
 

This paper was originally published by Sage as: 
Johnson, D. J., Hopwood, C. J., Cesario, J., & Pleskac, T. J. (2017). 
Advancing research on cognitive processes in social and 
personality psychology: A hierarchical drift diffusion model 
primer. Social Psychological and Personality Science, 8(4),  
413–423. https://doi.org/10.1177/1948550617703174 
 
This publication is with permission of the rights owner freely accessible due to 
an Alliance licence and a national licence (funded by the DFG, German Research 
Foundation) respectively. 
 
 

Nutzungsbedingungen: 
 
Dieser Text wird unter einer Deposit-Lizenz 
(Keine Weiterverbreitung - keine 
Bearbeitung) zur Verfügung gestellt. 
Gewährt wird ein nicht exklusives, nicht 
übertragbares, persönliches und 
beschränktes Recht auf Nutzung dieses 
Dokuments. Dieses Dokument ist 
ausschließlich für den persönlichen, nicht-
kommerziellen Gebrauch bestimmt. Auf 
sämtlichen Kopien dieses Dokuments 
müssen alle Urheberrechtshinweise und 
sonstigen Hinweise auf gesetzlichen 
Schutz beibehalten werden. Sie dürfen 
dieses Dokument nicht in irgendeiner 
Weise abändern, noch dürfen Sie dieses 
Dokument für öffentliche oder 
kommerzielle Zwecke vervielfältigen, 
öffentlich ausstellen, aufführen, vertreiben 
oder anderweitig nutzen. Mit der 
Verwendung dieses Dokuments erkennen 
Sie die Nutzungsbedingungen an. 

Terms of use: 
 
This document is made available under 
Deposit Licence (No Redistribution - no 
modifications). We grant a non-exclusive, 
nontransferable, individual and limited right 
to using this document. This document is 
solely intended for your personal, non-
commercial use. All of the copies of this 
documents must retain all copyright 
information and other information 
regarding legal protection. You are not 
allowed to alter this document in any way, 
to copy it for public or commercial 
purposes, to exhibit the document in public, 
to perform, distribute or otherwise use the 
document in public. By using this particular 
document, you accept the above-stated 
conditions of use. 
 
 

 
Provided by: 
Max Planck Institute for Human Development 
Library and Research Information 
library@mpib-berlin.mpg.de 

https://doi.org/10.1177/1948550617703174
mailto:library@mpib-berlin.mpg.de


Special Issue Article

Advancing Research on Cognitive Processes
in Social and Personality Psychology:
A Hierarchical Drift Diffusion Model Primer

David J. Johnson1, Christopher J. Hopwood1, Joseph Cesario1,
and Timothy J. Pleskac2

Abstract

We provide a primer on a hierarchical extension of the drift diffusion model (DDM). This formal model of decisions is frequently
used in the cognitive sciences but infrequently used in social and personality research. Recent advances in model estimation have
overcome issues that previously made the hierarchical DDM impractical to implement. Using examples from two paradigms, the
first-person shooter task and the flash gambling task, we demonstrate that the hierarchical DDM can provide novel insights into
cognitive processes underlying decisions. Finally, we compare the DDM to dual-process models of decision-making. We hope this
primer will provide researchers a new tool for investigating psychological processes.
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Although widespread in cognitive sciences, the use of sequen-

tial sampling models to understand decision-making is rare in

our field. We demonstrate how a hierarchical version of the

drift diffusion model (DDM; Ratcliff, 1978) can advance

research on psychological processes for social and personality

psychology. Although we illustrate the model with two tasks,

we stress its relevance for any task where individuals make

decisions between alternatives.

The DDM

The DDM is a sequential sampling model used primarily

to explain binary decisions (see Forstmann, Ratcliff, &

Wagenmakers, 2016; Klauer, 2014; Ratcliff & McKoon,

2008; Ratcliff, Smith, Brown, & McKoon, 2016). The key

model assumption is that people repeatedly sample decision-

relevant evidence from their environment until some threshold

is met, triggering a decision. The model simultaneously

explains both decisions and decision speed. This dynamic ele-

ment separates the DDM from other cognitive models better

known to social and personality psychologists, such as process

dissociation (Jacoby, 1991; Payne, 2001) or signal detection

(Green & Swets, 1966), which assume a static evidence accu-

mulation process and cannot explain decision speed.

