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Abstract
In many natural domains, risks and rewards are inversely re-
lated (Pleskac & Hertwig, 2014). We sought to understand
how people might use this relationship in choosing among
risky gambles. To do so we, manipulated risk-reward struc-
tures of monetary gambles to be either negatively or positively
correlated, or uncorrelated. After substantial exposure to these
environments, participants completed a speeded choice task
among non-dominated gambles. Eye-tracking data from this
task suggests that participants often shifted their attention to
mainly one attribute in the correlated conditions, in which the
risk-reward relationship was present. This was an adaptive
strategy that resulted in a similar proportion of expected-value
maximizing choices, compared to a more compensatory pro-
cessing strategy.
Keywords: risk-reward relationship; decisions under risk; at-
tention; noncompensatory processing; adaptive cognition

Introduction
How likely is it to win the jackpot in the state lottery? Al-
though many people play this game for a small pay-to-play
fee, most of them also know that they are unlikely to win it.
In fact, the larger rewards that we desire are usually unlikely
to occur. While such a negative relationship between risks
and rewards or probabilities and payoffs exists across gam-
bles in many monetary and nonmonetary domains in the en-
vironment, this relationship is hardly every present in empiri-
cal studies of risky choice (Pleskac & Hertwig, 2014). In this
study, we investigated how people’s experience with differ-
ent risk-reward relationships impact how they process explic-
itly stated payoffs and probabilities in decisions under risk.
In particular, we studied how an environment in which risks
and rewards are correlated would be conducive for the use
of noncompensatory processing strategies, that ignore part of
the attributes, in a situation where time was limited.

Adaptive Decision Making
According to an adaptive view of cognition, people ex-
ploit statistical regularities in the environment (Simon, 1956).
As Payne, Bettman and Johnson (1993) found, the extent
to which people exploit structures in the environment can
largely depend on “the structure of the available alternatives,
and [...] the presence of time pressure” (p. 534). For in-
stance, people can decide to rely on a subset of cues in the
environment because cues are often interrelated (Brunswik,
1952). Despite using a reduced amount of information, this
can lead to good choices (Gigerenzer, Todd, & the ABC Re-
search Group, 1999). Here, we propose that the risk-reward
relationship is a key structure that people capitalize on to
make fast, adaptive (or value-maximizing) decisions.

Choice in Risk-Reward Environments

When should and do people rely on risk-reward structures
to inform their decisions? One case is when information is
missing, such as in decisions under uncertainty, where the
probabilities of obtaining a reward are unknown. In this case,
Pleskac and Hertwig (2014) showed that people use a risk-
reward heuristic, inferring the probability of a payoff from
the magnitude of the payoff itself. In a new set of studies, we
have also found that in using the risk-reward heuristic people
appear to adapt to different risk-reward structures (Leuker,
Pleskac, Pachur, & Hertwig, in prep.). In particular, we ex-
posed participants to different risk-reward environments by
asking them to price gambles from different risk-reward en-
vironments. Then we asked participants to choose between
an uncertain prospect (where the probabilities were unstated)
and a certain payoff. Participants’ preferences were again
consistent with them using a risk-reward heuristic, inferring
probabilities from payoff magnitudes. Moreover, their pref-
erences depended on the environment they had been exposed
to previously. For example, participants in the negative con-
dition chose the lower payoff, uncertain options more often
compared to the positive condition. Based on these results,
we sought to examine if and how people adapt their decision-
making processes to risk-reward structures in decisions under
risk, when payoffs and probabilities of the option are known.

The Current Study

Processing strategies. One way to distinguish between
processing strategies is to consider the amount of attributes
they rely on. Compensatory strategies process and trade off
of all available and relevant information. Noncompensatory
strategies “typically reduce processing demands by ignoring
potentially relevant information” (Payne, Bettman, & John-
son, 1988). Thus, one important reason to consider noncom-
pensatory processing strategies (despite information being, in
principle, available, as in risky choice) is when time or cog-
nitive resources are limited.

