0) + ω2

O−1jr
[Cqp(ω0)]rp
[Cqp(ω0)]pp

. (8)

For example, in the case of white-noise Langevin with
friction γ, the correlation function reads

C (γ)
pp (ω, ω0) =

2γω2

π (γ2ω2 + ω4 − 2ω2
0ω

2 + ω4
0)
. (9)

The spectrum in Eq. 8 corresponds to a sum of
Lorentzian functions, with the peaks positions and line-
shapes determined by the poles at ω = ±iΩj . Motivated
by this spectral decomposition, we define several quan-
tities that give a concise description of the shape of the
spectrum. After having introduced the integral function
of the spectrum

W (ωa, ωb) =
2

π

∫ ωb

ωa

Cpp(ω, ω0)dω =

=

{[
tan−1

(
ω

Aqp(ω0)

)]ωa

ωb

2Cqp(ω0)

π[Cqp(ω0)]pp

}
pp

,

(10)

which can be computed easily based on the same eigen-
decomposition of Aqp, we define the median

ω̄(ω0)→W (0, ω̄) = 0.5, (11)

that characterizes the position of the peak, and the in-
terquartile distance

∆ω(ω0) =
1

2
(ω0.75 − ω0.25) (12)

→W (0, ω0.25) = 0.25

W (0, ω0.75) = 0.75

that characterizes its width. Together, these two indi-
cators are sufficient to determine fully a Lorentzian line-
shape

L(ω, ω0) =
1

π

∆ω(ω0)

(ω − ω̄(ω0))2 + [∆ω(ω0)]2
. (13)

In order to quantify the presence of multiple poles or
other sources of asymmetry in the lineshape that are not
captured by ω̄ and ∆ω, we introduce a “non-Lorentzian-
shape” factor S,

S(ω0) =

∣∣∣∣∫ ∞
0

[Cpp(ω, ω0)− L(ω, ω0)]2dω

∣∣∣∣0.5 . (14)

According to the definitions above, a perfect δ-like
Lorentzian spectrum would have ω̄/ω0 = 1, ∆ω/ω0 = 0,
and S = 0. In order to exemplify how these measures
behave in the case of a simple white noise thermostat
attached to the harmonic oscillator, we show in Fig. 1
how the velocity-velocity spectrum of oscillators of differ-
ent frequency ω0 changes with different regimes of white
noise, and how the measures defined in Eqs. 11 to 14
relate to the magnitude of the perturbation induced to a
δ-like spectrum shape.

Analyzing Fig. 1, we can see that, as expected, the
regime that introduces the least disturbance to the VDOS
is the underdamped regime (the limit where Ap = 0 is
microcanonical dynamics) – and that for a given γ the
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modes with lower frequency suffer the most pronounced
relative disturbance. Focusing on the underdamped case,
the measures ω̄/ω and ∆ω predict the shift and broad-
ening of the peaks at low frequencies, as well as the
lack of disturbance at high frequencies. Going to the
optimally damped and the overdamped case, the dis-
turbances to the spectra get more pronounced through
the whole range of frequencies, and it is easy to follow
how the different indicators we introduced quantify this
change. The S measure is always relatively small, in-
dicating that a simple white-noise thermostat does not
affect significantly the Lorentzian character of the peaks.

In the same spirit as the fitting procedure introduced
in Ref.8, we define figures of merit that target these mea-
sures, and complement the indicators of sampling effi-
ciency that were previously introduced. By giving differ-
ent weights to different targets and to different frequency
ranges, it is possible to generate GLE thermostats that
are designed to have a prescribed effect when applied to
a given system. As we will show below, even in cases for
which the GLE thermostat disturbs classical molecular
dynamics in quite extreme ways, based on the analytical
prediction of such disturbance one can recover the true
dynamics of the underlying system.

C. Tuning Thermostated Ring Polymer Molecular
Dynamics

As shown in Ref.3, the formalism underlying ther-
mostatted ring polymer molecular dynamics (TRPMD)
leaves considerable freedom into the way thermostats are
applied to the internal modes of the ring polymer. In
the original algorithm, a simple white noise thermostat
was used, that was tuned to give optimal sampling of the
free ring polymer potential energy. Other choices for the
white noise friction have been proposed, for instance at-
tempting to slow down the vibrations of internal modes
to match those of the centroid23. Here we show that by
optimizing quantitative measures of the interference of
ring-polymer modes onto the dynamics of the centroid
one we can improve the outcome of TRPMD simulations
in a wide range of systems.

Let us start by introducing a simple model of the cou-
pling of a ring polymer mode to a physical (centroid)
mode that we can use as the target of the GLE parameter
optimization. In an actual ring polymer simulation the
lowest order coupling between centroid and non-centroid
modes would be cubic (∝ q0q

2
1), a term that would not

be analytically treatable within an OU formalism. To
obtain an expression that captures the nature of the an-
harmonic coupling, and that can be solved explicitly, we
examine the OU process of two coupled harmonic oscil-
lators where the s degrees of freedom are coupled to only
one of them. The potential thus has the form

V (q0, q1) =
1

2

[
ω2
0q

2
0 + ω2

1q
2
1 + αω0 ω1 q0 q1

]
. (15)

From here on we denote ω0 the frequency of vibration
of the physical system, ω1 the frequency of vibration of
the ring polymer mode that we wish to couple a ther-
mostat to, and α a parameter that controls the strength
of the coupling. Obviously one could redefine the phys-
ical coordinates to obtain two decoupled normal modes.
Here instead we analyze the dynamics of the original co-
ordinates, so that the harmonic coupling serves as an
analytically-treatable model of anharmonic coupling. As
we will demonstrate, predictions based on this crude
model provide a qualitative indication of the behavior
in a real TRPMD simulation.