Figure 1 depicts the DDM and Table 1 describes its para-

meters. The model assumes that when people make a decision

between two choices they start out with a bias for one choice.

They then accumulate evidence over time, and when that

evidence reaches a threshold, they make the decision. Response

time is determined by reaching a threshold. Errors happen

because evidence is noisy and sometimes accumulates incor-

rectly to the wrong threshold. Increasing the distance between

thresholds decreases the chance evidence will reach the incor-

rect threshold but also increases response time, offering a

mechanistic explanation of the speed–accuracy trade-off.

For a given relative start point b, threshold separation a,

drift rate d, and nondecision time t, the model predicts the

probability of selecting each choice and the associated response

time distribution. Expressions and derivations for these para-

meters are well-documented (Busemeyer & Diederich, 2010;

Diederich & Busemeyer, 2003; Ratcliff & Tuerlinckx, 2002;

Van Zandt, 2000). Figure 1 illustrates predicted response time

distribution for choosing Option A and Option B given a set of

parameters. The area under each distribution reflects the pre-

dicted probability that evidence accumulation will terminate

at the given threshold (the predicted choice probability). Thus,

the total area under the distributions is equal to 1. Figure 2
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shows how changes in the parameters impact predicted choice

proportions and response time distributions.

More complex versions of the DDM exist that include trial-

by-trial variability in parameters to account for slow and fast

errors (Ratcliff, 1978; Ratcliff & Rouder, 1998; Ratcliff, Van

Zandt, & McKoon, 1999), changes in information processing

as attention switches between sources of information (Dieder-

ich, 1997; Diederich & Busemeyer, 2015; Krajbich, Armel, &

Rangel, 2010), extra processing stages to account for confi-

dence (Pleskac & Busemeyer, 2010), decay parameters to

account for leakage of evidence (Busemeyer & Townsend,

1993; Yu, Pleskac, & Zeigenfuse, 2015), or ways to model

responses with more than two alternatives (Diederich & Buse-

meyer, 2003; Smith, 2016). Each of these modifications can be

compared to simpler versions to test whether the modified

models and the hypotheses they formalize better account for

data. Here, we focus on the standard model to illustrate its

potential for social and personality research.

Benefits of the DDM

As a formal cognitive model, the DDM possesses several ben-

efits including the ability to measure latent processes, disentan-

gle process-level accounts of behavior, and provide explicit

tests of fit (Klauer, 2014). However, the dynamic nature of the

DDM provides some unique benefits that merit elaboration.

First, the DDM presents a unified model of decision-making

speed and accuracy. Often in psychology, decisions and

response times are analyzed separately or one is simply

neglected. Even worse, when analyzing reaction time data,

error trials are typically discarded based on the assumption that

some unknown process has contaminated them. This proble-

matic claim is often based on intuition rather than evidence.

However, the DDM shows how the same process can generate

both correct and incorrect decisions as well as their speed.

From this perspective, ignoring nonindependence wastes data

and prevents researchers from questioning whether factors that

Figure 1. The diffusion model. Individuals start with an initial pre-
ference for Option A or B. This initial preference is determined by the
relative start point b, which determines the relative location between
the two choice thresholds. Information is then accumulated in favor of
one of the two options with average strength d. The amount of
information needed to make a decision is indicated by the location of
the thresholds with the bottom threshold fixed at 0 and the location of
the upper threshold determined by the parameter a. The length of
time for other nondecision-related processes by tau t. Distributions
(in blue) above and below the decision space indicate that the model
predicts the distribution of response times for each option.

Table 1. Main Parameters of the Drift Diffusion Model.

Parameter Interpretation

Relative start
point (b)

Initial bias to favor one option at the start of the
evidence accumulation process, with 0 < b < 1. A
value of .50 indicates no preference.

Threshold (a) Level of evidence required to make a decision, with
0 < a. Hitting a threshold boundary triggers the
relevant choice. Measures how much a person
trades accuracy for speed.

Drift rate (d) Average quality of information extracted from a
stimulus at each unit of time, with �1 < d <1.
Higher absolute values indicate stronger
evidence, whereas values around zero indicate
ambiguous evidence.

Nondecision
time (t)

Length of all response components unrelated to
decision-making, with 0 < t. Reflects encoding,
motor response time, and other unknown
contaminants. Measured in milliseconds.