Strategy-environment dependence. Early research on
these two classes of strategies demonstrated that their suc-
cess largely depends on the environment in which they are
recruited. Specifically, in environments with nondominated
options (e.g., gamble A offers a higher payoff x, but gamble
B offers a higher probability p: xA > xB and pA < pB), people
should rely on compensatory strategies (see Table 2, Payne et
al., 1988). A decision maker who processes the dimensions
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Figure 1: Choice stimuli based on their relationship between probabilities and payoffs. Each point depicts one gamble from
the choice phase. Across conditions, probabilities and payoffs were (A) negatively correlated, (B) positively correlated or
(C) uncorrelated. Black circles are environment gambles (60 pairs). Triangles are common gambles interspersed in all three
conditions (15 pairs). Dominated options not depicted (5 pairs).

in a noncompensatory fashion in these environments—for in-
stance by relying on a simplifying heuristic that attends to
outcomes only—will suffer “a substantial loss in accuracy”
(Payne et al., 1993, p. 539). In contrast, such noncompen-
satory processing strategies have been shown to perform well
when dominance is possible (that is, one gamble is better on
all dimensions: if xA > xB and pA > pB).

Local vs. global environment. By definition, nondomi-
nated options create an inverse risk-reward relationship in a
given set of alternatives, because the gamble offering a higher
payoff will always be associated with a lower probability rel-
ative to the other gamble (xA > xB and pA < pB). However,
this “local” risk-reward relationship (within a pair of gam-
bles) can differ from a “global” risk-reward structure (across
a larger reference class of gambles). That is, nondominated
alternatives can be drawn from globally structured or unstruc-
tured environments. We propose that both the use and perfor-
mance of either type of strategy is also highly dependent on
these global risk-reward structures. Global correlations be-
tween risks and rewards make one of the cues redundant (pay-
offs predict probabilities and vice versa). Therefore, we hy-
pothesized that, when options are drawn from correlated risk-
reward environments, noncompensatory strategies can lead to
accurate, expected-value maximizing choices even if neither
option is dominated. For choices between nondominated op-
tions from globally uncorrelated environments, results may
resemble those of Payne, Bettman and Johnson (1988).

To test these ideas, we employed a between-subjects design
manipulating the global risk-reward relationship between the
possible options participants experienced (Figure 1). In a first
pricing phase, we showed participants individual gambles and
asked them to state their willingness to sell each gamble. We
used this phase to expose people to different risk-reward envi-
ronments. Detailed data from this phase will be reported else-

where. Our focus in this paper is the second phase, where par-
ticipants chose between pairs of risky options under moder-
ate time pressure (Figure 2). The gambles in the choice phase
were drawn from the same, condition-dependent risk-reward
environments, and paired such that neither option was domi-
nated. We tracked participants’ eye movements to dissociate
between processing strategies across the different risk-reward
environments, as choice patterns alone may not be sufficient
to do so. As an independent test of whether participants had
picked up the different risk-reward relationships, we asked
them to estimate probabilities from payoffs at the end of the
experiment.

Method
Participants
Ninety-three (55 female) participants (mean age = 25.6 yrs,
SD = 3.7; N = 31 per condition) from the participant pool
at the Max Planck Institute for Human Development, Berlin,
completed the experiment (duration ∼75 min). All partici-
pants were paid a fixed rate of e 12 plus a bonus based on
their performance in a random subset of trials from the pric-
ing phase and choice task (e 3.53-11.67).

Design
The experiment consisted of three phases. In the pricing
phase, participants were presented with single gambles and
asked to indicate their willingness to sell for each of them.
Between subjects, we manipulated the types of gambles peo-
ple were presented with such that payoffs and probabilities
were positively or negatively correlated, or uncorrelated. In
the subsequent choice task, these different risk-reward struc-
tures were maintained. People were asked to choose between
gamble pairs within 3s. All gambles were in the gain domain
(”p1 chance of winning x1, otherwise nothing”). We used an
experimental currency, the E$ (conversion rate 2500E$ =e 1,
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disclosed in the instructions). We collected eye-tracking data
during the exposure phase and the choice task. As people
are merely exposed to different risk-reward structures, partic-
ipants picking up risk-reward structures despite not being told
about the presence of any relationship in the data would con-
stitute a form of unsupervised learning. Finally, in the third
phase we asked participants to estimate the probabilities they
thought were associated with various payoff levels. We did
this to test whether participants had picked up the different
risk-reward structures from the gambles they were exposed
to throughout the study. Participants were not informed about
the estimation task beforehand.

