Supporting information

Supplementary methods

Model evaluation

SUEWS has shown good performance against observed net all-wave radiation and eddy covariance (EC) measured turbulent sensible and latent heat flux densities in neighbourhoods in Vancouver (Canada), Montreal (Canada), Los Angeles (USA), Phoenix (USA), London (UK), Swindon (UK), Dublin (Ireland), Helsinki (Finland), Hamburg (Germany), Melbourne (Australia) and Singapore, and soil moisture in Vancouver, Los Angeles, London and Swindon¹⁻⁶. The ability to include snow and high-latitude vegetation phenology in the model have been successfully evaluated in Helsinki and Montreal⁴.

Here SUEWS performance is assessed with common statistical metrics: root mean square error (RMSE), normalised RMSE (nRMSE), mean bias error (MBE), Pearson correlation coefficient (*r*) and coefficient of determination (R^2) calculated using in MatLab. Consistent with past studies, SUEWS simulates the surface energy balance components at the studied areas from where hourly net all-wave radiation (Q^{*}) and EC measured turbulent fluxes of sensible (Q_H) and latent heat (Q_E) are available well (Supplementary Table S5). Model and observational uncertainties related to Q^{*} are generally lower than for Q_H and Q_E throughout the sites and period of analysis (snow-free, cold snow and warm snow), whereas the ranking of the turbulent fluxes varies depending on the period. When there is snow on ground, Q_E is better simulated than Q_H and in snow-free conditions vice-versa. Commonly, urban land surface models have been found to underestimate Q_E^{7} . Differences in the model performance between the different sites are small. In Basel, the model performance during cold snow period is poor, but this is exacerbated by the small amount of data (N = 55). The poorest model performance is for the SP2 (golf course site), which is unsurprising given the prior development focus and evaluations of SUEWS on more built-up areas.

The development and melt of the snowpack at all sites is also well captured (Supplementary Fig. S3). The model tends to predict later snow melt than the observations. This may relate to single-point observations (in an open field) not necessarily being representative of the whole area that is simulated. Melt, especially in the shadows of trees and buildings and in snow piles, can be delayed when compared to the open field. In Basel with snow depth monitored outside the city, the observed snow period is expectedly longer than modelled, due to city-scale urban effects (e.g. urban heat island).

Global products

We estimated the snow extent for the Northern Hemisphere (for December-February 2008-2010) from the mean MODIS global monthly mean snow fraction product MOD10CM⁸ with spatial resolution 0.05°. Grid points with over 80% of snow cover were included. Missing data due to continuous darkness at high-latitudes in winter were treated as snow covered grids. Urban land use (for the same 0.05°) from the Land Cover Type Climate Modeling Grid product (MCD12C1⁹) combined with the Gridded Population of the World (Version 4¹⁰ 2010; 30 arc seconds aggregated to 0.05°) allowed the number of people living in the snow covered cities to be obtained.

Supplementary Figure S1. Maps of snow extent and urbanisation. Snow extent (white) in December-February 2008-2010 and urbanised areas (red) in 2010 in (a) North-America and (b) Europe. Studied cities are shown with pink triangles, non-urbanised without snow in grey and water in blue. Missing data due to continuous darkness at high-latitudes in winter were treated as snow covered grids. Snow extent was defined as grids with over 80% of snow cover from mean MODIS global monthly mean snow fraction product MOD10CM⁵ with spatial resolution 0.05°. Land use for the same 0.05° resolution were obtained from the Land Cover Type Climate Modeling Grid product (MCD12C1⁴³). Maps were generated using MatLab V2014b

(https://se.mathworks.com/products/new_products/release2014b.html).

Supplementary Table S1. Sites and parameters used in the model runs. Site-specific parameters used and initial conditions in the SUEWS model runs. See notation in Supplementary Table S6 for details.

