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Abstract

Previous studies showed that olfactory cues are important for mammalian communication.

However, many specific compounds that convey information between conspecifics are still

unknown. To understand mechanisms and functions of olfactory cues, olfactory signals

such as volatile compounds emitted from individuals need to be assessed. Sampling of ani-

mals with and without scent glands was typically conducted using cotton swabs rubbed over

the skin or fur and analysed by gas chromatography-mass spectrometry (GC-MS). How-

ever, this method has various drawbacks, including a high level of contaminations. Thus, we

adapted two methods of volatile sampling from other research fields and compared them to

sampling with cotton swabs. To do so we assessed the body odor of common marmosets

(Callithrix jacchus) using cotton swabs, thermal desorption (TD) tubes and, alternatively, a

mobile GC-MS device containing a thermal desorption trap. Overall, TD tubes comprised

most compounds (N = 113), with half of those compounds being volatile (N = 52). The

mobile GC-MS captured the fewest compounds (N = 35), of which all were volatile. Cotton

swabs contained an intermediate number of compounds (N = 55), but very few volatiles (N =

10). Almost all compounds found with the mobile GC-MS were also captured with TD tubes

(94%). Hence, we recommend TD tubes for state of the art sampling of body odor of mam-

mals or other vertebrates, particularly for field studies, as they can be easily transported,

stored and analysed with high performance instruments in the lab. Nevertheless, cotton

swabs capture compounds which still may contribute to the body odor, e.g. after bacterial

fermentation, while profiles from mobile GC-MS include only the most abundant volatiles of

the body odor.
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Introduction

The olfactory sense is a vital channel for mammalian communication and is part of chemosen-

sing, which is the phylogenetically oldest sensory system [1]. Individuals can use body odor to

discriminate individuals [2] and recognize the sex [3] as well as kinship [4] of conspecifics.

Moreover, behavioral and physiological characteristics such as the dominance rank and men-

strual cycle states [5] are conceivable from body odor. Still, olfaction is considerably less stud-

ied in mammals compared to visual or auditory cues, presumably caused by methodological

difficulties in measuring olfactory properties [6].

Olfactory communication operates via volatile as well as semi- or nonvolatile compounds

from different sources such as specialized scent gland secretions, sweat, urine or feces [7]. In

particular, body odor comprises also volatiles which are formed from nonvolatiles by meta-

bolic degradation of skin bacteria [8]. Volatile scent compounds are directly detectable by the

main olfactory epithelium [9] of a receiver and thus are of particular interest when studying

body odor. Commonly, cleaned cotton swabs are rubbed over the skin or fur of mammals to

capture body odor substances [7]. This method is well established and affordable, but samples

need to be stored immediately at– 80˚C [10] and animals need to be trained for the direct con-

tact. In previous studies that used cotton swab samples of scent glands, the samples contained

more semi- or nonvolatile compounds than volatiles. For instance, none of 32 compounds

using liquid extraction [11] and 21 of 42 compounds using headspace extraction were volatile

[12]. Also, a recent investigation of body odor samples of rhesus macaques (Macaca mulatta)

taken with cotton swabs revealed semi-volatile rather than volatile compounds and many con-

taminations from sampling and materials of the liquid extraction in addition to the substances

of interest [13]. Thus, a method for collecting volatiles that allows for a low-loss and easy stor-

age of samples and introduces less contaminations would be highly desirable. Hence, we

searched for established methods used in other fields which could be applicable to body odor

sampling in mammals. Various methods of volatile sampling are employed, however, compari-

sons on odor sampling techniques were often drawn for investigations on plants, but rarely for

mammals [14].

Plant and environmental studies commonly use adsorbent materials which are, for

instance, packed in thermal desorption (TD) tubes [15–19]. These materials adsorb substances

present in the air and retain them in closed TD tubes even under ambient temperature. Fur-

thermore, a direct animal contact is not needed, because the air near to the skin is sampled. In

a first study adapting TD tube sampling to a mammalian species, sampling flow rate and vol-

ume could be successfully adjusted to a feasible sampling duration of 20–40 s per sample

(Weiß et al. under revision). Additionally, the type of adsorbent material can be chosen depen-

dent on characteristics of interaction with the substances of interest given by their volatility or

polarity [20]. To capture a broader range of substances, also multiple sorbents can be com-

bined [21]. Hence, the usage of TD tubes provides flexible options and could be a promising

alternative to the sampling of body odor with cotton swabs.

Mobile GC-MS analysis is another option for sampling and analyzing volatiles. For exam-

ple, the mobile GC-MS HAPSITE1 ER was originally developed for volatile analysis within

the context of emergency preparedness and hazard detection. It contains a system-inherent

TD trap and analyses the samples immediately after sampling by suction with a probe. This

device could be suitable for sampling mammalian body odor even in the field and does not

require any sample storage. Sample analysis with this mobile GC-MS is considerably shorter

compared to laboratory instruments. Thus, the quality of the analytical performance of the

mobile device would be a key property to decide whether it is an appropriate alternative

method for sampling body odor.
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Consequently, we conducted a comparison of chemical profiles based on body odor of ani-

mal samples collected in parallel with three methods. We contrasted cotton swabs commonly

used for sampling animals with two methods routinely used in different research fields and

newly applied for mammalian body odor: TD tubes and mobile GC-MS. As a first check for

the suitability of the approaches in general, we assessed the overall number of captured chemi-

cal compounds and the proportion of volatiles therein. In particular, we regarded the method

providing access to the highest number of volatiles and an analysis with high sensitivity and

resolution as most suitable for detecting and identifying compounds used for communication.

Furthermore, the sets of captured volatiles were compared between the methods to determine

whether complementary results were produced, meaning that we would find completely

unique sets of compounds, or whether one method outperforms others by covering an already

detected set of compounds, still having a varying number of unique compounds per method in

addition to that. Finally, two different single adsorbent materials and a combination of two

adsorbents were evaluated for sample collection with TD tubes. This would allow to determine

whether compounds are specifically captured with one material and whether a combination of

two adsorbent materials is beneficial. Our aim was to infer the most comprehensive method

for body odor sampling to study olfactory communication in mammals. We further discuss

the ease of application of all three methods to provide support for the choice of the most

appropriate method for future studies.