Gamble environments. The gambles from the pricing and
choice phases were constructed such that across gambles,
there was a negative, a positive, or no relationship between
risks and rewards. For the negative condition, we drew
random payoffs from a uniform distribution (range 1.01 −
2500E$). The probabilities for each payoff were inversely
related to the payoff x such that, p = 1 − x

2500 . We added
normally distributed noise to logit-transformed payoffs and
probabilities. For the positive condition, we reversed the or-
der of probabilities such that the highest probabilities were
now associated with the highest rewards (and vice versa). For
the uncorrelated condition, we re-linked payoffs and proba-
bilities randomly.

Pricing task. The pricing task served to expose participants
to different risk-reward environments. Briefly, participants
were shown each of the 90 gambles from one of the envi-
ronments and asked to state a price they would be willing to
sell the gamble for. In addition to 90 condition-dependent
gambles based on the aforementioned construction rule, par-
ticipants were also asked to price 30 gambles that were com-
mon to each of the three conditions (triangles in Figure 1),
yielding 120 gamble stimuli per condition. To motivate par-
ticipants to report their true valuations of the gambles, we
implemented a Becker-DeGroot-Marschak auction (Becker,
Degroot, & Marschak, 1964). In particular, ten gambles were
selected at the end of the experiment and participants either
played out the gamble or received their stated selling price.

Choice task. Gambles were created using the same con-
struction rule as above. An initial set of 100 gambles yields
4950 possible gamble pairs. We randomly drew 60 non-
dominated gamble pairs per condition (see circles in Fig-
ure 1). By design of the study, expected value differences
were largest in the uncorrelated and smallest in the positive
condition (uncorrelated: Md = 173E$, .53 - 1374E$; neg-
ative condition: Md = 134E$, .49 - 511E$; positive condi-
tion: Md = 23E$, .43 - 146E$). In addition, we interspersed
15 gamble pairs that were common to each of the conditions
in the second half of the choice task (triangles in Figure 1),
and 5 choices with dominated options as catch trials, yielding
80 choices in total. Common gambles allowed us to exam-
ine condition-dependent processing differences on precisely
the same stimuli. Participants were instructed to choose their
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Figure 2: Typical choice trial. For trials that exceeded the
time limit, we presented an additional screen informing par-
ticipants that they had lost payoffs in that particular trial (not
shown). Eye-tracking data was recorded throughout, analyses
are based on the second screen.

preferred gamble within 3s (see Figure 2). Crucially, partici-
pants were informed in this task that the gambles were drawn
from the same population of gambles they had experienced
in the previous pricing task. Five randomly selected choices
were played out at the end of the experiment.
Estimation task. We drew 20 payoffs (range 1.01 −
2500E$) and asked participants to estimate the probabilities
that had been associated with these payoffs in the main ex-
periment.

Eye-tracking

During the pricing and choice tasks, we collected binocular
eye position data with an EyeTribe tracker, sampled at 60Hz.
The experiment was implemented in PsychoPy 1.83.01 and
the eye-tracking interface PyTribe (Dalmaijer, Mathôt, & Van
der Stigchel, 2013). Each participant’s eye movements were
calibrated using the Eyetribe UI with a 9-point grid before
each task (< 0.7). Participants were seated approximately
60 cm from the screen using a chinrest affixated to the table,
in a room with negligible ambient light. We preprocessed
raw samples by parsing eye-tracking data into fixations and
saccades using the saccades package in R (Saccades Version
0.1-1, 2015), based on a velocity-based algorithm (Engbert &
Kliegl, 2003). Eye-tracking analyses in this paper are based
on fixation data.