Helsinki			i	Montreal		Minneapolis		Basel			
Site	Ku1	Ku2	Ku3	Pa	Pi	RI	Pr	SP1	SP2	BSPA	BSPR
Lat	60.20°N	60.20°N	60.20°N	60.20°N	60.24°N	45.46°N	45.50°N	45.00°N	45.00°N	47.55°N	47.55°N
Lon	24.96°E	24.96°E	24.96°E	24.94°E	25.01°E	73.592°W	73.81°W	93.19°W	93.19°W	7.57°E	7.57°E
Timezone	2	2	2	2	2	-5	-5	-6	-6	1	1
LCZ ¹¹	3	6	9	2	9	3	6	9	С	2	2
λ_{pav}	0.42	0.39	0.30	0.42	0.22	0.44	0.37	0.08	0.04	0.32	0.30
λ_{bldg}	0.20	0.15	0.11	0.20	0.12	0.27	0.12	0.12	0.01	0.37	0.54
λ_{everg}	0.01	0	0.01	0	0.10	0	0.05	0.06	0.02	0	0
λ_{dec}	0.21	0.20	0.26	0.24	0.30	0.26	0.15	0.30	0.19	0.16	0.11
λ_{grass}	0.16	0.25	0.31	0.12	0.12	0.03	0.30	0.39	0.73	0.15	0.05
λ_{bare}	0	0	0.00	0.02	0.14	0	0	0	0	0	0
λ_{water}	0	0.01	0	0	0	0	0.01	0.04	0.02	0	0
$\lambda_{Irr,grass}$	0.94	0.77	0.68	0.81	0.17	0.77	0.83	0.42	0.81	0	0
$\lambda_{Irr,trees}$	0	0	0.68	0	0	0	0	0	0	0	0
Irr. period	152-243	152-243	152-243	3 152-243	152-243	140-260	140-260	140-273	140-273	-	-
Fr irr _{aut}	0	0	0	0	0	0	0	0	1	-	-
<i>z</i> (m)	31	31	31	31	31	25	25	40	40	29.9	31.7
<i>z_h</i> (m)	10.4	11.5	12.6	15.2	10.8	7.9	6.4	6	6	12.5	14.6
z_t (m)	10	8.8	8.5	8	8	13.0	13.8	12	12	8.0	8.0
<i>p</i> (# ha⁻')	31	37	44	42	55	84	24	10	0	103	158
A (ha)	44.7	78.2	78.2	23.8	44.8	314.2	314.2	174.5	78.5	19.6	19.6
Alt (m)	26	26	26	28	35	62	34	301	301	278	255
Reference	e Ka	rsisto et	al.'²	Järvi et a	al.†	Bergeron	and	Peters e	t al. '*	Christen a	and
Pariod						Strachan				vogi	
Modelled	7/2005	-12/2012		7/2005-2	12/2012	12/2007-	9/2009	7/2006-4	/2009	9/2001-8	8/2002
Analysed	7/2006	-06/2012		7/2006-6	3/2012	7/2008-9	/2009	7/2007-4	/2000	10/2001	.6/2002
Initial cond	ditions	Unit	s E	lelsinki	Mont	real	Minneapol	lis Bas	sel	10/2001	0/2002
Previous of	lay T _{air}	°C	; 1	4	-4.9		28.0	16.	.03		
Days since	e rain	d	0		2		0	0			
C _i		mn	n 1	0	0		10	1.5			
C _{soil,bldg}		mn	n 1	0	50		150	150	C		
C _{soil,pav}		mn	n 4	5	100		100	100	C		
C _{soil,veg}		mn	n 4	5	150		150	150	C		
Snow on g	ground	-	N	lo	No		No	No			
LAI _{evetr}		m ² n	n ⁻² 5	.1	4.0		5.1	5.1			
LAI _{dectr}		m ² n	n ⁻² 5	.5	1.0		5.5	5.5	5		
LAIgrass		m² n	n ⁻² 5	.9	1.6		5.9	5.9			
Previous of	day	°C	; 1	4	-4.9		28.0	16.	.03		
Previous of	lay T _{air}	d	0		2		0	0			
Days since	e rain	mn	n 1	0	0		10	1.5			
Ci		mn	n 1	0	50		150	150)		

Supplementary Table S2. Fitted coefficients between hydrological components and urbanisation. Coefficients for linear least square fits between modelled (subscript *mod*) normalised (subscript *norm*) evaporation (*E*) and runoff (*R*) against the impervious surface cover fraction. Data are stratified by winter months (Fig. 2, Supplementary Fig. S2) and thermal snow regimes – cold snow, warm snow and snow-free. Cumulative data: "All" uses all modelled data, "Observed" uses only those hours when observed evaporation are available.