Materials and methods

Sampling materials

We used various sampling methods in parallel to determine the best performance for captur-

ing volatile organic compounds (VOCs) in mammalian body odor. First, we used cotton

swabs (Lilibe Cosmetics, Rossmann) composed of 60% cotton wool, 20% micro fiber from

polyester and 15% polyester which were cleaned prior use by baking for 30 min at 130˚C [13].

Second, we applied thermal desorption tubes containing various adsorbent materials with spe-

cific affinities for different substances regarding volatility and polarity [22,23]. We tested TD

tubes containing either Tenax TA (60/80 mesh, stainless steel TD tube, 1/4 in. × 31/2 in.,

Sigma-Aldrich, Steinheim, Germany) or XAD-4 (160/80 mg with glass fiber filter, 13 to 8

mm × 75 mm ORBO 65P, OVS fluoride tube, Sigma-Aldrich, Steinheim, Germany). Further-

more, we used TD tubes with two materials (hereafter “TD tubes Mix”: stainless steel TD tube,

1/4 in. × 3 1/2 in., 0.095 g of Tenax TA, 0.2104 g of XAD-2), separated by 2 mm of glass wool

(Supelco, Bellefont, USA) which were closed with Swagelok Brass caps (1/4 in., Supelco, Belle-

font, USA). The two amberlite adsorbents XAD-2 and XAD-4 are very similar in regard to

compound adsorption [24]. Prior to the sampling, TD tubes containing the adsorbent combi-

nation were cleaned by baking under nitrogen flow (50 mL/min) for 152 min in a TD Clean

Cube device (SIM Scientific Instruments Manufacturer GmbH, Oberhausen, Germany) start-

ing at 40˚C and increased up to 200˚C. For sampling, TD tubes were connected to a pump

(BiVOC2, Umweltanalytik Holbach GmbH, Germany). Third, we assessed a mobile GC-MS

device (HAPSITE1 ER, Inficon Inc., East Syracuse, NY, USA) containing a TD trap with three

proprietary adsorbent materials (TriBed microconcentrator).

Animals and sampling

For each method, two samples per individual were taken from the genital area of six female

common marmosets (Callithrix jacchus) leading to 12 samples per method (except of XAD-4

with 10 samples) and a total of 58 samples. The animals belonged to a colony of the Faculty of

Veterinary Medicine of the University of Leipzig (Germany). They were housed in pairs and
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trained for a regular handling [25]. All cotton, mobile GC-MS and TD tube Mix samples were

collected in parallel per subject across 10 days in 2015. In addition, TD tube Tenax TA and

XAD-4 samples were taken on only 3 of the 10 d (see S1 Table). If animals were previously

sampled two times in parallel with the three sampling methods, TD tubes Tenax and XAD-4

samples were taken on separate days without resampling with the other methods for animal

welfare. Those samples were parallel in regard to the animals ID, but not to the sampling

date (Tenax TA: 7, XAD-4: 6). If parallel samples of the three sampling methods had still to be

sampled, TD tubes Tenax TA and XAD-4 samples could be taken in parallel from the same

animals and at the same day (Tenax TA: 5, XAD-4: 4). The regional board of Leipzig, Germany

approved animal husbandry (reference number: 24-9168.11/17/68) and research was autho-

rized by the Regional Council Leipzig, Germany (TVV 16/15). Body odor sampling is noninva-

sive and needs no authorization under the German Animal Welfare Act. However, the study

was in accordance with the German Animal Welfare Act for the care and use of laboratory

animals.

Cotton swabs were rubbed over the skin of the animal for 20 s. Immediately after sampling,

the swabs were transferred into precleaned glass vials (4 mL, Carl Roth GmbH & Co. KG,

Karlsruhe, Germany) and stored at– 80˚C until analysis. The sampling duration for TD tubes

and mobile GC-MS were intended to not exceed four min. Sampling with the mobile GC-MS

(300 mL) lasted three min, whereas the sampling durations of TD tubes varied with the adsor-

bent types. Under field conditions, the maximum flow would be preferred to decrease the sam-

pling duration as much as possible. Hence, we customized the sampling parameters to get a

comparable setting with constant durations as the critical sampling parameter. Due to varia-

tion in maximal flow rates (TD tubes Mix and XAD-4: 1.1–1.5 L/min; TD tubes Tenax TA:

0.4–0.6 L/min), the sample volumes needed an adjustment per method (TD tubes Mix and

XAD-4: 6 L; TD tubes Tenax TA: 2 L) to result in comparable sampling durations. Air from

near to the skin (approx. 1 cm) was collected. TD tubes were stored at room temperature until

analysis. Mobile GC-MS samples were analysed immediately after sampling.

GC-MS analysis

Samples of different sampling methods and adsorbent types were measured on different

instruments to ensure optimal analyses of the respective sample types. The chemical com-

pounds from cotton swab samples were extracted with 1.2 mL of n-hexane (Sigma Aldrich,

Steinheim, Germany) and stepwise concentrated to 60 μL by evaporation. For GC-MS analysis,

4 μL of this solution was injected at 250˚C using splitless injection during 2 min into an

HP6890 Series GC System with a Mass Selective Detector HP5973 MSD (Agilent, Waldbronn,

Germany) in electron-impact ionization mode at 70 eV. The scan range was set to m/z 50–550.

GC separation was accomplished on a DB35-MS column from J&W Fisher (30 m length, 0.25

mm inner diameter (ID), 0.25 μm film; Agilent, Waldbronn, Germany) and Helium 5.0

(alphagaz, Air Liquide, Düsseldorf, Germany) was used as carrier gas with a linear velocity of

46.8 cm/s (flow rate 1.7 mL/min). The temperature program started at 35˚C held for 2 min,

followed by a 10˚C/min temperature increase until 320˚C, held for 10 min.