Extending the notation introduced in Eq. 3, the drift
matrix A01 for this system can be written as

A01 =



0 −1 0 0 0

ω2
0 0 αω0ω1 0 0

0 0 0 −1 0

αω0ω1 0 ω2
1 app aTp

0 0 0 āp A


, (16)

where we maintain the same notation for the GLE drift
matrix Ap, with the understanding that it only couples
to p1. In order to measure the disturbances on the phys-
ical system, we use indicators similar to the ones in Eqs.
11–14, but slightly modified to capture the essence of
this coupled-oscillators problem. Firstly, we can obtain
analytical expressions for ω̄, ∆ω, and S defined as in
Eqs.11–14, but referring to the power spectrum for the
momentum p0 of the physical mode, Cp0p0 . These three
quantities depend parametrically on Ap, ω1 and α. In
order to formulate the problem of optimising Ap in a
more general way, we first consider that ω1 can be taken
as the reference frequency relative to which one considers
the frequency of the physical mode (i.e. we set ω1 = 1
and aim to minimize the disturbance for all ω0, smaller or
larger than 1). Our final optimized matrices can be easily
scaled by the target value of ω1 to which one wishes to
attach the thermostat in a real calculation. In this work,
we scale the matrices by the free ring polymer frequencies
ωk = 2ωP sin(kπ/P ), where ωP = P/(β~), β = 1/kBT ,
and P is the number of beads in the ring polymer.

Since α is meant to represent a weak coupling term
we normalize our indicators based on their behavior for
small α. This provides the following normalized target
quantities:

wshift = (1− ω̄(ω0;ω1)/ω0)/α2 (17)

wwidth= ∆ω(ω0;ω1)/(ω0α
2) (18)

wshape= S(ω0;ω1)/α2, (19)

that depend weakly on α (for numerical stability, we took
α = 0.4 in all of the calculations shown here). As mea-
sured by this quantities, a “perfect”, unperturbed spec-
trum should yield wshift = wwidth = wshape = 0.

One particular issue that we wish to address with this
procedure is the artificial broadening of the peaks that
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FIG. 2. Various regimes of the white noise thermostat applied to the “ring-polymer” mode. The left, central and right panels,
respectively representing the under-damped (γ = 0.1), optimally-damped (γ = 1) and over-damped limits (γ = 10), show the
velocity auto-correlation function of physical mode (top) and GLE metrics (bottom) for various values of the physical frequency.
We choose three values for the physical mode ω0, labeled in the picture and shown with different colors. The GLE metrics as
defined by equations 17, 18 and 19 are represented by circular, plus shaped and cross shaped markers respectively.

is apparent in the original formulation of TRPMD3, and
that is especially bothersome for the spectra of molecules.
The origin of this broadening can be understood by an-
alyzing, for example, how the simplified model described
by the drift matrix A01 behaves when one uses a simple
white noise thermostat (app = γ 6= 0, ns = 0). In Figure
2 we show the quantities wshift, wwidth and wshape, as well
as the Fourier transform of the friction kernel K(ω), and
the predicted Cpp for three different values of ω0. In all
cases, we fix ω1 = 1, and use α = 0.4, that represents a
fairly strong coupling, to exacerbate the effect.

In the underdamped regime (left-most panels of Fig.
2), first focusing on the plotted Cpp, we observe that
when ω0 � ω1, the peak at ω0 becomes slightly red-
shifted and a second low-intensity peak appears at ω1.
When ω0 = ω1 the peak is split, corresponding to the
well-known RPMD resonance problem, that is well cap-
tured by this simplified coupling model. When ω0 � ω1,
the physical peak is sharp and there is essentially no shift,
but there is a residual (weak) resonance at ω1. The mea-
sures introduced in Eqs. 17–19 reflect this behavior: The
indicator wshift predicts a larger disturbance for ω0 < ω1

than for ω0 > ω1, while wwidth and wshape predict lit-
tle broadening and non-Lorentzian lineshape in both the
ω0 < ω1 and ω0 > ω1 limits. When ω0 ≈ ω1, the indica-
tors correctly predict that the shift of the physical peak
is not large (since the splitting is rather symmetric), but
the width of the full (split) peak becomes larger. The
large value of wshape indicates the large deviation from
a Lorentzian lineshape. When the white noise friction
on the ring-polymer mode is increased (moving to the
right in Fig. 2), we observe that all indicators predict
better spectra. However, when the peaks are in perfect
resonance (ω0 = ω1), optimal damping (γ = ω1) is not
sufficient. Even though the peak is not split anymore, its

shape is far from Lorentzian, and one observes consider-
able broadening – compatible with the empirical observa-
tions for TRPMD. A certain broadening is also observed
when ω0 � ω1. Within this model, the over-damped
regime gives us the best result regarding our disturbance
measures, which is also reflected in the predicted vibra-
tional spectra. In that regime, the largest disturbance
is observed at ω ≈ 0 and the rest of the spectrum is
clean. Note, however, that one cannot over-damp indef-
initely. The further one goes in the overdamped regime
for the ring polymer mode, the less efficient that mode
is sampled, as can be measured by κH = τH/ω1, where
τH is the autocorrelation time of the total energy for the
ring-polymer mode. For this quantity, optimal sampling
corresponds to κH = 0.5. A very aggressive damping can
make the simulation much less efficient and non-ergodic
– a problem that can be mitigated by including sampling
efficiency among the optimization targets.