Figure 2. An illustration of how changing diffusion model parameters
impacts decisions and response time distributions (in blue). We
assume that evidence is correctly accumulated toward Option A. Top
panel: higher relative start point b increases the likelihood and speed
of selecting Option A by primarily increasing modal response speed.
Middle panel: higher threshold a increases the likelihood of choosing
Option A and decreases the speed of choosing both options by shifting
the mode and lengthening the tails of responses. Bottom panel: higher
drift rate d increases the likelihood and speed of selecting Option A by
shortening the tails of the responses. Nondecision time t is not
depicted as it simply shifts both distributions by a fixed amount.
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influence accuracy and speed do so through similar or different

processes.

This issue also applies to other types of cognitive models,

including signal detection (Green & Swets, 1966), process dis-

sociation (Jacoby, 1991) and quadruple models (Conrey, Sher-

man, Gawronski, Hugenberg, & Groom, 2005). By only taking

into account decision data, they provide an incomplete picture

of the dynamic decision-making process. This is evident in

tasks where individuals make few errors, like the implicit asso-

ciation test (Greenwald, McGhee, & Schwartz, 1998). Because

these models map processes onto decisions only, when there is

little variability in decisions parameters cannot be estimated. In

contrast, the DDM can still explain decisions as long as there is

variability in decision speed. Thus, it provides a more compre-

hensive model of decision-making.

Another benefit is that the DDM is a formal description of

the decision-making process that can be directly tested rather

than relying on indirect tests through questionnaires. This is

relevant to personality psychologists, who are interested in

how individual differences in traits influence behavior. Typi-

cally, researchers use a correlational design where a trait is

measured via self-report and then compared to some behavior.

However, there are concerns about the role of self-insight and

willingness to report information (McClelland, Koestner, &

Weinberger, 1989). In contrast, the DDM can experimentally

test the cognitive processes that underlie behavior. This

method can measure processes without raising self-

presentation concerns.

In summary, the DDM presents a unified model of decision-

making speed and accuracy that more fully describes the

decision-making process compared to other process models

common to social and personality psychologists. It also pro-

vides a way to test the cognitive processes that give rise to

behaviors in ways that complement research in individual dif-

ferences. Despite these advantages, current implementations of

the DDM have made it difficult to use with most social and per-

sonality paradigms. We now discuss how a hierarchical version

of this model overcomes this difficulty.

Hierarchical DDM

There are several different methods by which the DDM can be

estimated from the data (e.g., Busemeyer & Diederich, 2010;

Ratcliff & Childers, 2015; Ratcliff & Tuerlinckx, 2002;

Wagenmakers, Van Der Mass, & Grassman, 2007). However,

the full model must be estimated from response time distribu-

tions, which requires a large amount of data (Wagenmakers,

2009). Because the standard DDM analyzes decisions at the

individual level, this requires many trials per participant. This

method is incompatible with many social and personality

paradigms, which are based on few trials per participant and

focus on population-level analyses. Researchers must make

trade-offs to estimate the model at the individual level with

sparse data, simplifying the model by constraining which

parameters vary (e.g., Correll, Wittenbrink, Crawford, &

Sadler, 2015) or increasing the number of trials (Dioux,

Brochard, Gabarrot, & Zagar, 2016; Klauer, Voss, Schmitz,

Teige, & Mocigemba, 2007).

In a two-step approach, researchers first estimate models at

the individual level, then conduct a second analysis on the para-

meter estimates to test the effects of individual differences or

experimental manipulations. This approach has been used with

psychological phenomena such as shooting decisions (Correll

et al., 2015), implicit associations (Klauer et al., 2007), weapon

identification (Klauer & Voss, 2008), and stereotype priming

(Dioux et al., 2016). However, this two-step approach is not

without issue. First, in many experimental contexts, it may be

impossible to obtain enough trials per participant to obtain reli-

able parameter estimates. In addition, because information

about participants is isolated, this approach is less powerful

than an approach that examines all data simultaneously.

Recent advances in Bayesian modeling have overcome this

issue by embedding the DDM in a hierarchical framework

(Vandekerckhove, Tuerlinckx, & Lee, 2011; Wiecki, Sofer,

& Frank, 2013). This method produces parameter estimates

at individual and condition levels. When variability between

participants is low, it increases the precision of individual esti-

mates and shrinks them toward the group mean. This allows for

precise estimates with sparse data (Krypotos, Beckers, Kindt,

& Wagenmakers, 2015). This approach makes the DDM suit-

able for use in common tasks and increases the power of the

analysis.