The TD tube Mix samples were analysed using a GCMS-TQ8040 with a Gas Chromato-

graph GC-2010 Plus and a Triple Quadrupole Mass Spectrometer coupled to a thermal desorp-

tion system TD-20 (Shimadzu, Kyoto, Japan) for introducing the samples. Injection was done

in split mode (split ratio 5), samples were desorbed for 8 min at 250˚C with a helium flow of

60 mL/min to a Tenax TA-filled cold trap (-20˚C). The cold trap was heated up to 250˚C

under a helium flow of 14.5 mL/min and desorbed into the gas chromatograph through the

opened outlet split at 140.2 kPa. Electron-impact ionization (EI) was carried out at 70 eV and
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200˚C and the scan range was set to m/z 30–300. The GC was equipped with two columns con-

nected to each other (Rxi-1ms: 30 m length, 0.25 mm ID, 0.25 μm film, and SGE Analytical

Science BPX50: 2 m length, 0.15 mm ID, 0.15 μm film, Restek GmbH, Bad Homburg vor der

Höhe, Germany) and used for one dimensional chromatography. Helium 5.0 was used as car-

rier gas with a linear velocity of 35 cm/s (flow rate 1.58 mL/min). The temperature program

started at 35˚C for 0.5 min, followed by a temperature gradient of 6˚C/min until 320˚C, held

for 25 min.

Commonly, due to its lower thermal stability [26] XAD resins are used to adsorb com-

pounds from solvents followed by liquid extraction. For this reason, liquid extraction was used

for the TD tubes containing only XAD-4. Chemical compounds captured with TD tubes

XAD-4 were extracted with 0.5 mL of a methanol/dichloromethane solution (1:1) in an ultra-

sonic bath. After that, 50 μL of this solution was introduced to 2D-GC separation on an Agilent

GC 7890A using a Gerstel KAS4 large volume injection device. The GC contained two col-

umns: Agilent VF 5ms (first dimension, 30 m length, 0.25 mm ID, 0.25 μm film) and Restek

RTX-200 (second dimension, 3 m length, 0.18 mm ID, 0.18 μm film). The carrier gas was

helium 5.0 with a linear velocity of 26 cm/s (flow rate 1 mL/min), cryofocussing before the sec-

ond dimension was accomplished using liquid nitrogen during a modulation time of 5 s fol-

lowed by a hot pulse of 1 s duration. The temperature program started at 40˚C for 1 min

followed by heating with 5˚C/min first to 110˚C held for 0.01 min, then to 220˚C held for 0.01

min and finally to 280˚C, held for 6 min. The secondary oven had an offset of + 10˚C. The

mass scan range was m/z 30–300 with a 200 spectra per min scan rate in the TOF detector of a

Pegasus 4D GCxGC TOFMS device (Leco Corp., Saint Joseph, MI, USA).

TD tubes containing Tenax TA were measured on the same GC-MS system Agilent 7890

GC/Pegasus 4D GCxGC TOFMS (Leco Corp., Saint Joseph, MI, USA) this time coupled with

a thermal desorption injector T-ATD (PerkinElmer Inc., Waltham, MA, USA). Samples were

purged for 1 min and afterwards desorbed at closed inlet split for 3 min at 260˚C with a helium

flow of 100 mL/min to a Tenax TA filled cold trap (- 30˚C). The cold trap was heated up to

270˚C under a helium flow of 10 mL/min and injected into the gas chromatograph through

the opened outlet split at 170 kPa. Helium was the carrier gas at a linear velocity of 26 cm/s

(flow rate 1 mL/min). The temperature program started at 40˚C for 8 min, followed by heating

steps of always 5˚C/min until 160˚C held for 0.6 s, afterwards heated up to 250˚C, held for 0.6

s and lastly to 275˚C, held for 12 min and the secondary oven had an offset of + 10˚C. The

mass scan range was set to m/z 30–300 with 200 spectra per min.

The mobile GC-MS HAPSITE1 ER (Inficon Inc., East Syracuse, NY, USA) featured a poly-

dimethylsiloxane column (15 m length, 0.25 mm ID, 1.0μm film) and using ultra high purity

nitrogen as carrier gas with a linear velocity of 74.4 cm/s (flow rate 2 mL/min). The ionization

mode was EI at 70 eV and the mass scan range was set to m/z 41–300. The temperature pro-

gram started at 60˚C held for 1 min, followed by heating with 60˚C/min to 80˚C, 12˚C/min to

120˚C and 26˚C/min to a final temperature of 180˚C.

Data analysis

1. Compound coverage: Number and volatility of target substances detected by the dif-

ferent approaches. For the overall comparison of the total number of peaks and their volatil-

ity, we determined those peaks per sampling method (cotton swabs, TD tubes Mix and mobile

GC-MS) which occurred per method in at least half of the samples. In the chromatograms

obtained from the cotton swabs and the TD tubes Mix, peak picking was done with AMDIS v.

2.65 [27]. For the samples analysed by the mobile GC-MS, peak picking was accomplished

with the software ER IQ (Inficon Inc., East Syracuse, NY, USA), respectively. For all three
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sampling approaches, repeatedly occurring peaks within a narrow span of retention times for a

given analysis set were defined as “RT range” and correspond to the number of compounds

detected with a particular method. The animal sample RT ranges were compared to the corre-

sponding RT ranges from blank samples to identify those compounds originating most likely

from the marmosets and not from the environment or the sampling material. Only RT ranges

with higher areas in the animal samples than in the blank samples were considered for further

evaluation. Additionally, tentative substance identifications were assigned to these compounds

using the NIST14 Mass Spectral Library (National Institute of Standards and Technologies,

Gaithersburg, MD, USA). Only library hits which were suggested for a particular RT range in

the majority of all samples with appropriate matches (> 700) were considered. In addition,

some compounds were identified by co-spiking (parallel measurement of authentic standards

to animal samples, see S2 Table). Finally, the boiling points of the compounds obtained from

ChemSpider ([28], predicted values from ACD/Labs Percepta Predictors) were used to define

a threshold between volatile (< 250˚C) and semi-volatile (> 250˚C) compounds [29]. As only

a minority of cotton swab compounds was volatile, the cotton swab samples could not be

incorporated into the further comparison of volatiles between the sampling methods.