Analysis

The data were analyzed using Bayesian General Linear Mod-
els using Stan in R for regression analyses (RStanArm Version
2.9.0-4, 2016). We ran 3 chains (2500 samples each, burn-in
of 500), and investigated (convergence of) our posteriors vi-
sually and with the Gelman-Rubin statistic (Gelman & Rubin,
1992). We report the mean of the posterior distribution of the
parameter of interest and two-sided 95% equal tail credible
intervals (CI) around each value.
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Results

Behavioral

We excluded one participant in the negative condition who
chose the dominated option in 4 out of 5 catch trials.

Pricing task. For all participants, prices were strongly re-
lated to the expected values of the gambles (credible payoff
× probability interaction, b = .70, CI = [.66, .74]).

Choice task. Participants across all three conditions chose
the expected-value-maximizing options above chance level
(M = .71, CI = [.56, .85]). As expected, in the positive
condition (in which the EV differences between the options
were rather small) participants made fewer EV-maximizing
choices (M = .59, CI = [.51, .67]) than in the uncorrelated
condition (in which the EV differences were larger; M =
.70, b = .11, CI = [.00, .22]), and the negative condition
(M = .74, b = .25, CI = [.14, .37]). Controlling for EV
differences and individual variation, participants in the neg-
ative condition achieved a higher proportion of expected-
value maximizing choices (M = .70, CI = [.52, .88]) com-
pared to the uncorrelated condition (M = .31, b =−.39, CI =
[−.63,−.16]), and the positive condition (M = .39, b =−.32,
CI = [−.54,−.09]). In both models, the highest accuracy was
achieved in the negative condition. In the subset of gambles
that were common across all conditions, there were no dif-
ferences in accuracy between the conditions (M = .53, CI =
[.35, .72]).

Response times were comparable across all conditions and
gamble types. In addition, small proportions of timed-out tri-
als (negative: .006, positive: .016, uncorrelated: .013) indi-
cate that participants were well-adjusted to the speed instruc-
tion of 3s (Md = 1.63s even suggest that people could have
taken more time on many trials).

Estimation task. Participants’ probability estimates re-
flected the risk-reward structure they had been exposed to
previously. That is, participants in the negative condition
provided lower probability estimates for gambles with higher
payoffs (b = −.64, CI = [−.68,−.60], % per 100 E$), and
in the positive condition participants provided higher prob-
ability estimates for gambles with higher payoffs (b = .16,
CI = [.10, .14]). In the uncorrelated condition, participants
provided lower probability estimates for gambles with higher
payoffs (weaker slope compared to the negative condition:
b =−.32, CI = [−.37,−.26]).

Eye-tracking

We defined four areas-of-interest (AOIs), one for each payoff
and probability. We visually inspected the quality of every
participant’s eye-tracking data by plotting their fixations over
time. Seven participants whose fixations did not map onto the
screen correctly were excluded, a possible result of the eye-
tracker being moved during the experiment. We excluded one
further participant who was blind in one eye, leaving N = 84
for the eye-tracking analyses (27, 29, and 28 in the negative,
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Figure 3: Number of AOIs inspected per condition. Each dot
represents one participant’s average number of AOIs visited
per trial. Dashed line = mean number of AOIs visited across
participants. Differences between conditions are driven by
the composition of compensatory/noncompensatory strate-
gies (percent compensatory in negative: 44%; positive: 34%,
uncorrelated: 61%).

positive, and uncorrelated conditions, respectively).