A depiction of the hierarchical DDM is shown in Figure 3.

As the bottom of the figure shows, the joint probability of a

decision and its response time are distributed according to a

Weiner diffusion process. The model is structured hierarchi-

cally because the data for each subject are constrained by a

higher order condition-level distribution. For example, the

threshold for subject s in within-subjects condition w and

between-subjects condition b is indicated by a normal

distribution,

awbs~N
�
mawb; t

a
b

�
;

where mawb and tab indicate the mean and precision (inverse of

the variance) of the condition-level distribution, respectively.

We account for repeated measures designs by keeping the pre-

cision parameter constant across within-subjects conditions,

but allowing it to vary across between-subjects conditions

(Kruschke, 2014).

We estimate the posterior distributions of the hierarchical

DDM in a Bayesian framework using Markov Chain Monte

Carlo (MCMC) methods. These methods estimate a distribu-

tion by repeatedly drawing samples from it. They can be con-

trasted with maximum likelihood methods, which rely on

optimization algorithms to find parameter values that maxi-

mize the likelihood of the data. These techniques become

impractical as model complexity increases (Navarro & Fuss,

2009; Tuerlinckx, 2004). The DDM is already a complex

model (Navarro & Fuss, 2009; Tuerlinckx, 2004) and hierarch-

ical extensions (e.g., random effects of conditions or persons)

quickly become intractable using these methods. However,

MCMC methods only require the specification of a prior

Johnson et al. 415



distribution and a tractable likelihood function to update that

distribution (Gelman & Hill, 2007; Kruschke, 2014; Kruschke

& Vanpaemel, 2015). This framework accommodates complex

random structures with little computational burden (Vande-

kerckhove et al., 2011).

We use the MCMC program JAGS with the Wiener module

extension (Wabersich & Vandekerckhove, 2014) to run the

model. Figure 5 shows the JAGS code for the hierarchical

DDM where all of the model parameters vary according to

some number of between- and within-subjects manipulations.

Translating the graphic diagram into JAGS code is straightfor-

ward. Each arrow corresponds to one line of code. For example,

the equation above is expressed as Line 8. The function

“dnorm” indicates that alpha is normally distributed with mean

muAlpha and precision precAlpha. The code also contains

information about how distributions were truncated.1

Condition-level parameters are given uninformative priors

so the data dominate the posterior estimates. For instance, for

each condition the mean threshold is uniformly distributed

across all plausible values (Line 18). The precision is given a

wide gamma prior ranging from zero to infinity (Line 23).

When specifying the model, each parameter can be allowed

to vary across all experimental conditions or be held con-

stant when appropriate. Different priors can be investigated

to understand their impact on theoretical conclusions, but

typically when the data set is moderately large and priors

are not severely specific, posterior estimates are robust

(Kruschke, 2014).

Walkthrough With First-Person Shooter
Task (FPST) Data

To demonstrate how to implement the hierarchical diffusion

model, we used data from the FPST (Correll, Park, Judd, &

Wittenbrink, 2002). The FPST is used to study how race influ-

ences the decision to shoot. In the task, 56 subjects saw 100 pic-

tures of Black and White men holding guns or harmless objects

(in a fully crossed design). They were instructed to shoot armed

targets and not shoot unarmed targets, within a 850-ms

Figure 4. Response times and error rates from Study 1 of Pleskac,
Cesario, and Johnson (2017). Error bars are 95% confidence intervals
with the standard error estimated from the mean squared error of the
race by object interaction from the analysis of variance.
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Figure 3. Graphic diagram of the hierarchical drift diffusion model (DDM). Bivariate decision and response time y for subject s in within-subjects
condition w and between-subjects condition b on trial t is generated by a drift diffusion process. Markers on the DDM indicate the data were
censored. Subject-level decision parameters are drawn from condition-level truncated normal distributions (middle row). These distributions
are given uninformative priors (top row). Each arrow represents a line of JAGS code (see Figure 5) and is indicated by the number to the left of
the arrow.
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response window. This specific data set was reported in

Pleskac, Cesario, and Johnson (Study 1; 2017).