2. Overlap of volatiles in thermal desorption tubes and mobile GC-MS samples. Using

the automated peak integration of GCMS solution v. 4.20 (Shimadzu, Kyoto, Japan), all TD

tube Mix peaks were integrated and the relative area was determined as the peak area divided

by sum of all peak areas in the respective chromatogram (i.e. “peak sum”). We used the elution

order and two specific m/z (mass to charge ratio, equal to mass within the mass spectra for

GC-MS) to check which of the compounds detected by the mobile GC-MS were also detected

with the TD tube Mix. To assess if the detection of a compound by one or both methods was

related to the abundance of the respective compound, we conducted a linear mixed model [30]

in R version 2.3.2 (R Core Team 2015) using the function lmer of the R-package lme4 [31].

The model compared relative peak areas of the TD tube Mix compounds which were in com-

mon with the mobile GC-MS to the relative peak areas of unique TD compounds (absent in

mobile GC-MS samples). Relative peak area was set as response, the sample set (“common” or

“TD unique”) was the predictor and sample number as well as identity of the animal were

incorporated as random effects. Additionally, we included random slopes of sample set within

sample number and identity, but left out the correlation between random intercepts and

random slopes for convergence reasons [32,33]. Prior to fitting the model, we checked the

response for data distribution and log-transformed the relative peak areas, resulting in a

slightly right-skewed, but normal distribution. We inspected a qqplot and a scatterplot of the

residuals plotted against fitted values and found no serious deviations from the assumptions of

normally distributed and homogenous residuals. Furthermore, we checked the model stability,

which provided no indication for influential cases. A likelihood ratio test using the function

anova was done to examine the significance of the full model in comparison to the null model

lacking the random effect sample set [34,35].

3. The impact of sorbent type on VOC analysis. Additionally to the TD tube Mix sam-

ples (N = 12), we sampled body odor of our test animals with TD tubes containing either only

Tenax TA (N = 12) or only XAD-4 (N = 10) analysed by 2D GC-MS as described above. For

peak picking and substance identification, the software Chroma-TOF 4.51.6.0 (Leco Corp,

Saint Joseph, MI, USA) and NIST14 was used. Tentative substance identifications were used to

identify compounds which were in common to two or all types of adsorbents. To confirm this

assignment we first correlated the elution order of these compounds between the adsorbent

types using Spearman rank correlations in R version 2.3.2 [36]. To assess how similar the

recovery patterns (relative intensities) of these compounds were for the different adsorbent
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types, we also subjected the mean relative areas of the compounds between adsorbent types to

a Spearman rank correlation analysis.

4. Confirmed and most abundant compounds of all methods. Finally, we wanted to

provide a deeper insight into the type of compounds present in the samples of common mar-

mosets taken via all three methods and adsorbent types. Therefore, we assembled a list of com-

pounds with confirmed identity (through peak identification utilizing authentic standards

which we applied only for samples of TD tube Tenax TA, TD tube XAD-4, TD tube Mix)

together with the most abundant compounds detected from cotton swabs, TD tubes Tenax

TA, XAD-4 and Mix as well as mobile GC-MS sampling. Based on a literature research, we

classified these compounds into categories of their origin. Compounds labelled as “exogenous”

are most likely not from the animals, as they are known to be contaminants and hence presum-

ably originate from the environment during sampling, the sampling material or chemicals

from the laboratory during processing. Compounds labelled as “potentially endogenous” have

been described to originate from animals in previous studies and we found no hint of an exog-

enous source. Given the potential to trap compounds which could have been metabolized by

the animals or skin bacteria, even if originally not produced by the animals, we introduced the

classification “potentially metabolized”. This category applies to all substances which have

been reported for nonnatural origin (see above “exogenous”) as well as for animal origin

(“endogenous”) and cannot be assigned to one of both. Metabolized compounds can also be

informative about the target animal, because metabolic processes may considerably vary with

e.g. the age, sex, group membership or reproductive state of the host [37–39]. Some compound

identifications could not be found in the literature and thus could not be associated with one

of the categories and remain as “unclassified”.

Results

Prior to blank correction, we detected total numbers of unique peaks of 249 for cotton swabs,

41 for the mobile GC-MS, 375 for TD tubes Mix, 308 for TD tubes Tenax TA and 265 for TD

tubes XAD-4. For a quantitative evaluation, we considered a set of 109 manually curated body

odor compounds sampled with the tested sampling methods. This set is composed of 49 com-

pounds for which identity was confirmed by co-spiking with authentic standards and 60 of the

most abundant compounds which were tentatively identified by library search (see S2 Table).

The investigation of boiling points revealed 77% volatile compounds (bp< 250˚C) and

23% semi- or nonvolatiles in the set of 109 compounds. We classified all compounds into cate-

gories of their origin and found that 34% of them are potentially endogenous, 50% are poten-

tially metabolized and only 12% are exogenous, as well as 4% unclassified compounds.

Exogenous compounds were, for instance, plasticizer (for example 2-butanedioic acid (Z)-,

diethyl ester) and solvents (for example triethylamine). Many of the potentially metabolized

compounds were alkanes (for example hexadecane), which are most likely metabolic products

of skin bacteria [40], or compounds known to originate from plants (for example β-ionone)

which could result from food metabolized by the animals. Compounds probably originating

from the animals themselves were mainly alcohols, carboxylic acids and their esters, as well as

aldehydes and ketones (see S2 Table), very well depicting the skin volatiles reported in the liter-

ature [41]. Thus, most of these compounds (84%, composed of potentially endogenous and

metabolized substances) could be biologically relevant odor compounds. However, the ratios

of volatility as well as origin varied between the sampling methods. Within the 109 compounds

considered in our study, the highest number of potentially biologically relevant compounds

were found for TD tubes Tenax TA (97%) and Mix (90%) indicating a lower degree of exoge-

nous compounds (contaminations).
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1. Compound coverage: Number and volatility of target substances

detected by the different approaches

The three sampling methods, cotton swabs, TD tubes and mobile GC-MS, captured different

numbers of compounds from animal samples (Table 1).