What we will show in the following is that by using
a colored noise thermostat one can get better results
than with only white noise, even though the trade-off
between disturbance and sampling efficiency always ap-
pears. In practice we obtain the colored noise matrices
by optimizing an objective function that combines the
newly-introduced indicators of dynamical disturbance,
computed over a broad range of physical mode frequen-
cies, together with sampling efficiency requirements for
the ring-polymer mode, in the same framework as intro-
duced in Ref. 8. We find, however, that the optimization
has a pronounced tendency of finding local minima that
nevertheless yield similar performances, as we discuss in
more detail in in Section II.
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II. RESULTS AND DISCUSSION

In order to demonstrate the practical implications of
the possibility of controlling the impact of thermostat-
ting on classical and quantum dynamics, we have com-
puted the velocity-velocity correlation spectra of many
different systems - including both gas-phase molecules
and condensed phases of water. For the latter, we used a
neural-network (NN) potential24,25 that has been fitted
to match a density-functional model of water15 based on
the B3LYP hybrid functional with D3 empirical disper-
sion corrections26, and that has been shown to repro-
duce accurately the first-principles results for many of
the properties of liquid water27. The general form of the
NN potential ensures that the anharmonicity of the ab
initio potential energy surface is fully reproduced – mak-
ing these simulations a stringent test of the applicability
of our analytical indicators beyond the harmonic limit.
All simulations presented in the following have been per-
formed through the interface of all relevant potentials
with the i-PI code28. NN simulations were based on a
LAMMPS plugin14.

A. Predicting and correcting the dynamical disturbance of
a GLE

Equation 7 predicts the velocity-velocity correlation
function for a harmonic oscillator of frequency ω0 sub-
ject to a given GLE. If one considers an assembly of
independent oscillators of different frequencies, the to-
tal correlation function of the system can be written as∑
i C (ω, ωi). Taking the limit of a continuum distribu-

tion corresponding to the density of states g(ω), one can
write

cGLE
vv (ω) =

∫
dω′g(ω′)C (ω, ω′). (20)

Note that if rather than the total velocity correlation
function one were computing a linear combination of cor-
relation functions (e.g. a dipole spectrum to which each
oscillator contributes with its own transition dipole mo-
ment), Eq. (20) would still hold, with g(ω) representing
a combination of the density of states and the weight of
each mode. The question, of course, is how well this re-
lation would hold in a real, anharmonic system, and how
well the indicators of dynamical disturbance can be used
to tune the behavior of the GLE dynamics - given that
the kernel C (ω, ω′) was derived under the assumption of
harmonic dynamics. To benchmark this framework in a
realistic scenario, we performed simulations of NN liquid
water at 300K and experimental density. We computed
the vibrational density of states from a reference NVE
simulation of the same model, and then compared it with
the Fourier transform of the velocity-velocity correlation
function resulting from different kinds of GLE. Figure 3
shows the results for white-noise Langevin dynamics us-
ing different values of the friction, and two GLE matri-

ces (see the SI). GLE(A) was designed to dramatically
disturb all low-frequency modes, whereas GLE(B) was
optimized to only affect modes within a narrow range of
frequencies between 3000 and 4000 cm−1. Not only one
can see that the GLE spectrum is qualitatively distorted
in accordance with the three indicators ω̄, ∆ω and S(ω),
but also that convoluting the NVE density of states ac-
cording to Eq. (20) yields a near-perfect quantitative pre-
diction of the GLE dynamics. These results open a path
to the design of thermostats that only affect a portion of
the frequencies while leaving the others untouched, as is
the case for GLE(B).

Given the remarkable accuracy of the analytical pre-
diction of the GLE dynamical disturbance, the possibil-
ity of performing the inverse operation arises – that is
to analytically predict the NVE density of states given
the velocity-velocity correlation function obtained from
a thermostatted run. This operation corresponds to a
deconvolution of the GLE spectrum using C (ω, ω′) as a
convolution kernel. It is well-known that this class of in-
verse problems is very unstable, and that an appropriate
regularization is crucial to obtain sensible results that are
not dominated by noise. Direct inversion using Tikhonov
regularization with a Laplacian operator led to promis-
ing but unsatisfactory results. In particular, we found a
tendency to obtain large spurious oscillations in the low-
density parts of the spectrum, often leading to unphysical
negative-valued curves.

We therefore used the Iterative Image Space Re-
construction Algorithm (ISRA), that enforces positive-
definiteness of the solution29,30. Initializing the iteration
with the GLE-computed velocity correlation spectrum,
f0(ω) = cGLE

vv (ω), the ISRA amounts at repeated appli-
cation of the iteration

fn+1(ω) =
fn(ω)h(ω)∫

dxD(ω, x)fn(x)
(21)

where we have defined

h(ω) =

∫
dxC (x, ω)cGLE

vv (x)

D(ω, x) =

∫
dyC (y, ω)C (y, x).