The FPST hypothesis is that correct responses to stereotype

congruent targets (armed Blacks, unarmed Whites) will be

faster than correct responses to stereotype incongruent targets

(unarmed Blacks, armed Whites). Figure 4 shows that subjects

were faster to correctly shoot armed Black targets than armed

White targets, t(55) ¼ �6.50, p < .001, and slower to correctly

not shoot unarmed Black targets than unarmed White targets,

t(55) ¼ 5.97, p < .001. That is, participants showed evidence

of racial bias. However, this bias was not evident in error rates;

subjects made fewer errors for unarmed Black targets than for

unarmed White targets, t(55) ¼ �3.25, p ¼ .002, and there

were no significant differences for armed targets.

While these analyses reveal that race impacts shooting deci-

sions, they do not illustrate what part of the decision-making

process is influenced by race. Correll, Park, Judd, and Witten-

brink (2002) argued race might influence decisions by biasing

people to shoot, changing interpretation the object, or reducing

decision-making certainty. Ultimately, they conclude that

stereotypes “may theoretically affect any or all of these pro-

cesses, and it is difficult to disentangle them theoretically, let

alone empirically” (p. 1326). While testing these hypotheses

is difficult when looking at decisions alone, the DDM can tease

apart these possibilities.

Model Specification and Estimation

To examine the FPST data, we embedded the DDM within a

hierarchical framework and specified the model according to

the guidelines from Pleskac, Cesario, and Johnson (2017). All

parameters were allowed to vary as a function of race, but only

drift rate and nondecision time were allowed to vary as a func-

tion of object. This design reflects a balance between exploring

the different possibilities of how race might influence shooting

decisions and model parsimony, as measured by comparing

alternative specifications, their posterior distributions, and

model fit. A graphic diagram of the model is provided in the

Supplemental Materials.

We estimated the model using JAGS 4.20 (Plummer, 2003)

for MCMC sampling and R (R Core Team, 2016) to send data

to JAGS and analyze the predicted values. JAGS code, R code,

and data to replicate these analyses are provided in the Supple-

mental Materials. A sample of the data set is given in Table 2,

and each trial represents a single row.

Hypothesis Testing in a Bayesian Framework

We estimate the posterior distribution of parameters by gener-

ating a large sample from it using MCMC methods. Each sam-

ple in the MCMC chain provides one credible combination of

parameter values given the data and prior distribution. We

repeated this process with four independent chains 20,000

times for a total of 80,000 samples. We used the diagnostic

methods recommended by Kruschke (2014) to ensure the

representativeness and accuracy of the samples; these are

detailed in the Supplemental Materials.

We describe the posterior distributions for each parameter

(all 80,000 values) by their modal value and 95% highest den-

sity interval (HDI). The modal posterior value has the highest

probability density, making it the most credible estimate.

Values in the 95% HDI have a higher probability density than

values outside the interval and so are more credible (Kruschke,

2014). We use an estimation approach to hypothesis testing

(see Chapter 12, Kruschke, 2014). We ask if the credible values

in the 95% HDI of a parameter contain some sort of null value

(e.g., 0). If the null value is not among the credible values, we

reject it.

Testing for differences between conditions is simple within

this framework. We take the posterior distributions for two

parameters of interest such as the threshold for Black targets

and White targets. We then calculate the difference between

the parameter values in each sample. This produces a

Table 2. Sample of the First-Person Shooter Task Data Analyzed
With the Hierarchical Drift Diffusion Model.

Subject Race Object Shoot RT

1 Black Gun Yes 464
1 Black Nongun No 658
1 Black Gun Yes 776
1 White Gun Yes 646
1 White Nongun No 624

Note. Each trial is represented by five columns: one indicating subject number,
two indicating the experimental conditions: race of the target and whether they
were holding a weapon, and two indicating the decision and the speed at which
it was made.

Figure 5. JAGS code for implementing a general form of the hier-
archical drift diffusion model. Each line of code that is not a loop,
bracket, or comment has a corresponding arrow in the graphic
diagram.
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distribution of credible mean differences. If the 95% HDI for

this distribution does not contain zero, the condition effect is

credible.

Results and Discussion

The full results of this analysis are reported in Pleskac, Cesario,

and Johnson (2017). We summarize them here in Figure 6 to

illustrate the inferences one can make with the DDM. Starting

with the drift rate, while race did not influence the strength of

evidence (drift rates) for nongun objects (M ¼ 0.07, 95% HDI

[�0.25, 0.44]), it did influence the strength of evidence for gun

objects (M ¼ 0.64, 95% HDI [0.31, 0.98]). Evidence for the

shoot decision was stronger when Black men held guns com-

pared to White men. This analysis is consistent with the

account that race influences identification of guns because of

stereotypic associations between Black men and violence.