Among these different methodologies, TD tube samples contained the most compounds

likely originating from the animals (90%) and the mobile GC-MS and cotton swab samples the

fewest (72% and 73%). In addition, from the total amount of compounds only a minor part

was volatile for cotton swabs, but half of the TD tube Mix and all of the mobile GC-MS samples

were volatile (see Table 1 and example chromatograms in Supplementary, S1 Fig). Overall, the

TD tubes comprised the highest total number of substances and the highest number of volatile

and substances of animal origin.

2. Overlap of volatiles in thermal desorption tubes and mobile GC-MS

samples

As the mobile GC-MS appeared to be less sensitive (fewer substances were detected), we expected

that most of the compounds detected with the mobile GC-MS would be present in the larger set

of compounds found in the TD tube Mix approach. Indeed, 33 of 35 (94%) volatile compounds

detected with the mobile GC-MS were also captured with TD tubes Mix and only two unknown

(without substance identification) compounds were unique for the mobile GC-MS.

Of the 33 volatile compounds in common, 18 could be tentatively identified by library com-

parison, which comprised 13 potentially endogenous or potentially metabolized and only five

exogenous compounds (see Table 2). From the compounds in the TD tube chromatograms

(total N = 113), 27 were identified by co-spiking and an additional 15 were annotated by

library search (see S2 Table).

The high correlation of the retention times in the samples from TD tubes Mix and the com-

pounds detected with the mobile GC-MS supported the correct assignment of the compounds

in common (Spearman rank correlation: N = 17, r = 1, p< 0.001). In contrast, the relative

mean areas of shared compounds were not significantly correlated (Spearman rank correla-

tion: N = 17, r = 0.31, p = 0.168). Hence, the response patterns of volatiles differed between the

two sampling methods.

Finally, relative peak areas of compounds from TD tubes Mix which were also found with

the mobile GC-MS were significantly higher than of the compounds detected only in TD tubes

Mix (Fig 1, linear mixed model: χ2 = 23.35, df = 1, p< 0.001). In other words, the mobile

GC-MS detected the most abundant of the compounds found in TD tubes Mix as well.

3. The impact of sorbent type on VOC analysis

To ascertain whether the combination of two adsorbent materials resulted in more captured

compounds than single adsorbents, we specifically searched for the 27 volatile compounds

Table 1. Overview about the number of detected compounds.

Cotton Mobile GC-MS TD tube

Compounds in total 55 35 113

Compounds volatile 10 (18%) 35 (100%) 52 (46%)

Total number of detected compounds as well as number and percentage (in brackets) of volatile compounds

of animal origin (not present in higher amount in blanks) from TD tubes Mix (TD tube), cotton swabs (Cotton)

and the mobile GC-MS.

https://doi.org/10.1371/journal.pone.0183440.t001
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whose identification was confirmed by co-spiking authentic standards (see also S2 Table). Of

the 27 confirmed compounds, 22 were identified by co-spiking in Tenax TA and six in XAD-4

liquid desorption. Only 14% of the 22 compounds confirmed for Tenax TA were retrieved

with XAD-4 and also only 33% of the six compounds confirmed for XAD-4 were retrieved

with Tenax TA (see Table 3). However, TD tubes Mix, which contained two adsorbent types,

retrieved almost all of the volatiles detected with Tenax TA alone (91%) as well as all com-

pounds from XAD-4. Hence, the combination of adsorbents indeed captured more com-

pounds than when using a single adsorbent.

Finally, to check whether the recovery patterns of compounds found with the different

adsorbent materials are similar, we correlated the relative mean areas of compounds retrieved

with TD tubes Mix with both TD tubes Tenax TA and TD tubes XAD-4. Beforehand, we evalu-

ated the accurate assignment of shared compounds by correlating their retention times. In

agreement with a correct assignment, the retention times of the compounds analysed from TD

tubes Mix highly correlated with both Tenax TA and XAD-4 (Spearman rank correlation,

Tenax TA: N = 20, r = 0.86, p< 0.001; XAD-4: N = 6, r = 0.94, p = 0.016). In contrast, correla-

tions of relative mean areas revealed no significant relationship between the methods at all

(Spearman rank correlation: Tenax TA: N = 20, r = 0.06, p = 0.776; XAD-4: N = 6, r = -0.31,

p = 0.564). Thus, compounds exhibited a completely different response pattern with the differ-

ent adsorbent materials and combinations. In particular, two compounds which were exceed-

ingly more abundant in TD Mix tubes than expected by comparison to Tenax TA were both

ketones and two compounds which were recovered with a remarkably lower intensity in TD

Mix tubes were both alcohols (data not shown).

Table 2. Compounds in common to TD tubes Mix and mobile GC-MS samples.

Mobile GC-MS TD tubes Mix Classification

Substance Bp˚C RT Area Mt RT Area Origin Ref

1-Propanol 95±3 1.00 320,802,296 937 2.78 86,417,340 pot endo [42,43]

Cyclohexane, methyl- 101±3 2.06 3,895,100 715 4.54 31,159,370 pot metab [44,45]*

Toluene 111±3 2.29 2,896,431 838 5.11 2,264,769 exo [46]

Heptane, 2-methyl- 118±3 2.35 851,165 575 4.97 111,756,372 pot metab [43]

Hexanal 128±3 2.45 5,600,184 735 5.38 2,905,761 pot endo [47,48]*

Propanoic acid, propylester 122±3 2.57 1,922,248 745 5.91 272,145 pot endo [42]

Ethylbenzene 136±3 3.54 4,087,496 839 7.13 342,180 exo [43,46]*

Pyrazine, 2,5dimethyl- 155 4.38 71,719,045 854 8.05 75,802 pot metab [43,49]