	Condition	а	b	R^2	RMSE	Ν
E _{norm,mod}	All data – May-November	-0.642	0.809	0.71	0.073	38
R _{norm,mod}	All data – May-November	0.681	0.144	0.74	0.072	38
$E_{norm,obs}$	Observed data only – May-November	-0.083	0.151	0.07	0.061	23
E _{norm,obs}	Observed data only – May-November	-2.141	0.216	0.32	0.064	23
R _{norm,obs}	Observed data only – May-November	0.717	-0.065	0.53	0.133	4
R _{norm,mod}	Observed data only – May-November	0.414	0.181	0.20	0.196	4
E norm,mod	Observed data only – cold snow	-0.019	0.027	0.04	0.018	20
E norm,obs	Observed data only – cold snow	0.021	0.012	0.04	0.020	20
E norm,mod	Observed data only – warm snow	0.040	0.014	0.08	0.026	17
E norm,obs	Observed data only – warm snow	0.060	0.003	0.16	0.027	17
E norm,mod	Observed data only – snow free	-0.253	0.205	0.35	0.0727	21
E norm,obs	Observed data only – snow free	-0.098	0.123	0.12	0.0575	21

Supplementary Figure S2. Hydrological components with impervious cover. Cumulative (**a-c**) evapotranspiration (*E*) and (**d-f**) surface runoff (*R*) as normalised by cumulative precipitation and irrigation. (**a**, **d**) show modelled (open symbols) and measured (closed symbols) winter months (December-February) and (**b**, **e**) spring months (March-April) so that in cumulative *E* and *R* only hours with observed data are used, and (**c**, **f**) modelled spring months for all hours. Different sites (colours) and years (symbols) are indicated for the observations (solid symbols) and modelled (open) values.

Supplementary Table S3. Fitted coefficients between hydrological components and climate and urbanization. Coefficients for non-linear least square fit to runoff and evaporation as a function of air temperature and fraction of snow days for winter (data analyzed months or 2-week periods). The fitted curve has an exponential form $(aexp(bT_{air}))$ for the normalised evapotranspiration, and a logistic form $(\frac{a}{1+\exp[-b(T_{air}-c)]})$ for the normalised runoff

$\lambda_{_{imp}}$	а	b	С	R ²	RMSE	Ν	
Normalized	monthly R versu	us T _{air}					
10%	0.562±0.093	1.064±1.107	-3.012±1.205	0.78	0.124	37	
20-30%	0.598±0.060	0.996±0.582	-2.964±0.742	0.82	0.112	74	
40-50%	0.654±0.057	0.909±0.408	-2.886±0.649	0.87	0.099	74	
60-70%	0.718±0.555	0.810±0.278	-2.766±0.586	0.91	0.089	74	
80-90%	0.801±0.062	0.675±0.181	-2.584±0.593	0.93	0.085	74	
Normalized	2-week R versu	s T _{air}					
10%	0.552±0.119	1.106±1.354	-2.532±1.263	0.44	0.260	83	
20-30%	0.590±0.077	0.954±0.618	-2.529±0.811	0.52	0.228	166	
40-50%	0.657±0.070	0.780±0.346	-2.450±0.725	0.64	0.192	166	
60-70%	0.732±0.070	0.615±0.197	-2.330±0.713	0.72	0.171	166	
80-90%	0.838±0.080	0.472±0.121	-2.043±0.790	0.75	0.170	166	
Normalized December-February R versus T _{air}							
10%	0.523±0.169	0.773±0.934	-5.201±3.415	0.88	0.095	10	
20-30%	0.558±0.094	0.705±0.398	-5.177±1.665	0.90	0.081	20	
40-50%	0.616±0.091	0.619±0.265	-0.056±1.358	0.92	0.074	20	
60-70%	0.685±0.092	0.535±0.180	-4.847±1.168	0.94	0.069	20	
80-90%	0.780±0.105	0.453±0.131	-4.464±1.126	0.95	0.067	20	
Monthly not	rmalized E versu	is T _{air}					
10%	0.259±0.061	0.125±0.046	-	0.49	0.142	37	
20-30%	0.239±0.037	0.118±0.030	-	0.48	0.124	74	
40-50%	0.209±0.030	0.107±0.028	-	0.46	0.102	74	
60-70%	0.177±0.023	0.090±0.025	-	0.42	0.080	74	
80-90%	0.140±0.017	0.063±0.022	-	0.31	0.057	74	
Occurrence on intense daily runoff events as a function of <i>T</i> _{air} in December-							
February							
10-90%	3.479±0.814	2.509±40.88	-3.676±18.114	0.49	1.758	90	
Occurrence on intense daily runoff events as a function of S_{WE} in thermal spring							