Number of AOIs viewed. To test whether the presence of
a risk-reward relationship led to more noncompensatory pro-
cessing, we averaged the number of AOIs each participant
viewed (max. 4). Participants in the uncorrelated condi-
tion inspected the largest number of AOIs (M = 3.46, CI =
[3.45, 3.48]). Participants in the positive condition inspected
a credibly lower number of AOIs (M = 3.20, b = −.20, CI
= [−.23,−.18]). The negative condition also inspected cred-
ibly fewer AOIs, but the difference was smaller (M = 3.40,
b = −.06, CI = [−.08,−.03], model on the trial level). Us-
ing the average number of fixations as an alternative indicator
resulted in the same pattern of results, and only a marginally
higher count (uncorrelated condition M = 3.71, negative con-
dition M = 3.51, positive condition M = 3.39), likely be-
cause the time limit imposed in the experiment did not al-
low for many re-acquisitions (i.e., fixations back to a previ-
ously acquired AOI). Note that the mean number of fixations
is rather low (i.e. < 4). We ran the same AOI model using
only common gamble data (see triangles in Figure 1). Again,
the uncorrelated condition inspected most AOIs (M = 3.21,
CI = [3.09, 3.34]). This number was lower in the posi-
tive condition (M = 2.83, b = −.38, CI = [−.57,−.20], dif-
ference credible), and in the negative condition (M = 3.07,
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b = −.14, CI = [−.34, .04], difference however not credi-
ble). Because these gambles were identical across condi-
tions, this suggests condition-dependent processing strategies
are not merely a by-product of specific risk-reward environ-
ments that vary on crucial dimensions such as EV differences
between gambles. Figure 3 suggests substantial individ-
ual differences among participants in the conditions (indeed,
differences in numbers of AOIs inspected can be accounted
for by including participant as a grouping factor). More
importantly, however, visual inspection of the data suggests
two subgroups that can roughly be split by the mean num-
ber of AOIs inspected across participants (M = 3.11, dashed
line in Figure 3): Participants who tend to inspect all four
AOIs (“compensatory”) and participants who ignore some of
the AOIs (“non-compensatory”). Thus, differences between
conditions may be driven by the composition of compen-
satory/noncompensatory strategies (proportion compensatory
in uncorrelated: .61, positive: .34, negative: .44). That is, par-
ticipants in the uncorrelated condition were 2.85 times more
likely to rely on a compensatory strategy than participants in
the positive condition (b = 1.05, CI = [.07,2.04]). The dif-
ference between the negative and positive risk-reward envi-
ronments was not credible (b = .68, CI = [−.29,1.73], OR
= 1.97). A majority of participants in the correlated envi-
ronments thus seemed to rely on a noncompensatory strategy
(note that here such a strategy could also mean attending to
three out of four AOIs per trial, see Figure 3).

Attention to attributes. Which attributes did participants
attend to, especially when choosing to ignore some of the
information? All participants fixated most on payoff infor-
mation (.57 of fixations, CI = [.53, .61]). This proportion de-
creased for participants who inspected more AOIs (b =−.98,
CI = [−1.56,−.38]; no credible effect of condition). At the
extreme end, participants who, on average, inspected roughly
two AOIs fixated on the payoff 80% of the time. An alter-
native viable noncompensatory strategy would have been to
focus more on the information presented at the top or the bot-
tom of the screen. We counterbalanced the location of at-
tributes (between-participants). However, top/bottom fixation
proportions were unrelated to the number of AOIs inspected
(b = .03, CI = [−.60, .66]), suggesting that participants con-
sidered payoff information as more relevant when using non-
compensatory strategies.

EV choices by strategy. Do compensatory or noncompen-
satory strategies differ in performance within the three envi-
ronments? Figure 4 shows that users of a noncompensatory
strategy (triangles) achieved similar levels of EV-maximizing
choices compared to users of a compensatory strategy (cir-
cles), overall (M = −.10, CI = [−.39, .18]). Unexpectedly,
this held irrespective of condition (no credible strategy × con-
dition interaction). This result also held when controlling for
differences between the condition in EV difference between
the options. We expected that in the uncorrelated condition,
decision performance would be compromised for users of a
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Figure 4: Proportion of higher EV choices by a participant’s
average number of AOIs inspected per trial, condition, and
decision strategy. Circles = noncompensatory strategy users,
triangles = compensatory strategy users. The gain in EV-
maximizing choices associated with inspecting more AOIs is
more pronounced for participants in the uncorrelated condi-
tion.

noncompensatory strategy—who should lack critical infor-
mation to determine the EV maximizing option.