Turning to the relative start point, all conditions showed a

bias to favor the shoot decision (b > .5). This bias is expected

given the payoff structure of the FPST, where participants are

on average rewarded more for shoot decisions. It also speaks to

the validity of the hierarchical DDM. Past work using a

nonhierarchical DDM (Correll et al., 2015) has shown a bias

to favor not shooting, which does not accurately reflect the pay-

off structure of the task.

Participants also showed a bias to favor not shooting Black

targets relative to White targets (M ¼ .04, 95% HDI [.01, .08])

and required more evidence (M ¼ .09, 95% HDI [.00, .18])

when making decisions for Black targets than White targets.

These counterstereotypic biases partially but not completely

offset shooting errors caused by biased evidence accumulation

and may reflect motivated strategies to reduce racial bias in

shooting decisions. Past work using nonhierarchical versions

of the DDM has not found such race-based differences (Correll

et al., 2015). This may be partially due to the simplifications

researchers make to estimate the model as well as decreased

power from analyzing data in isolation. These findings demon-

strate the hierarchical DDM may provide a richer account of

shooting decisions because the race of an individual may have

different and opposing effects on the decision process.

These findings also explain why race bias shifts from errors

to response times when individuals have longer to respond

(Correll et al., 2002). The first factor is that drift rates are stron-

ger for the shoot decision for Black men than White men. All
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things equal, subjects should be more likely and faster to shoot

Black men. In practice, whether bias manifests in decisions or

response times depends on whether enough information is col-

lected to avoid errors. As the threshold increases, error bias

should decrease but response time differences should increase.

This is the pattern we observed in the current data set. How-

ever, when response windows are shorter (e.g., 630 ms), thresh-

olds decrease. This process-level difference parallels a

behavioral increase in all errors and reveals decision bias

(Pleskac, Cesario, & Johnson, 2017). Thus, the model parsimo-

niously explains how bias in errors and decision speed results

from different factors impacting the same process.

Finally, an examination of nondecision time revealed a main

effect of object. Nondecision times were faster for guns than

nonguns (M ¼ 47, 95% HDI [35, 60]). This may be partially

due to greater variation among nongun stimuli (e.g., wallets,

cell phones) than gun stimuli. There was also an effect of race

on nondecision times for gun objects (M ¼ 21, 95% HDI [2,

38]), but not nongun objects (M ¼ �14, 95% HDI [�34, 4]).

In summary, FPST analyses that focus only on decisions or

response times are not well equipped to explain how race

impacts different stages of the decision to shoot. Because of

this, several questions have remained elusive, such as whether

race bias results from prior biases or changes in object interpre-

tation, and why bias shifts from errors to response times when

subjects are given longer to respond. The hierarchical DDM

provides parsimonious answers to these questions while pro-

viding a more coherent and richer account of the decision to

shoot than nonhierarchical versions.

Having provided a framework for how to estimate and inter-

pret results from the hierarchical DDM with a common social

psychology task, we turn to a more theoretical discussion of

adapting the DDM to study individual differences.

The Flash Gambling Task (FGT)

Personality psychologists have established associations

between impulsivity (Acton, 2003) and risky behavior such

as gambling or substance abuse. But, what are the processes

that lead impulsive people to engage in risky behavior? One

facet of impulsivity is deliberation, or how much people think

carefully before acting. People scoring low on this facet of

deliberation are typically described as hasty, impulsive, care-

less, and impatient (Barratt, 1993; Whiteside & Lynam,

2001). From this perspective, the DDM provides a formal

description of the deliberation process and thus provides a

means to better understand the processes underlying

impulsivity.

Pleskac, Yu, Hopwood, and Liu (2017) used the FGT (Zei-

genfuse, Pleskac, & Liu, 2014) to examine this connection

within risky decision-making. In the FGT, participants make

repeated choices between a certain and uncertain payoff. A typ-

ical FGT trial is shown in Figure 7. Each option in the FGT is

represented by an array of randomly positioned dots. Each dot

corresponds to a small amount of money and the total number

of dots in each array represents a sampled payoff. The certain

option has a fixed number of dots in its array (e.g., 130)

whereas the uncertain option has a changing number of dots

that updates when a new sample is drawn (every 50 ms). Parti-

cipants use these payoffs to determine which option they prefer

and earn the next payoff from their chosen option. Importantly,

this makes the sequential sampling process observable,

whereas applications like the FPST assume a latent sequential

sampling process. In other words, for a given trial the stochastic

path of evidence accumulation in Figure 1 can be observed.