0.0592±0.001 -0.185±0.441 -

10-90%

0.61

1.571

108

Sup	Supplementary Table S6 and SUEWS manual (http://urbanclimate.net/umep/SUEWS) for details.								
	Site	Units	Bldg	Pav	Everg	Decid	Grass	Bare soil	Water
S_i	All	mm	0.25	0.48	1.3	0.3-0.8	1.9	1.0	2000
$S_{soil,i}$ $D_{0,i}$	Hel, Basel, RI Pr, SP1, SP2 All	mm mm mm	50 150 10	100 100 10	150 150 0.013	150 150 0.013	150 150 0.013	150 150 0.013	- -
d $lpha_i$	All All	-	3 0.15	3 0.09	1.71 0.10	1.71 0.16	1.71 0.19	1.71 0.21	- 0.08
\mathcal{E}_{i}	All	-	0.95	0.91	0.98	0.98	0.93	0.94	0.95
LAI $g_{i,\max}$	All All	m ² m ⁻² mm s ⁻¹	-	-	4.0-5.1 7.4	1.0-5.5 11.7	1.6-5.9 40	-	-
$S_{WE,i}^{\max}$	All	mm	190	190	190	190	190	190	-
$S_{WE,lin}$	All	mm	40	100	-	-	-	-	-
a ₁	Helsinki Rl Pr Minneapolis Basel		0.19 0.26 0.12 0.238 0.238	0.719 0.719 0.719 0.719 0.719 0.719	0.11 0.11 0.11 0.11 0.336	0.11 0.11 0.11 0.11 0.336	0.32 0.32 0.32 0.32 0.32	0.355 0.355 0.355 0.355 0.355	0.5 0.5 0.5 0.5 0.5
a ₂	Helsinki Rl Pr Minneapolis Basel		0.54 0.85 0.24 0.427 0.427	0.194 0.194 0.194 0.194 0.194	0.11 0.11 0.11 0.11 0.313	0.11 0.11 0.11 0.11 0.313	0.54 0.54 0.54 0.54 0.54	0.355 0.355 0.355 0.355 0.355	0.21 0.21 0.21 0.21 0.21
a 3	Helsinki Rl Pr Minneapolis		-15.125 -21.4 -4.5 -16.7	-36.6 -36.6 -36.6 -36.6	-12.3 -12.3 -12.3 -12.3 21.4	-12.3 -12.3 -12.3 -12.3 -12.3	-27.4 -27.4 -27.4 -27.4	-35.275 -35.275 -35.275 -35.275 -35.275	-39.1 -39.1 -39.1 -39.1 -39.1
b) Ove	Basei -10.7 -30.0 -31.4 -31.4 -27.4 -35.275 -39.1 b) Overall area parameter values								

Supplementary	ble S4. Model parameters used in the SUEWS model runs. See notation in
Supplementary T	le S6 and SUEWS manual (http://urbanclimate.net/umep/SUEWS) for details