Nonane 152±3 4.49 980,197 606 8.40 275,808 pot metab [46,50]*

Benzene, (1methylethyl)- 152 5.02 1,043,167 687 8.69 6,813 exo [26]

Benzaldehyde 179 5.27 62,440,110 900 9.16 271,986 pot metab [46,49]*

5-Hepten-2-one, 6-methyl- 173±9 6.03 5,492,894 644 10.03 254,562 pot metab [46,48]*

D-Limonene 175±20 7.04 44,230,737 887 11.50 107,289 pot metab [43]

Acetophenone 202 7.19 11,704,738 667 12.18 193,246 exo [42,51]*

Nonanal 191±3 8.00 114,615,201 823 13.92 9,186,924 pot metab [46,47]*

Undecane 197±3 8.15 55 673,854 742 14.49 18,506,217 exo [12,48]*

Decanal 209±3 9.17 11,160,309 790 15.63 5,270,498 pot endo [45,46]*

Dodecane 216±3 9.24 8,432,826 716 15.99 2,401,000 pot endo [47,48]*

Tentative substance identifications of common compounds including the boiling point (bp, in ˚C at 760 mmHg, ChemSpider [28], retention time (RT, in min),

mean area (Area), mean match (Mt) of substance suggestion, presumable origin (Origin: exo = exogenous, pot endo = potentially endogenous, pot

metab = potentially metabolized) as well as references (Ref) of other body odor studies reporting the respective substance (* = more references see S2

Table).

https://doi.org/10.1371/journal.pone.0183440.t002
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Discussion

We compared three different sampling methods for subsequent GC-MS analysis of mamma-

lian body odor, including cotton swab sampling, sampling with thermal desorption tubes, and

by direct probe with a mobile GC-MS. Due to their ease of transmission, volatile compounds

are most interesting when studying the function of body odor for olfactory communication.

Fig 1. Comparison of TD tube peaks which are in common with the mobile GC-MS and occurring only

in TD. Box-and-whisker plots of the relative peak areas from integration of TD tubes Mix peaks in common

with the mobile GC-MS samples (left, Mediancommon = 4.25 x 10-4, Ncommon = 183) and peaks which are

unique for TD tubes Mix (right, MedianTD = 0.12 x 10−4, NTD = 9217). Bold, solid lines indicate medians, boxes

range from the lower to the upper quartiles, lower whiskers are defined as max(min(x), Q_1–1.5 * IQR), upper

whiskers equal min(max(x), Q_3 + 1.5 * IQR), open circles are outliers, dotted lines depict the means and

asterisk indicates the significant difference. The relative peak areas were log transformed, the y-axis of the

plot is on original scale.

https://doi.org/10.1371/journal.pone.0183440.g001

Table 3. Number of confirmed compounds retrieved dependent on the adsorbent used.

27 authentic standards Retrieved in Tenax TA Retrieved in XAD-4 Retrieved in Mix

22 Tenax TA standards 22 (100%) 3 (14%) 20 (91%)

Corr RT: ρ = 0.86, p < 0.001

Corr Area: ρ = 0.06, p = 0.776

6 XAD-2 standards 2 (33%) 6 (100%) 6 (100%)

Corr RT: ρ = 0.94, p = 0.016

Corr Area: ρ = -0.31, p = 0.564

Compounds confirmed in Tenax TA (after thermal desorption) and XAD-4 (after liquid extraction) were searched in samples of the other adsorbent and the

mixture of two adsorbents (TD tubes Mix). Number and percentage of retrieved compounds are listed along with correlations of retention times (Corr RT)

and relative mean areas (Corr Area) between retrieved (TD tubes Mix) and confirmed (Tenax TA as well as XAD-4) compounds.

https://doi.org/10.1371/journal.pone.0183440.t003
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The methodological difficulties are to reproducibly capture these volatiles, transfer them into

the GC-MS for analysis and to get sufficient quality to differentiate compounds originating

from the study animals from contaminants within the chromatogram. We found considerable

differences in the performance of the methods, whereby volatile compounds could be sampled

with two out of the three methods.

Cotton swabs

Sampling with cotton swabs has been the most commonly used method in studies of mamma-

lian odor [7]. However, we found that cotton swabs capture considerably fewer volatile com-

pounds than the other two methods and very few volatiles at all. Probably, rubbing a swab over

the skin of an animal provides insufficient interaction and retention for a satisfactory adsorp-

tion of volatiles to the cotton swab [13]. Hence, our study confirms that this method is unsuit-

able for detecting the volatile compounds directly available for olfactory communication.

However, also the semi- and nonvolatiles captured by cotton swabs can play a role in commu-

nication. Bacteria present on the skin of mammals can metabolize compounds into volatiles

[52]. According to this fermentation hypothesis, semi- and nonvolatiles can thus contribute

indirectly to olfactory communication [37–39]. Furthermore, mammals possessing a vomero-

nasal organ may also be able to directly perceive semi- and nonvolatile compounds to some

extent [53]. Thus, cotton swabs capture a particular part of the animal’s chemical profile, but

not the volatiles of the body.

Another critical aspect of the reduced suitability of cotton swabs is the high background in

the chromatograms. Many contaminations originate from the cotton material itself or the sol-

vents used for extraction [13] and need first to be identified as exogenous and excluded from

further analysis. In the present study, many of the most abundant substances detected in the

cotton swabs were surfactants belonging to the background or alkanes which could be exoge-

nous or metabolic products from bacteria on the skin of the animals [40]. Unique for cotton

swabs were steroids (for example cholesterol and its esters) which are most likely of endoge-

nous origin [54], although they are not volatile. To alleviate the problem of contaminations, a

suitable material other than cotton, which is itself a biological material, could be selected for

swab sampling, such as viscose-type swabs [13].