This allows a better understanding of how people use sequen-

tial samples of information during deliberation (see Brown,

Steyvers, & Wagenmakers, 2009; Irwin, Smith, & Mayfield,

1956; Vickers, Burt, Smith, & Brown, 1985).

Several studies have found that people are risk seeking, pre-

ferring the uncertain option over the certain option even when

the certain option is equal to or greater in expected value. For

example, Pleskac, Yu, et al. (2017) had participants chose

between a certain option with 130 dots and an uncertain option

with a mean of 115, 130, or 145 dots. Even when the uncertain

option was worse than the certain option, participants typically

chose the uncertain option. Moreover, Pleskac, Yu, et al.

(2017) went beyond fitting the hierarchical DDM to choice

behavior and analyzed how participants used the stream of pay-

off information from the uncertain option. Results were consis-

tent with the DDM; participants accumulated the stream of

information as evidence and used it to determine their choice.

Thus, the DDM appears to accurately capture the deliberation

process during risky decision-making in the FGT.

This result leads to questions about whether aspects of the

deliberation process, such as initial biases and the amount of

information required to make decisions, might relate to the con-

nection between trait impulsivity and risky behaviors like sub-

stance abuse. Pleskac, Yu, et al. (2017) correlated the

hierarchical DDM parameters from the FGT with measures

Figure 7. Diagram of flash gambling task stimulus. Participants choose
between an option that provides a certain payoff and an option that
provides an uncertain payoff. The certain option is represented by a
fixed number dots, where the total number of dots signifies the payoff.
The uncertain option is also represented by a field of dots, but the
number of dots is determined by random draws updated every 50 ms
from a normal distribution with some mean and variance. Participants
observe sequential samples from the option to form an impression
about it. Thus, the sequential sampling process assumed by the diffu-
sion model is made observable. When the participant makes a choice,
he or she receives the next draw from the option as a payoff.
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of risky behavior and trait impulsivity. Interestingly, the DDM

parameters measuring deliberation during the FGT were not

related to self-reported measures of risk attitudes and impulsiv-

ity. Nevertheless, aspects of the deliberation process as mea-

sured by the DDM did provide incremental validity over an

impulsivity questionnaire for predicting substance use. Spe-

cifically, individuals with an initial bias toward the uncertain

option as well as individuals less sensitive to the samples of

information (a drift rate proxy) were more likely to have

abused substances. Correlations between the FGT and risky

behavior were modest, like other cognitive/behavioral tasks

(Cyders & Coskunpinar, 2011; Reynolds, Ortengren,

Richards, & de Wit, 2006). However, this result suggests that

the FGT as parameterized by the hierarchical DDM may be

useful in assessing behavioral risk.

It is interesting that the DDM parameters during the FGT

were related to substance use behavior even though they were

not related to questionnaire-assessed impulsivity. Bornstein

(2012) reviewed similar patterns in assessment and found that

while self-report and performance-based measures of depen-

dency are uncorrelated, they nevertheless are incrementally

informative about dependent behavior. Based on such find-

ings, Bornstein argued for a process-dissociation approach

to psychological assessment that integrates self-report and

behavioral assessment. Rather than assuming that measures

targeting similar constructs should be correlated, it may be

more useful to consider how they capture unique aspects of

a complex process.

For instance, an individual answering a questionnaire may

be able to recall aspects of their behavior and reliably report

on the likelihood of their own impulsive behavior, yet their

responses may not capture features of that behavior common

to all people. In contrast, tasks such as the FGT may capture the

underling cognitive processes associated with risky decision-

making, independent of risk-taking history. When predicting

risky decision-making, it might be useful to know both some-

thing about an individual’s general tendency for impulsive

behavior, as assessed by an impulsivity questionnaire, and the

underlying cognitive processes that make such behavior more

likely, as assessed by measures like the FGT.