Snow		Surfac (other	ce conductance s/Basel)	Vegetation phenology		A	nthropogenic heat
$lpha_{s}^{\min}$	0.18	G ₁	16.48/3.5 mm s ⁻¹	GDD	300	a _{0,wd/we}	0.1 W m ⁻² (p ⁻¹ ha ⁻¹) ⁻¹
α_s^{\max}	0.85	G ₂	566.1/200 W m ⁻²	b₁ Bas	0.03	a _{1,wd/we}	$9.9 \cdot 10^3 \mathrm{Wm^{-2}K^{-1}} (\mathrm{p^{-1} ha^{-1}})^{-1}$
\mathcal{E}_{s}	0.99	G ₃	0.216/0.13 kg g⁻¹	<i>b</i> ₁ others	0.04	a _{2,wd/we}	0.0102 Wm ⁻² K ⁻¹ (p ⁻¹ ha ⁻¹) ⁻¹
$ ho_{\scriptscriptstyle e}$	200 kg m ⁻³	G_4	3.36/0.7 g kg⁻¹	c₁ Bas	0.0005	T_{BaseQF}	18.2°C
$ ho_{s}^{ ext{min}}$	100 kg m ⁻³	G_5	11.07/30°C	c₁ others	0.001	Others	
$ ho_{s}^{ ext{max}}$	400 kg m ⁻³	G_6	0.018/0.05 mm	b ₂ Basel	0.03	Ks	0.0005 mm s ⁻¹
$ au_{a}$	0.018	K↓m	1200 W m⁻²	b ₃ Others	-1.5	R _{s,max}	9999 s m ⁻¹
$ au_{f}$	0.11	S ₁	0.45/5.56 mm	c ₂ Basel	0.0005	<i>res_{cap}</i>	10 mm
$ au_r$	0.043	S ₂	15/0 mm	c ₃ Others	0.0015	res drain	0.25 mm h ⁻¹
a ₁	0.25	T_H	40/50°C	SDD	-450	S _{Pipe}	100 mm
a_2	0.6	T_L	0/-10°C	$T_{BaseGDD}$	5°C	T _{step}	300 s
a_3	-30	Irrigati	ion	$T_{BaseSDD}$	10°C		
af	1	b 0,a	-19.1853 mm				
ar	0.0016 mm W ⁻ h ⁻	b _{1,a}	2.2195 mm K ⁻				
a_t	0.07 mm °C ' h '	b _{2,a}	0.7836 mm d '				
C_{\min}^{R}	0.05 mm	b _{0,m}	-5.7556 mm				
C_{\max}^R	0.2 mm	b _{1,m}	0.6658 mm K ⁻¹				
Plim	2 mm	b _{2,m}	0.2351 mm d⁻¹				
T _{Im}	2.2°C	l _w	0 mm				

Supplementary Table S5. Model evaluation metrics. Summary of the metrics at all sites (excluding Pa and Pi) with hourly net all-wave radiation (Q^{*}) , sensible (Q_{H}) and latent heat flux densities (Q_{E}) by thermal snow regimes. RMSE = root mean square error (W m⁻²), nRMSE = normalized root mean square error with the difference between observed maximum and minimum, MBE = mean biased error (W m⁻²), r = Pearson correlation coefficient, and *N* = number of points (only periods with more than five points are calculated).

		Cold snow			Warm snow			Snow-free		
		Q	Q_H	Q_E	Q	Q_H	Q_E	Q	Q_H	Q_E
	RMSE	29.7	28.2	4.7	39.4	43.2	16.5	34.2	39.1	23.1
He1	nRMSE	0.051	0.066	0.041	0.047	0.090	0.141	0.027	0.059	0.057