Mobile GC-MS

The mobile GC-MS, originally developed for application in hazard detection [55], exclusively

captured volatile compounds. The compounds for which we obtained acceptable library iden-

tifications mainly covered the range of skin volatiles previously reported in humans and non-

human primates, for instance alkanes, aldehydes, short-chain alcohols, esters of carboxylic

acids and ketones [41] as well as aromatic hydrocarbons [54]. The total number of volatile

compounds, however, was clearly lower than for the TD tubes Mix (Hapsite: 35, TD tubes

Mix: 52). An alignment of the volatiles captured with the two methods revealed that almost all

compounds detected with mobile GC-MS were detected as well with TD tubes Mix. Thus, the

mobile GC-MS is capable of sampling volatile body odor compounds, but the detected com-

pound set is smaller and biased towards the most abundant compounds captured with the TD

tubes Mix. Furthermore, the relative areas of compounds found with both, the mobile GC-MS

and the TD tubes Mix, were not correlated and consequently, compounds are variously

depicted by the two methods. This could be due to the different adsorbent materials or the dif-

ferent GC-MS devices used for analysis. Additionally, owing to the short GC-MS analysis, the

resolution of the mobile device was clearly outcompeted by that of a laboratory device (data

not shown). Moreover, in the mobile device used in this study, the chromatographic data
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format is highly specific, limiting data exchange and chromatogram evaluation to the manu-

facturer’s software. These aspects considerably impeded compound identification even though

the background noise was low. Hence, although a mobile GC-MS would allow data analysis

without prior storage of samples directly in the field, its lower sensitivity and more difficult

data analysis than with lab methods make pilot studies a prerequisite for assessing its applica-

bility to a particular species and question. In particular, we consider its use feasible only for

studying olfactory communication if compounds of interest were identified in prior studies

using a more sensitive sampling method and if the detectability of these compounds of interest

with a mobile GC-MS was verified in pilot studies.

TD tubes

Thermal desorption tubes, commonly used for dynamic head space sampling in plant studies

[56], comprised most compounds in total and more volatiles compared to the other two meth-

ods. TD tubes Mix contained many compounds which were not captured by the mobile device,

whereas almost all mobile GC-MS compounds were also detected in TD tube Mix samples. In

comparison to cottons swabs, containing almost only semi- and nonvolatiles, and the mobile

GC-MS with exclusively volatile compounds, TD tubes cover the broadest range of volatility.

Even if none of the methods is able to reflect all aspects of chemical profiles, TD tubes are the

most convenient method to sample body odor. Another important advantage of TD tubes is

the possibility to choose adsorbent materials, which can also be combined in one tube, depen-

dent on the compounds of interest.

Various adsorbent types

Similar to the mobile GC-MS, confirmed and most abundant compounds of the TD tubes

with all three different adsorbent materials detected skin volatiles already described previously

[41] including short-chain alcohols, aldehydes and ketones as well as carboxylic acids and

their esters. However, the recovery patterns of the three different TD tubes Tenax TA, XAD-4

and TD tubes Mix are markedly different. This lack of a correlation of relative areas could be

driven by various factors. Each adsorbent type is specific for particular compound classes and

thus, same compounds are conveyed in different amounts using different adsorbent types. For

instance, in the comparison between TD tubes Tenax and Mix, two ketones and two alcohols

were recovered with particularly distinct, deviating amounts. The combination of multiple

adsorbents resulted in different patterns as well, because some substances are captured by both

and some only by one of the materials. In addition, the sampling of Tenax TA und XAD-4 was

not totally parallel in time to the samples of TD tubes Mix. This could probably result in fur-

ther variation of compound detection, although the same methodology (nonpolar GC coupled

to standard EI mass spectrometry) was employed and the correlation of the retention times

supported the correct annotation of the compounds in the analysis with the different GC-MS

instruments. The deviating use of a different instrumental device for Tenax TA and XAD-4 as

well as the different desorption protocol of XAD-4 in comparison to TD tubes Tenax and Mix

might contribute to the observed variance of recovery patterns in our samples, too.

We found that several compounds which were confirmed for either Tenax TA after thermal

desorption or XAD-4 after liquid extraction were only partly detectable using the other adsor-

bent material. This discrepancy could be to some extend ascribed to the different desorption

protocol employed in our investigation for the two materials. In particular, liquid extraction of

XAD-4, which is much more cumbersome than thermal desorption, could not cover the com-

pounds found with Tenax TA. In comparison to liquid extraction, thermal desorption prevents

potential dilution of the compounds by the solvents and decreases sample preparation steps
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and the use for XAD-4 could have led to more recovered compounds. Moreover, now XAD-2

was also shown to be convenient for the adsorption of volatiles and thermal desorption [26].

Notably, in thermal desorbed TD tubes filled with two materials we found almost all of the

compounds detected in the thermal desorbed tubes filled with only Tenax TA and additionally

the compounds from XAD-4. Hence, the combination of two adsorbents is beneficial for cap-

turing a broader spectrum of substances compared to the use of one material. Depending on

the used materials and their affinity to specific substances, different substance classes will be

captured in various amounts. For the combination of two adsorbent materials, temperature

programs for cleaning and GC-MS analysis need to be adjusted to the specific temperature sta-

bility thresholds of the applied adsorbent materials to avoid degradation [26].

Handling and feasibility

The decision on method selection and establishment for a lab is driven by various factors influ-

encing the feasibility of a study. Not only the proper performance of the method analyzing the

anticipated scope of compounds, but also soft criteria such as costs of purchase and consum-

ables, expenditure of preparation and analysis time play an important role (see Table 4). From

a cost perspective, the use of cotton swabs is the most affordable procedure with respect to

acquisition as well as consumables compared to the other two methods. After precleaning, cot-

ton swabs can be used in the field without further on-site preparation, the swabs are very easy

to handle and sampling is quick. Even so, a direct contact with the animal body is needed for

sampling, which will frequently be impossible for free-ranging animals without anesthesia,

and samples require storage conditions of– 80˚C, which is additionally challenging particular

when transferring from the field to the lab is required.