At the same time, across conditions, the proportion of
EV-maximizing choices was higher for participants who in-
spected more AOIs (main effect of AOIs inspected on EV
choice irrespective of processing strategy, b = .044, CI =
[.001, .089]). Within each subgroup, the increase in EV
choices with increasing numbers of AOIs inspected is more
pronounced for participants in the uncorrelated condition (see
black regression line, Figure 4). Yet, this interaction effect is
not credible, potentially due to the small number of partici-
pants in each subgroup (AOI × condition interaction with the
positive condition as a reference; compensatory: b = .02, CI
= [-.04, .09]), noncompensatory: b = .05, CI = [-.01, .11]). In
general, one would indeed expect that the increase in the pro-
portion of EV choices with higher number of AOIs inspected
is more pronounced for the uncorrelated condition because
this condition allows for least simplification.

Discussion
Risk-reward relationships allow people to make fast, value-
maximizing decisions. A majority of people exposed to
correlated risk-reward structures used noncompensatory pro-
cessing strategies, likely as a result of time pressure. With
fewer AOIs inspected, participants focused more on payoff
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information. In turn, most people who experienced an un-
correlated risk-reward environment attempted to take into ac-
count all attributes, speaking in favor of a more compensatory
processing strategy. This strategy use is adaptive given the
affordances of the different environments. While correlated
risk-reward environments made one of the attributes redun-
dant, such a relationship did not exist for gamble problems in
uncorrelated risk-reward environment. Condition-dependent
processing differences (i.e., numbers of AOIs visited) per-
sisted when restricting the analysis to a common set of gam-
bles interspersed in each of the conditions. Surprisingly, these
differences only had a minor impact on EV choice.

Earlier research suggested that noncompensatory strategies
fare well when dominance is possible, but not when neither
option is clearly dominated (Payne et al., 1988). We identify
one qualification of this prediction, showing that noncompen-
satory processing strategies can also perform well for non-
dominated option pairs; namely when a risk-reward relation-
ship is present in the global set that gamble pairs are drawn
from. Researchers have studied the influence such contex-
tual factors before. Birnbaum (1992) found that participants’
certainty equivalents for gambles were larger when a set of
certainty equivalents to choose from was positively skewed
(vs. negatively skewed). In addition, the marginal distri-
butions of payoffs, probabilities and delays can account for
psycho-economic functions that are often described in the lit-
erature (Stewart, Chater, & Brown, 2006). Here, we extend
such considerations by manipulating the joint distribution of
payoffs and probabilities.

Several limitations of the current study should be men-
tioned. First, it is currently unclear what underlies the strong
individual differences in noncompensatory/compensatory
strategy use in each condition. Potentially, some participants
did not perceive a time limit of 3s as pressing enough to opt
for noncompensatory strategies, or turned to different simpli-
fication strategies. Overall, the dichotomous distinction be-
tween compensatory and noncompensatory processors may
be too simplistic: For instance, some individuals attended to
three attributes on average (i.e., more than one class of at-
tributes such as two payoffs, one probability). Another pos-
sibility is that users of a noncompensatory strategy fixated
on some but glanced the other attributes (covert attention),
or changed strategies across trials. Lastly, more research is
needed to study the process by which people learn about dif-
ferent risk-reward structures (Klayman, 1988).

Conclusion
People’s choices and processing strategies are impacted by
the risk-reward structure in a given environment. Specifically,
correlated risk-reward environments allow decision makers
to use noncompensatory strategies when they need to reduce
processing demands. This strategy use is adaptive, given that
it does not need to compromise accuracy if it matches the en-
vironment. Many natural environments exhibit an inverse re-
lationship between payoffs and probabilities that can thus be

exploited in a similar way, when time or cognitive resources
are limited. These findings challenge theories of decision
making under risk, that often treat payoffs and probabilities
as independent attributes determining the value of an option.
In comparison, an adaptive decision maker may often have
good ecological reasons to process payoffs and probabilities
dependently.
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