(22)

The ISRA converges to a local solution satisfying∫
dxC (ω, x)f∞(x) = cGLE

vv (ω). We found that a con-
venient way to monitor the convergence is to compute at
each step the residual, and the Laplacian of fn,

rn =

∫
dω

∣∣∣∣∫ dxC (ω, x)fn(x)− cGLE
vv (ω)

∣∣∣∣2
ln =

∫
dω |f ′′n (ω)|2 .

(23)

Plotting (rn, ln) on a log-log scale reveals a behavior
resembling a L-curve plot, that can be used as a guide
to avoid over-fitting – although in practice we find that
the well-known slow asymptotic convergence of the ISRA
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FIG. 3. Each row reports the velocity-velocity correlation spectrum for a thermostatted simulation of liquid water at 300K and
experimental density (left) and the predicted measures of spectral disturbance (ω̄/ω0, ∆ω/ω0, S(ω)) as a function of frequency,
together with the GLE friction kernel K(ω) (right). The spectrum from the thermostatted trajectory (GLE) is compared
with the density of states obtained from microcanonical runs (NVE), as well as with the spectrum predicted by convoluting
the density of states with C (ω, ω0) (NVE→GLE) and the density of states reconstructed by deconvoluting the thermostatted
spectrum (GLE→NVE). The simulations were performed with a strong white-noise thermostat (a), a very-strong white-noise
thermostat (b), a GLE designed to distort dramatically the whole spectrum (c), and a GLE designed to only affect the stretching
peak (d with inset).

effectively prevents reaching a situation in which fn be-
comes too noisy. As can be seen from Fig. 3, this ap-
proach provides an excellent reconstruction of the true
density of states even in cases in which the GLE dynam-
ics distorts the spectrum of water beyond recognition.
There are of course discrepancies, particularly in the low-
frequency region that is both strongly anharmonic and

harder to statistically converge. Nevertheless, the possi-
bility of correcting for the disturbance induced by a GLE
on the dynamics of complex atomistic systems opens up
opportunities to obtain more accurate estimates of dy-
namical properties from simulations that use Langevin
equations to stabilize trajectories,31 or that contain in-
trinsic stochastic terms 32–35.



8

� ���� ���� ���� ����
ω [��-�]

��-�

��-�

��-�

�
�
�

��-�

��-�

��-�

�
�
�

��-�

��-�

��-�
�
�
�

� � � � � � �

� [�]

�

���

�

���

�

���

�
(�
)

�

���

�

���

�

���

�
(�
)

�

���

�

���

�

���

�
(�
)

��� �� ���→�� ��→��� �-� �-� �-� ����

�)

�)

�)

FIG. 4. The panels on the left report the velocity-velocity correlation functions, obtained from quantum-thermostatted simula-
tions of liquid water at 300K and constant experimental density. As in Fig. 3, the spectrum from a GLE simulation is compared
with the NVE density of states, as well as with the transformed and reconstructed spectra. Panels on the right depict the
radial O-O, H-H and O-H distribution functions from the QT runs, compared with those from a converged PIMD calculation27

(dashed lines). The topmost panels correspond to a weakly-coupled GLE, the middle and bottom panels correspond to strongly
coupled GLEs fitted independently (see the SI for representative input files containing the parameters)

B. Dynamical properties from a quantum thermostat

Besides correcting dynamical properties in classical
thermostatted simulations, this iterative reconstruction
of the unperturbed DOS could be particularly helpful
in another scenario. As mentioned in the Introduction,
GLEs have been successfully applied as a tool to sam-
ple a non-equilibrium distribution in which different vi-
brational modes reach a stationary frequency-dependent
effective temperature T ?(ω). In particular, the so-
called “quantum thermostat”7 and “quantum thermal
bath”36 try to enforce a temperature curve that mimics a
quantum-mechanical distribution of energy in the normal
modes of the system. Trying to maintain this tempera-
ture imbalance in an anharmonic system inevitably leads
to zero-point energy leakage37, i.e. cross-talk between
different normal modes that lead to deviations from the
desired T ?(ω). This problem can be addressed by us-
ing a strongly-coupled GLE8, that results however in a
pronounced disturbance of the system’s motion – making
any inference on quantum effects on dynamical properties
little more than guesswork. Being able to compensate for

the dynamical disturbance induced by a GLE can make
this approach somewhat more credible, and less depen-
dent on the details of the thermostat.