In summary, within the FGT, the DDM provides a nuanced

understanding of how people weigh information in real time

under conditions of subjective preference and ultimately helps

determine whether someone looks hasty, careless, and impati-

ent. Initial work suggests that aspects of the deliberation pro-

cess measured during the FGT are associated with the

likelihood of substance abuse but are independent of

questionnaire-assessed impulsivity. These results highlight the

importance of using self-report and performance-based mea-

sures to understand traits, as well as implications that follow

such as assessing risk-taking propensity.

Discussion

These examples demonstrate how the hierarchical DDM pro-

vides novel insights into social and personality processes. For

social psychologists, the DDM can disentangle different theo-

retical accounts of how race influences the decision to shoot.

For personality psychologists, the model provides a formal

description of deliberation, a facet of impulsivity. In both cases,

the model illuminates aspects of the decision process unobser-

vable from analyses of behavior alone.

Comparisons to Dual-Process Models

The DDM is built to test a theory of decision-making based on

sequential sampling, whereas dual process theories provide a

different perspective. Formal dual-process models are well

equipped to divide decisions into associative and deliberative

components but do not describe the dynamic nature of this

process. The benefits gained from these models may not out-

weigh the costs associated with ignoring that decisions are

made over time.

One misconception about the DDM is that it merely quanti-

fies the “automatic” process underlying decisions and does not

speak to the more “controlled” process. Therefore, the dual-

process distinction is maintained and the DDM is used to clar-

ify the automatic process. However, this reflects an erroneous

assumption that fast decisions reflect the influence of purely

automatic processes (Payne, 2001). Similarly, the DDM has

been applied to decisions lasting over a second (Krajbich

et al., 2010; Pleskac & Busemeyer, 2010), which most psychol-

ogists would not consider automatic. The point is that the DDM

is a qualitatively different decision model than dual-process

models. It does not focus on whether its parameters are con-

trolled or automatic, and each parameter “probably represents

a complex mixture of controlled and automatic components”

(Klauer, 2014, p. 148).

Interpreting DDM Parameters

A benefit of the DDM is the potential to link its model para-

meters to psychological constructs (Klauer, 2014). For exam-

ple, the threshold parameter measures the amount of

information required to make a decision and is often interpreted

as indexing caution. However, moving from parameter to psy-

chological construct requires validating that interpretation. For

example, a manipulation of caution should only influence

threshold (convergent validity) and not other parameters (dis-

criminant validity). Although some work has validated DDM

parameters in the FPST and FGT, more work is needed. This

same logic applies to any task where researchers want to inter-

pret parameters in terms of psychological mechanisms.

The benefits of linking DDM parameters with psychological

constructs should not to be understated. For example, in accor-

dance with Bornstein’s (2012) process dissociation approach, a

DDM decomposition of the FGT may capture cognitive

processes underlying risky decision-making, independent of

risk-taking history. These results may reveal computational

phenotypes for risk-taking behaviors. For example, changes

in relative start point as a function of drug use may reflect sen-

sitivity to labels indicating whether an option is certain or

420 Social Psychological and Personality Science 8(4)



uncertain. This could explain why substance abuse is some-

times understood as a cue-induced urge (Bonson et al., 2002;

Ehrman, Robbins, Childress, & O’Brien, 1992).

In terms of the FPST, insofar as the threshold can be inter-

preted as a measure of caution, the finding of higher thresholds

for Black men than White men suggests that participants may

be motivated to avoid biased responding. This could be tested

by measuring individual differences in the motivation to avoid

prejudice or by manipulating this motivation through instruc-

tion. Similarly, insofar as stronger drift rates toward the shoot

decision represent a bias to see objects held by Black men as

threatening, training to focus on the object (rather than race)

may decrease this bias. This could explain why officers show

less bias in the FPST than civilians (Correll et al., 2007; Sim,

Correll, & Sadler, 2013). Both possibilities demonstrate how

the DDM can further our understanding of this important

decision and even help create training programs.

Conclusion

The DDM is a dynamic cognitive model based on sequential

sampling. Two applications of this model were presented that

highlight its potential to provide novel insights into cognitive

processes. In particular, the model can reveal differences in the

decision-making process that are difficult to discern when only

observing behavior. Recent advances in Bayesian modeling

make it feasible to implement a hierarchical version of the

DDM to social and personality psychology tasks. Although

we focused on two examples, the model can in principle be

used to explain any task where individuals make quick deci-

sions. Given the ubiquity of these tasks, we hope this primer

equips researchers with a new tool for investigating psycholo-

gical processes.
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