	MBE	-18.9	-23.2	-4.7	-4.8	-9.9	-7.2	7.3	-23.7	-20.1
	r	0.74	0.74	0.59	0.94	0.83	0.65	0.98	0.89	0.72
	Ν	12495	1257	984	6659	393	346	42201	2398	1926
	RMSE	29.3	30.6	4.1	38.8	39.5	18.4	34.0	52.7	32.4
H⊳2	nRMSE	0.051	0.077	0.028	0.046	0.083	0.112	0.027	0.078	0.079
1102	MBE	-19.0	-7.4	-5.5	-5.3	9.3	2.9	6.8	-8.8	-18.9
	r	0.74	0.61	0.48	0.94	0.77	0.70	0.98	0.85	0.63
	N	12499	2424	942	6667	801	409	42189	5414	3639
	RMSE	29.5	28.7	5.7	38.1	44.2	35.2	33.7	51.5	50.4
He3	nRMSE	0.051	0.066	0.065	0.046	0.079	0.203	0.027	0.083	0.111
	MBE	-18.9	6.0	-2.3	-6.2	14.3	12.1	5.7	-0.4	14.7
	r	0.74	0.56	0.49	0.94	0.75	0.65	0.98	0.74	0.81
		12519	1518	532	6//4	1700	810	42062	11918	7071
		30.8	30.7	10.4	70.2	60.6 0.100	43.6	80.0	52.0	41.Z
PR		0.053	0.078	0.035	12.091	0.133	0.184	0.090	0.114	0.079
	MBE	-44.0	-4.3	-1.0	-13.3	8.0	11.0	3.0	3.0	-11.8
	r N	0.89	0.00	0.52	0.93	0.01	0.57	0.93	0.85	0.74 5120
		2990 42.2	21/0	2003	71 9	19 A	91Z 292	0494 95 2	5209	20.2
		42.3	0.070	1.2	0.006	40.4	20.3	00.2	0.002	0.070
RL	MRE	27 1	11 5	20	63	12.6	2.2	17.5	16.0	1/1
		0.86	0.87	-2.9	-0.5	0.80	0.36	0 03	0.9	0.50
	N	2713	1371	1289	1375	788	759	0.00 4138	3491	3404
	RMSE	47.8	28.2	57	56.2	61.0	53.1	36.9	75 9	72 6
	nRMSF	0 070	0.065	0.039	0.081	0 100	0 239	0.046	0.096	0 113
SP1	MBE	-4.0	-1.3	3.0	3.6	-4.7	27.0	18.9	2.9	16.7
	r	0.74	0.82	0.37	0.95	0.73	0.71	0.98	0.79	0.58
	N	6576	3564	3564	2117	824	824	10364	4064	4064
	RMSE	47.4	29.1	3.7	55.6	92.2	112.5	36.1	118.4	122.2
0.00	nRMSE	0.070	0.090	0.038	0.080	0.158	0.155	0.045	0.217	0.187
SP2	MBE	-4.4	3.5	2.4	-0.1	8.5	17.1	16.7	-4.2	33.8
	r	0.75	0.77	0.48	0.95	0.27	0.12	0.98	0.34	0.63
	Ν	6611	1231	1231	2150	364	364	10296	1759	1759
	RMSE	16.2	51.5	1.3	-	-	-	28.7	42.1	15.5
BSPR	nRMSE	0.057	0.272	0.087	-	-	-	0.035	0.066	0.023
	MBE	50.0	80.7	-22.4	-	-	-	4.0	6.2	-14.0
	r	0.99	0.52	0.60	-	-	-	0.98	0.91	0.64
	Ν	27	7	6	-	-	-	5659	3806	2566
	RMSE	24.7	44.8	0.8	-	-	-	27.5	38.0	32.1
RSDA	nRMSE	0.074	0.368	0.006	-	-	-	0.034	0.069	0.035
DOFA	MBE	39.2	32.1	-23.8	-	-	-	9.7	5.4	2.5
	r	0.97	0.72	-0.11	-	-	-	0.98	0.87	0.45
	Ν	49	45	27	-	-	-	7962	6492	4225