Certainly, the on-site analysis of body odor samples immediately after sampling with

mobile GC-MS devices is an interesting option for field workers. Furthermore, no direct con-

tact to the animals is needed because the surrounding air is sampled. However, the instrument

needs preparation directly before sampling and prior to every new sample, hence, sampling

can proceed, at the soonest, after the first sample’s analysis time plus a few min for instrument

Table 4. Comparison of key properties influencing the feasibility of the sampling methods.

Parameters Cotton swabs Mobile GC-MS TD tubes

Purchase costs devices Low Intermediate High (additional sampler required)

Acquisition costs: sampling

material/consumables

Low/low Intermediate/high High/intermediate

Preparation time: prior in the

lab/on-site in the field

Cleaning 1 h/none None/cleaning 0.5 h Cleaning 4 h/none

Field mobility Light weight, no transport

restriction

19 kg device, battery run

time 2 h

Steel tubes recommended, relatively light weight,

sampling pump weight 2.5 kg, battery run time 14 h

Sampling duration 20 sec per swab Max. 1 min/100 mL Max. 1 min/1000 mL

Maximum sample frequency One swab per min One in 15 min One per min

Feasibility Direct contact Close distance Variable distance

Sample storage In glass vials at -80˚C No storage At ambient temperature

Time until data acquisition Transport duration and

extraction (1 h)

Immediately Transport duration and extraction (1 h)

Sample analysis Headspace or liquid injection

after solvent extraction

Thermal desorption

immediately after sampling

Thermal desorption in GC-MS or liquid injection after

solvent extraction

Target substances semi-VOCs, nonVOCs VOCs VOCs, semi-VOCs, nonVOCs

Contaminations/sample

background

high low Low

https://doi.org/10.1371/journal.pone.0183440.t004
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cleaning and equilibration. The mobility of the instrument (portable as backpack) might fur-

thermore be restricted by the weight of 19 kg. Compared to the TD tubes which are connected

to a small pump of 2.5 kg weight (BiVOC2), the sampling duration with the mobile GC-MS is

much longer to get an appropriate same sample volume due to the lower maximum flow (see

Table 4). Moreover, sequential sampling after interruption of a sampling run is not possible,

which would be beneficial for free-ranging animals that are more likely to move away before

the intended sample volume is reached unless they are trained to do so.

Independent from the adsorbent materials, sampling with TD tubes is a very convenient,

versatile and at the same time efficient method for body odor collection. The tubes are pre-

cleaned in the laboratory and can be used without further on-site preparation. The sampling

using a small pump is very flexible. Using the maximal flow (~ 1 L/min with BiVOC2) a sam-

ple of 500 mL can be taken within 30 s. Sampling with a high flow rate could cause a break-

through of the compounds. Woolfenden [57] summarized that the sampling flow should not

exceed 200 mL/min except for sampling durations below 10 min. Thus, we used the maximal

flow to lower the handling duration during sampling for the animals. Otherwise, experiments

could be carried out prior sampling to investigate the breakthrough threshold depending on

sampling flow, volume and duration. If the target animals/species is tolerant for approaches

(as the pump is not a matter of disturbance), sampling can be done with a lower flow to avoid

a breakthrough and to increase the interaction time between the adsorbent and the volatiles, if

required by the adsorbent. One body odor sample can also be divided into multiple sub-sam-

ples with shorter durations to get a more intense sample from moving animals (Weiß et al.

under revision). Additionally, the tubes can be directly held in the hand or be fixed at a stick to

extend the distance to the animal during sampling and the tubes can be stored at ambient tem-

perature. Analyzing TD tube samples with a lab GC-MS is approximately similarly costly as

direct sampling with the mobile GC-MS when considering a long-term use. The background

noise in the chromatograms is as low as for the mobile GC-MS, but the identification of com-

pounds is improved because of the better GC-MS resolution and the flexible options of data

evaluation through interchangeable data formats.

Conclusions

Considering all advantages and disadvantages of the compared methods, the most suitable

sampling method for body odor of mammals appears to be the adsorption to TD tubes. This

sampling method captures volatile compounds best, provides high-quality samples and is flexi-

ble because the most appropriate adsorbent or a combination can be selected. Additionally,

the sampling procedure can be adjusted to the given study conditions very easily. Certainly,

cotton swabs can be used for sampling chemicals from the skin or fur of a mammal, but col-

lected compounds mostly feature higher boiling points, which may be precursors of break-

down products, for instance, due to the metabolism of skin bacteria and therefore contribute

indirectly to body odor. Mobile GC-MS can be used to analyze the more abundant volatiles in

the body odor of mammals within the given sensitivity limitations of the device. However,

pilot studies are recommended beforehand. Finally, further studies on the body odor of mam-

mals should take the variety of usable methods into account, choose the most appropriate one

based on the study parameters as well as requirements and interpret results within the possibil-

ities and limitations of the selected method.

Supporting information

S1 Fig. Chromatograms of all three body odor sampling methods. A: cotton swab, B: TD

tube MIX, C: mobile GC-MS. Samples were taken from same female common marmoset
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consecutively at the same sampling day, dashed line marks the threshold between volatile (left

part) and semi- or non-volatile (right part) compounds, whereas in part C all compounds are

volatile.

(PDF)

S1 Table. Sampling dates of samples taken with all five sampling materials from the six

animals.

(PDF)

S2 Table. Overview of all confirmed or identified compounds. Confirmed (“conf”) com-

pounds of TD tube Tenax, XAD and Mix, as well as the identified mobile GC-MS compounds,

and additionally the biggest compounds of cotton swabs, TD tubes Tenax, XAD and Mix with

CAS number (� NIST number, if no CAS number was available), boiling point (bp, in ˚C at

760 mmHg, www.chemspider.com), sample set (Set), retention time (RT), mean match of sub-

stance suggestions if not confirmed (Match), retention time of corresponding peaks in TD

tubes Mix (TD), substance classification (Class), origin category (origin, exo = exogenous, pot

endo = potentially endogenous, pot met = potentially metabolized) and references to animal

odor studies (if not assign to other origin).

(PDF)
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