Figure 4 gives a demonstration of this idea – as well
as a clear warning to the dangers of using the results
of a quantum GLE without careful validation. Let us
start by discussing the accuracy of the QT in terms of
structural properties, for which we can obtain a reliable
benchmark from a fully converged27 PIMD simulation of
the same NN model. As seen from the radial distribution
functions, using a weakly coupled quantum thermostat
(panel a) leads to significant zero-point energy leakage.
The stretching modes show narrower fluctuations com-
pared to PIMD, and the O-O distribution demonstrates
a dramatic loss of structure, which is compatible with
a much higher effective temperature of librational and
translational modes. Increasing the coupling to the ther-
mostat (panels b and c) improves significantly the struc-
ture of water, that becomes very close to that from the
PIMD simulation. This comes however at the price of
a very pronounced disturbance of the dynamical proper-
ties, that is most apparent in the low-frequency part of
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FIG. 5. A comparison between the classical vibrational
density of states for a NN model of room-temperature wa-
ter (NVE), that estimated from critically-damped TRPMD
(TRPMD), with the QT velocity-velocity correlation function
scaled by Cpp(ω0) (QT/〈v〉2) and finally the dynamically-
corrected QT (QT→NVE). The QT parameters are those
used for panel (c) in Figure 4.
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Moving on to dynamical properties, let us now discuss
the relations between the (classical) density of states,
the GLE spectrum and the curves obtained by convolu-
tion and deconvolution through the kernel38 C ?(ω, ω0) =
mβCpp(ω0)C (ω, ω0). The deconvolution process cor-
rects at the same time for dynamical disturbances and
the frequency-dependent occupations of different normal
modes, so any deviation between the reconstructed spec-
trum and the classical DOS is an indication of anhar-
monic effects, and/or zero-point energy leakage that in-
duces deviations from the target T ?(ω). As shown in
the lower panel of Fig. 4, the iteratively-reconstructed
DOS displays the qualitative features one would expect
from a quantum spectrum of water: the low-frequency
modes are effectively unchanged relative to a classical
DOS, whereas stretches and bends show a considerable
red shift and broadening. The reconstructed spectra from
panels b and c – that correspond to different but strongly
coupled GLEs – are qualitatively very similar, particu-
larly when contrasted with the weakly-coupled GLE in
panel a. In the latter case, the low-frequency modes are
overheated, leading to an overestimation of the DOS rela-
tive to the classical limit, and the stretching peak shows
a blue shift, consistent with the fact that H-bonds are
broken and stretch modes are underpopulated compared
to the true quantum distribution.

While there is no absolute benchmark for quantum ef-
fects on dynamical properties of water, it is useful to com-
pare the results from the “dynamically-corrected” QT
simulations with those from a TRPMD simulation. As
shown in Figure 5, the dynamical corrections do much
more than rescaling frequencies by the QT occupations
Cpp(ω0). The heavily-distorted low-frequency part of the
spectrum becomes very close to the classical DOS, and
small corrections are also applied to stretches and bend-

ing. While there is a considerable difference between the
TRPMD spectrum and the corrected QT spectrum in the
bending and stretching region, one should note that a
similar discrepancy can be seen between TRPMD, CMD
and other approximate quantum dynamical techniques11.
As we will show in Figure 10, one can observe a similar
degree of frequency shift when using a modified TRPMD
designed to minimize dynamical artifacts.

We conclude this analysis by stressing that even
though we showed examples based on the quantum ther-
mostat, a similar treatment is possible for the case of a
quantum thermal bath, which, even if implemented dif-
ferently, can be seen as a special case of the GLE frame-
work in which the friction kernel is taken to be a δ dis-
tribution. Even though, whenever possible, one should
cross-validate results with a more sophisticated technique
such as CMD or (T)RPMD, the dynamical corrections we
introduce to the quantum thermostat provide a practical
solution for the cases in which one needs to assess the
importance of quantum effects on dynamics but cannot
afford a more accurate method.

C. Improving TRPMD spectra of molecular species

As we discussed above, one can extend the GLE model
to assess the disturbance induced by the thermostatting
of ring-polymer normal modes on the dynamics of the
centroid. We wish to assess how the spurious broaden-
ing introduced by the white-noise thermostat in TRPMD
can be controlled and diminished using GLE thermostats.
We start by analyzing the vibrational density of states
of molecules, where the spurious broadening is particu-
larly dramatic. We consider the isolated water molecule,
simulated with the Partridge-Schwenke12 potential, and
the Zundel cation (H5O+

2 ), simulated with the CCSD(T)-
parametrized potential of Ref.13. We performed all sim-
ulations at 100K, where nuclear quantum effects become
more apparent, and used 64 beads to ensure convergence
of the quantum distribution.

Besides performing reference calculations with
optimally-coupled white-noise, we tested the behavior
of two GLE matrices, that were fitted to minimize
the analytical measures of dynamical disturbance for
centroid modes with frequencies two orders of magnitude
above and below the ring-polymer frequency. We also
optimized the sampling of the ring-polymer distribution
as measured by the normalized autocorrelation rate
κH = 1/ωτH of its total harmonic energy, in order to en-
sure it was not drastically inefficient. Depending on the
weights given to the different target quantities, and on
the starting parameters, the optimization can converge
to different (local) minima. Even restricting ourselves to
matrices corresponding to a single additional degree of
freedom, we observed that similarly good performances
– as measured by our analytical estimators – could be
achieved with two distinct classes of 2 × 2 Ap matrices.
The first kind of matrices had large off-diagonal com-
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FIG. 6. Indicators as given in Eq. 17–19 for the GLE matrices used to thermostat the internal modes of the ring polymers in
the TRPMD simulations shown in this paper.

ponents corresponding to an exponential-like kernel21,
while those of the second kind are essentially dominated
by their white noise component. We present results for
one matrix of each kind that we show below:

GLE(C)/ω1 =

(
1.0 −241.4

244.8 2.9

)
, (24)

GLE(D)/ω1 =

(
182.4 −3.7
2.8 0.6

)
. (25)

The indicators for these matrices are shown in Fig. 6.
It is apparent that both yield very good (i.e. very low)
wshift, wwidth, and wshape for a wide range of frequen-
cies, with GLE(C) being slightly better overall – at the
expense of a lower κH . Since the matrices were fitted
assuming a unit frequency of the ring-polymer mode, op-
timum parameters for each normal mode were obtained
by multiplying the chosen Ap matrix by the free ring
polymer frequencies at the relevant temperature.