Järvi L, CSB Grimmond, JP McFadden, A Christen, IB Strachan, M Taka, L Warsta, M Heimann 2017: Warming effects on the urban hydrology in cold climate regions, *Scientific Reports* DOI: 0.1038/s41598-017-05733-y

Supplementary Figure S3. Modelled and measured snow depths (s_d). (**a**) In Helsinki (He3), (**b**) Montreal (RI), (**c**) Minneapolis (SP1) and (**d**) Basel (BSPA). In Basel, where snow depth was only monitored outside the city, the observed snow period is expectedly longer than modelled, due to regional urban effects (e.g. urban heat island). Modelled values are for the grass surface as these are most representative of the snow observations made in open spaces (according to the WMO^{16,17} recommendations).

Abbreviation	Description
α_{i}	Effective surface albedo (-)
\pmb{lpha}^{\min}_{s}	Minimum snow albedo (-)
α_s^{\max}	Maximum snow albedo (-)
\mathcal{E}_i	Effective surface emissivity (-)
\mathcal{E}_{s}	Effective surface emissivity of snow (-)
λ _{bsoil} λ _{bldg} λ _{dectr}	Surface fraction of bare soil (-) Surface fraction of buildings (-) Surface fraction of deciduous trees (-)
λ _{evetr} λ _{grass} λ _{imp}	Surface fraction of evergreens (-) Surface fraction of non-irrigated grass (-) Surface fraction of impervious surfaces (-)
$\lambda_{ m pav}$ $\lambda_{ m veg}$ $\lambda_{ m water}$ $ ho_e$	Surface fraction of vegetation (-) Surface fraction of water (-) Threshold in the calculation of snow retention capacity (kg m ⁻³)
$ ho_s^{ m min}$	Maximum snow density (kg m ⁻³)
$ ho_{s}^{ ext{max}}$	Minimum snow density (kg m ⁻³)
$ au_a$	Cold snow time constant for snow albedo aging (-)
$ au_{f}$	Warm snow time constant for snow albedo aging (-)
$ au_r$	Time constant describing the snow density aging (-)
а	Fitting coefficient
a _{0,wd/we}	Parameter defining the base anthropogenic heat flux (W m (cap ha)) Parameter related to CDD (W $m^{-2} K^{-1}$ (capita ⁻¹ $ha^{-1})^{-1}$)
a _{1,wd/we}	Parameter related to HDD (W $m^{-2} K^{-1}$ (capita $ha^{-1})^{-1}$)
a _{1,2,3}	Constants in the calculation of the heat storage in OHM
a _f	Temperature freezing factor (mm °C ⁻¹ h ⁻¹)
a _r	Radiation melt factor (mm $W^{-1} h^{-1}$)
a_t	Temperature melt factor (mm °C ⁻ h ⁻)
A	Study area (ha)
Alt	Allitude (m) Fitted coefficient
d	Empirical coefficient in the calculation of drainage
b_{123}	Parameters controlling the speed of leaf on period
b _{1a,2a,3a}	Parameters for automatic irrigation (mm, mm K ⁻¹ , mm d ⁻¹)
b _{1m,2m,3m}	Parameters for manual irrigation (mm, mm K ⁻¹ , mm d ⁻¹)
bldg	Building surface type
BSPA	Spalenring site in Basel, Switzerland
C	Fitted coefficient
C1 2 3	Parameter to control the speed of leaf-off
C_i	Initial surface state of <i>i</i> th surface type (mm)
C _{soil,i}	Initial soil water state of <i>i</i> th surface type (mm)
C^{R}_{\min}	Minimum retention capacity of snow (mm)
C_{\max}^{κ}	Maximum retention capacity of snow (mm)
d	Empirical coefficient in the calculation of drainage
$D_{0,i}$	Drainage rate of <i>i</i> th surface type (mm)
F	Deciduous surface type Evanoration (mm)
– Enorm	Normalised evaporation
EC	Eddy covariance

Supplementary Table S6. Notation in alphabetical order

Evergreen surface type evetr Maximum conductance (m s⁻¹) $g_{i,max}$ G_{1-6} Parameters related to surface conductance GDD Growing degree days Surface type index (bldg, pav, evetr, dectr, grass, bsoil, water) i I_e Irrigation Amount of water for internal water use I_w K↓m Maximum incoming solar radiation used in g_s calculation K_s Saturated hydraulic conductivity of soil (mm s⁻¹) Ku1 Built sector at the Kumpula site Ku2 Road sector at the Kumpula site Vegetation sector at the Kumpula site Ku3 Leaf area index (m² m⁻²) LAI Lat Latitude (°) LCZ Local climate zone Lon Longitude (°) MBE Mean biased error nRMSE Normalised root mean square error N Number of data points OHM Objective hysteresis model to calculate storage heat flux Population density inside the grid (capita ha⁻¹) р P Precipitation (mm) Plim Snowfall limit when the surface albedo is changed to fresh snow albedo (mm) Pa Pasila site in Helsinki, Finland Paved surface type pav Pi Pihlajamäki site in Helsinki, Finland Pr Pierrefonds-Roxboro site in Montreal, Canada Q* Net all-wave radiation (W m⁻²) Latent heat flux density (W m⁻²) Q_E Q_H Sensible heat flux density (W m⁻²) Pearson correlation coefficient r Maximum surface resistance (s m⁻¹) r_{s.max} Surface water capacity in LUMPS (mm) rescap Drainage rate of water bucket in LUMPS (mm h⁻¹) resdrain Runoff (mm) R R_{norm}^2 Normalised runoff Squared root mean square error R_c Limit when surface is totally covered with water in LUMPS (mm) RI Rosemont-La-Petite-Patrie site RMSE Root mean square error Sd Snow depth (m) S_{1-2} Parameters related to surface conductance S_{days} Number of snow days Si Water state of the snow free surface (mm) S_{Pipe} Maximum depth capacity of pipes (mm) $S_{soil,i}$ Soil state (mm) $S_{W\!E}$ Snow water equivalent (mm) $S_{WE,Lim}$ S_{WE} limit for snow removal from the area (mm) $S_{WE,i}^{\max}$ S_{WE} when surface type *i* is fully covered with snow (mm) SDD Senescence degree days SP1 Suburban surface area in Minneapolis-St. Paul in USA SP2 Simulated golf course in Minneapolis-St. Paul in USA. SUEWS The Surface Urban Energy and Water balance Scheme Tair Air temperature (°C) Base temperature for leaf growth (°C) T_{BaseGDD} **T**_{BaseSDD} Base temperature for senescence (°C) TBaseQF Base temperature for $Q_F(^{\circ}C)$ T_H, T_L Maximum and minimum temperature limits in calculation of g_s (°C)

T _{lim} T _{Sten}	Temperature limit for the liquid precipitation and snow (°C) Model time step (s)
Z	Height of the meteorological measurements (m)
Zb	Mean building height (m)
Zt	Mean tree height (m)

References

- Ward, H. C., Kotthaus, S., Järvi, L. & Grimmond, C. S. B. Surface urban energy and water balance scheme (SUEWS): development and evaluation at two UK sites. *Urban Climate* 18, 1-32 (2016).
- 2 Alexander, P. J., Fealy, R. & Mills, G. M. Simulating the impact of urban development pathways on the local climate: A scenario-based analysis in the greater Dublin region, Ireland. *Landscape Urban Plan* **152**, 72-89 (2016).
- Järvi, L., Grimmond, C. S. B. & Christen, A. The Surface Urban Energy and Water Balance Scheme (SUEWS): Evaluation in Los Angeles and Vancouver. *Journal of Hydrology* 411, 219 - 237, doi:10.1016/j.jhydrol.2011.10.001 (2011).
- 4 Järvi, L. *et al.* Development of the Surface Urban Energy and Water Balance Scheme (SUEWS) for cold climate cities. *Geoscientific Model Development* **7**, 1691 1711, doi:10.5194/gmd-7-1691-2014 (2014).
- 5 Alexander, P. J., Bechtel, B., Chow, W. T. L., Fealy, R. & Mills, G. Linking urban climate classification with an urban energy and water budget model: Multi-site and multi-seasonal evaluation. *Urban Climate* **17**, 196-215, doi:10.1016/j.uclim.2016.08.003 (2016).
- 6 Demuzere, M. *et al.* Impact of urban canopy models and external parameters on the modelled urban energy balance in a tropical city. *Quarterly Journal of the Royal Meteorological Society*, doi:10.1002/qj.3028 (2017).
- Grimmond, C. S. B. *et al.* Initial results from Phase 2 of the international urban energy balance model comparison. *International Journal of Climatology* **31**, 244 - 272, doi:DOI: 10.1002/joc.2227 (2011).
- 8 Hall, D. K. & A, R. G. MODIS/Terra Snow Cover Monthly L3 Global 0.05Deg CMG, Version 6. [MOD10CM]. (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2015).
- 9 NASA LP DAAC. MCD12C1 The Land Cover Type Climate Modeling Grid product., (NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota (<u>https://lpdaac.usgs.gov</u>), 2015).
- 10 Center for International Earth Science Information Network CIESIN Columbia University. Documentation for the Gridded Population of the World, Version 4 (GPWv4). (Palisades NY: NASA Socioeconomic Data and Applications Center (SEDAC), 2016).
- 11 Stewart, I. D. & Oke, T. R. Local Climate Zones for Urban Temperature Studies. *Bulletin of the American Meteorological Society* **93**, 1879 1900, doi:DOI: 10.1175/bams-d-11-00019.1 (2012).
- 12 Karsisto, P. *et al.* Seasonal surface urban energy balance and wintertime stability simulated using three land-surface models in the high-latitude city Helsinki. *Quarterly Journal of the Royal Meteorological Society* **142**, 401-417, doi:10.1002/qj.2659 (2016).
- 13 Bergeron, O. & Strachan, I. B. Wintertime radiation and energy budget along an urbanization gradient in Montreal, Canada. *International Journal of Climatology* **32**, 137-152, doi:10.1002/joc.2246 (2012).
- 14 Peters, E. B., Hiller, R. V. & McFadden, J. P. Seasonal contributions of vegetation types to suburban evapotranspiration. *Journal of Geophysical Research-Biogeosciences* **116**, doi:10.1029/2010jg001463 (2011).
- 15 Christen, A. & Vogt, R. Energy and radiation balance of a central European city. *International Journal of Climatology* **24**, 1395-1421, doi:10.1002/joc.1074 (2004).
- 16 WMO. Guide to Hydrological Practises (5th edition). (Geneva, 1994).
- 17 WMO. Guide to Meteorological Instruments and Methods of Observation (7th Edition). (Geneva, 2008).