In Fig. 7 we show the vibrational spectra of the iso-
lated water molecule (panels a to d) and the zundel
cation (panels e to h) calculated with classical nuclei
MD, with white noise TRPMD, with TRPMD+GLE(C)
and with TRPMD+GLE(D) . We show in dashed lines
spectra calculated from simulation allowing rotation of
the molecule and in full lines spectra where these rota-
tions were filtered by changing the reference frame at
each time step in a post-processing procedure. For ref-
erence we also show the exact frequencies of vibration in
the water potential, calculated at 0K from Ref.39 and the
multi-configurational time-dependent Hartree (MCTDH)
OH stretch frequencies for the Zundel cation taken from
Ref.40.

Focusing first on the spectra for the water molecule,
we observe a considerable red shift of the OH stretch fre-
quencies due to nuclear quantum effects, and all TRPMD
simulations can capture this shift. White noise TRPMD,
however, is slightly blue-shifted with respect to the ex-
act results, while the new GLE TRPMD are basically on
top of the reference. The over-broadening of white noise
TRPMD is also clear – it cannot distinguish the splitting

between symmetric and anti-symmetric stretches. The
GLE thermostats make especially the OH stretch peaks
narrower, and GLE(C) is even able to describe the split-
ting of the peak. For the OH-bend peak, we observe a red
shift of 10 cm−1 for TRPMD and a blue shift of 20–30
cm−1 for GLE(C) and GLE(D), with respect to the exact
result. White-noise and GLE thermostatting of the ring-
polymer modes appear to have an impact on rotational
dynamics, that is only seen in the spectra that have not
been cleaned from molecular rotations.

Despite having been designed to minimally impact the
dynamics of physical modes, the two GLE thermostats
alter the spectral signature of rotations. To qualitatively
explain this effect, consider the cartoon representation of
the rotation of a ring polymer depicted in Fig. 8. We
think that also in this case, similarly to what is seen
for the RPMD resonance problem and the CMD curva-
ture problem, the artifacts are associated with the strong
coupling between a curvilinear motion of the centroid
which and the internal rearrangements of the ring poly-
mer along an orthogonal coordinate. In this case, the
overdamped dynamics of the internal degrees of free-
dom of the path hinder the (near)-free rotation of the
ring polymer, resulting in an effective increase of the fre-
quency of librations and rotations. A more quantitative
analysis is far from straightforward. The case of the rota-
tional dynamics of a single particle subject to white noise
is discussed in Ref. 41. For a 2D rotor, one can com-
pute analytically the orientational correlation function,
that exhibits two qualitatively different regimes (Gaus-
sian vs. exponential) in the limits where the friction
γ → 0 and γ → ∞. The generalization to three di-
mensions is considerably more complex, and a formula-
tion that considers coupling to a GLE (that would in
principle enable controlling and understanding these ef-
fects) is well beyond the scope of this work. Given that
in several cases the most pronounced manifestations of
quantum nuclear effects manifest involve high-frequency
modes that do not have a rotational character, there are
several circumstances in which this approach can prove
useful. We observe that increasing the importance of the
optimization of κH when designing the GLE does indeed
ameliorate this artifact: For example, the blue shift is
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FIG. 7. Vibrational density of states at 100 K of the water molecule and the zundel cation calculated on the Partridge-
Schwenke12 potential and the potential of Bowman and coworkers13, respectively. Panels a to d show classical nuclei MD, white
noise TRPMD, TRPMD+GLE(C) and TRPMD+GLE(D) vibrational density of states of the water molecule, and panels e
to h show the respective vibrational density of states for the zundel cation. For each case we show in thin dashed lines the
spectra including rotational motion, and in full lines spectra where these rotations have been filtered out. The reference data,
represented by thick vertical lines, correspond to the one reported in Ref.39 for the water molecule and in Ref.40 for the Zundel
cation.

less pronounced for GLE(D) (for which κH = 0.05) than
for GLE(C) (κH = 2 · 10−4). However, in our current
optimization there is a trade-off between the sharpness
of the spectra and the optimization of κH (and thus the
disturbance to the librations).

Moving now to the more complex spectrum of the Zun-
del cation we first focus on the high frequency range
of the spectrum, where nuclear quantum effects are ex-
pected to be most important. Comparing the classical,
white noise TRPMD, and GLE TRPMD spectra, we ob-
serve that the GLE matrices behave according to the
desired specifications: the peaks are sharper, making it
possible to resolve the splitting between the OH stretch
modes, and showing excellent agreement with the posi-
tions predicted by MCTDH for the same potential energy
surface. Focusing next on the low frequency range, we ob-

serve that the GLE thermostats cause a strong blue shift
in the bands in that region, if compared to the classical
and the white-noise TRPMD simulations. These bands
occur in a region of the spectrum where nuclear quantum
effects are expected to be small. The classical VDOS
should be a good approximation of the vibrational spec-
trum – and indeed the white-noise TRPMD spectrum is
very similar to that from classical MD. Given the libra-
tional character of molecular motion in this frequency
region, we believe that the blue shift that is apparent
when using GLE(C) and GLE(D) is a manifestation of
the unphysical coupling of the GLE thermostats to over-
all curvilinear dynamics of the molecules.

As a final demonstration of the improved performance
of the optimized GLE thermostats for intra-molecular
vibrational dynamics, Figure 9 shows the dipole-dipole
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FIG. 8. A cartoon representation of the origin of a blue shift
of molecular degrees of freedom with a curvilinear nature, in
presence of an overdamped dynamics of ring polymer modes.
In order for the centroid to move along a curvilinear coordi-
nate, the ring polymer (described in Cartesian coordinates)
has to rearrange and change orientation (green polymer). If
the internal motion of the ring polymer is hindered (red) the
system tends to move rigidly, and it experiences a strong
restoring force that increase the frequency of oscillation.
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FIG. 9. Comparison of the dipole absorption spectrum ob-
tained with TRPMD, TRPMD+GLEC, and the exact rovi-
brational spectrum considering J up to 24, obtained from the
code of Ref.42.

correlation spectrum for an isolated PS water molecule,
using as a reference an exact quantum mechanical calcu-
lation of the dipole absorption spectrum performed using
the code from Ref.42. It can be seen that, while TRPMD
cannot capture fully the structure of the ro-vibrational
spectrum, the position, the intensity and the general line-
shape of the stretching and bending peaks are repro-
duced to an excellent degree. As observed in the other
cases, white-noise TRPMD leads to a spurious broaden-
ing of the stretching peak, while TRPMD+GLE(C) leads
to significant distortion of the zero-frequency rotational
band, which does not however affect in an appreciable
manner the intra-molecular vibrations.

D. Assessing the performance of TRPMD in the
condensed phase

Having analyzed the successes and shortcomings of
GLE-thermostatted TRPMD simulations of molecules,
we now assess their behavior for condensed-phase simu-
lations. The consistency of different quantum dynamics
methods for the vibrational properties of water at differ-
ent state points has been assessed in Ref.11 (where empir-
ical potentials were used), and the performance of path
integral methods for the vibrational properties of liquid
water has been recently assessed on ab initio potential en-
ergy surfaces in Ref.43. From these previous works, the
conclusions were that different types of quantum dynam-
ics in the same potential could give results in good over-
all agreement to each other and, regarding specifically
TRPMD, that also in the condensed phase it predicts
high-frequency peaks that are considerably broader than
predicted by other methods. It was also observed that
quantitative details of the impact of nuclear quantum
effects on vibrational spectra depends strongly on the
potential energy surface (something that has also been
noted for diffusion properties in water-based systems44

and for optical excitations45).

We use the same NN trained on the DFT-B3LYP+D3
potential energy surface that we used to compute clas-
sical and quantum-thermostatted spectra, and calculate
the vibrational density of states of liquid water at 300K
and ice Ih at 100K with TRPMD, using both optimally-
damped white noise and the GLE matrices discussed for
the molecules. In Fig. 10 we show these vibrational spec-
tra for water and ice (left and right panels, respectively)
and compare them with the classical density of states.

First, in this case the spectra of GLE(C) and GLE(D)
are extremely similar for both liquid water and ice. In
more detail, starting from the OH stretch region, we ob-
serve a narrowing of the peak of the vibrational spectra
simulated with GLE(C)/(D) with respect to the white-
noise TRPMD spectra. The line shape of the peak is
also closer to the classical line shape. In the bend region,
for liquid water TRPMD and the GLE spectra agree al-
most perfectly, but for ice the GLE spectra predict much
narrower peaks. For the libration band, we detect an un-
physical blue-shift of the bands of both liquid water and
ice, with respect to the classical and TRPMD counter-
parts. Similarly to what was observed for the molecules,
the blue shift is (very) slightly more pronounced for
GLE(C), which induces a strongly overdamped dynamics
on the ring-polymer vibrations. Note that lattice vibra-
tions of even lower frequency, as well as diffusion coef-
ficients, do not suffer from these spurious effects. This
confirms the that the curvilinear nature of the molecular
motion plays a key role in these artifacts. Finally, we
observed that – due to the relatively low sampling effi-
ciency of the ring-polymer modes for GLE(C)/(D) – it is
somewhat harder to converge the populations of differ-
ent normal modes when computing a vibrational density
of states. In cases where this would constitute a prob-
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FIG. 10. Vibrational density of states for bulk water at 300 K (left) and and hexagonal ice at 100K (right) calculated with
classical MD and different flavors of TRPMD using the neural network potential based on B3LYP+D3 reference data.

lem, a simple solution consists in running multiple in-
dependent trajectories off a single imaginary-time PIMD
simulation46.

III. CONCLUSIONS

In this paper we have shown how Generalized Langevin
Equation (GLE) thermostats can be used to manipulate
the dynamical properties of physical systems in atom-
istic simulations, not only when treating nuclei as clas-
sical particles, but also when modelling their quantum
mechanical nature. We have introduced analytically-
computable measures for the disturbance caused by the
GLE to the intrinsic dynamics of harmonic models.
Based on these indicators, it is possible to obtain ther-
mostats with very specific characteristics.

For molecular dynamics with classical nuclei, where
the GLE thermostats are coupled directly to the phys-
ical system, we can calculate analytically the velocity-
velocity correlation spectrum of a harmonic oscillator
coupled to a GLE. We show that even in strongly anhar-
monic systems such analytical predictions can be used
to estimate the velocity-velocity correlation function in
the presence of the GLE, through a convolution of the
GLE spectrum with the underlying unperturbed vibra-
tional density of states – although of course the correc-
tions to strongly anharmonic properties should be consid-
ered qualitative unless thoroughly tested. This observa-
tion also allowed us to deconvolute the velocity-velocity
spectrum from simulations run with a GLE thermostat,
and recover the underlying unperturbed density of states.
This deconvolution procedure can be particularly useful
in all circumstances in which a degree of thermostatting
is needed to stabilize the dynamics, or to compensate
for random errors in the evaluated forces. As an ex-
ample, we consider the case of “quantum thermostats”,
that mimic quantum statistical distributions by enforc-
ing a frequency-dependent steady-state temperature on
different normal modes. By correcting the dynamical dis-
turbance introduced by the strong coupling of these ther-

mostats (which is necessary to prevent zero energy leak-
age), we put on more solid ground the practice of infer-
ring dynamical information from these non-equilibrium,
heavily thermostatted simulations.

When it comes to computing quantum dynamical cor-
relation functions, one has to face the fact that no ex-
act technique exists that can be taken as reference for
condensed-phase (or large molecules) applications – mak-
ing it more difficult to determine objective measures
of the quality of a thermostatted trajectory. Approxi-
mate techniques based on the path integral formalism1–3

generally rely on performing classical dynamics for the
ring-polymer centroid, on top of the quantum mechan-
ical thermal distribution. The idea is then to guaran-
tee that centroid dynamics are not affected by the be-
havior of the ring-polymer modes, that couple to the
centroid by anharmonicities in the potential. We fo-
cused in particular on the thermostatted ring polymer
molecular dynamics (TRPMD) method, since the under-
lying formalism leaves considerable freedom in choosing
arbitrarily-complex thermostats to be attached to the
internal degrees of freedom of the ring polymer. We
designed an analytically-solvable model of the coupled
centroid/internal mode dynamics, and computed estima-
tors of the shift, broadening and general disturbance to
the peak shape induced on the centroid. By optimizing
these indicators for a broad range of centroid frequencies,
we could significantly improve the quality of the vibra-
tional spectra of gas-phase molecules – in particular for
the high-frequency portion that is most affected by quan-
tum mechanical effects.

The GLE-optimized TRPMD density of states sep-
arates high-frequency peaks that were blurred in the
white-noise version of the method, and yields peak posi-
tions that correspond to the ones predicted by reference
methods in the same potential energy surface. The vi-
brational density of states for condensed phases of wa-
ter also shows sharper peaks in the stretch region. We
note, however, that our treatment introduced an unex-
pected blue-shift on the rotational and librational modes
that seems unphysical, and that prevents us from making
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quantitative comments on this intermediate range of fre-
quencies. We link this problem to the coupling between
curvilinear motion of the centroid and the relaxation time
of the internal modes of the ring polymer. While in prin-
ciple it might be possible to extend a GLE analysis to
target rotational diffusion, and to reduce or remove this
artifact, from a practical perspective the present GLE
optimization is enough to improve the TRPMD spectra
in the frequency range for which NQEs are most promi-
nent. However, when one is interested in NQE on lower-
frequency vibrational modes like librations, TRPMD (or
CMD) are still the best general-purpose simulation tech-
niques. From a more fundamental point of view, it would
be desirable to use the GLE framework in a less heuristic
fashion, ideally deriving from first principles the most ap-
propriate form to approximate exact quantum dynamics,
for example by trying to model GLEs that mimic prop-
erties of terms found in Matsubara dynamics which are
not present in RPMD or CMD47.

In summary, we demonstrated that the very same
GLE framework that has been successful for tuning the
equilibrium sampling properties of classical and quan-
tum molecular dynamics can also be used to manipu-
late and correct the time-dependent behavior of a ther-
mostatted trajectory. This approach can substantially
extend the reach of many modelling approaches that rely
on Langevin dynamics – for instance, it is now possi-
ble to estimate diffusion coefficients, or vibrational spec-
tra, from simulations performed in constant-temperature
conditions. The fact we could also improve the quality
of vibrational spectra obtained from approximate quan-
tum dynamics techniques, based solely on the empirical
goal of optimizing some measures of dynamical distur-
bance, underscores the potential of GLEs in this field. It
also suggests that a more principled approach in deriv-
ing the appropriate form of the target memory kernels
might inject additional physics into a family of methods
that currently represent the most viable option to ob-
tain time-dependent quantum mechanical observables for
condensed-phase and large complex systems in general.
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V. SUPPLEMENTAL INFORMATION

In the supplemental material we provide inputs for the
i-PI program for all simulations presented in the paper.
The inputs include the GLE matrices that we have op-
timized for each purpose. The code used to optimize
the matrices presented in this paper can be found at
http://gle4md.org. Upon request, we provide exam-
ple input files for the optimizations. Utilities to apply the
GLE corrections to classical and quantum-thermostatted
calculations are bundled with the development version of
i-PI, and will also be included in future releases, which
will be made available at http://ipi-code.org.
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130, 184105 (2009).

47T. J. H. Hele, M. J. Willatt, A. Muolo, and S. C. Althorpe, J.
Chem. Phys. 142, 191101 (2015).


