
PHYSICAL REVIEW E 88, 012116 (2013)

Linear response, fluctuation-dissipation, and finite-system-size effects in superdiffusion
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Lévy walks (LWs) are a popular stochastic tool to model anomalous diffusion and have recently been used to
describe a variety of phenomena. We study the linear response behavior of this generic model of superdiffusive
LWs in finite systems to an external force field under both stationary and nonstationary conditions. These
finite-size LWs are based on power-law waiting time distributions with a finite-time regularization at τc, such
that the physical requirements are met to apply linear response theory and derive the power spectrum with the
correct short frequency limit, without the introduction of artificial cutoffs. We obtain the generalized Einstein
relation for both ensemble and time averages over the entire process time and determine the turnover to normal
Brownian motion when the full system is explored. In particular, we obtain an exact expression for the long time
diffusion constant as a function of the scaling exponent of the waiting time density and the characteristic time
scale τc.
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I. INTRODUCTION

Suppose you follow a tracer particle in an intermittent
chaotic system. While the particle will move ballistically in
laminar regions, it will be trapped intermittently around sticky
islands [1]. Typically the resulting motion is superdiffusive,
with a mean squared displacement (MSD) of the form
〈r2(t)〉 � t3−α and 1 < α < 2 [2,3]. Such laminar-localized
motion of tracer particles was observed in a rotating annulus
in the classical experiment by Solomon, Weeks, and Swinney
with α = 1.35 [4]. A similar behavior was observed for particle
motion encoded in dynamic maps [5,6]. Processes of this kind
are statistically described by Lévy walks (LWs), a variant of
Scher-Montroll continuous time random walks (CTRWs) with
a spatiotemporal coupling between waiting times and jump
lengths [3,7–9]. This coupling ensures that the walker moves
with a finite velocity and thus possesses a finite MSD while
developing a fractal trajectory with long-tailed distribution of
relocation lengths [10].

Along with recent advances in experimental techniques
LWs have undergone a revival. The most remarkable de-
velopment is the possibility to manufacture disordered op-
tical materials, in which light beams travel superdiffusively
and follow LW patterns [11]. This experiment could be
the basis for new opaque optical materials or lasers, and
form the foundation for the understanding of medical tissue
imaging. The characteristics of LW superdiffusion were also
detected for photon transport in hot vapors of rubidium
atoms due to inelastic scattering [12]. These results offer
dramatic new insight in such systems as stars, gas lasers,
discharges, or hot plasmas. LW characteristics also underlie
the dynamics of on-off blinking dynamics of the luminescence
in quantum dots, or molecular emitters such as dyes or
biopolymers [13].
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Concurrently, LWs are being identified as the governing
process in an ever increasing number of random search and
motion patterns of animals [14] and humans [15]. Specifically,
LWs describe exhaustive tracking data of marine predators
[16], the spreading of mussels [17] and lice [18], or the flights
of bats [19]. A central advantage of the LW search strategy is
that its scale-free nature makes it robust against environmental
changes [20].

LWs are by now a well established and efficient tool in
the description of dynamic systems. However, several crucial
questions on their fundamental physical behavior remain
elusive. One central issue is how to include the effects of
the crucial finiteness of the systems under consideration: finite
territories of animals or the maximum depth to which sharks
can dive, the size of disordered optical materials, hot vapors,
and of medical tissue samples, or the finite distance between
stable islands in a chaotic sea. The other is the exact treatment
of the essential physical response behavior to external forces
as well as the power spectrum. Thus, what is the effect of
the directional rotation of the annulus, an asymmetry in the
dynamic maps, a nutrition gradient on the sea floor for mussels,
an underwater current or wind affecting the motion of fishes
or birds, or an optical anisotropy in Lévy glasses?

Here we take recent results on the 1/f noise behavior of
LWs [21], the Einstein relation of LWs and their ergodic
behavior [22,23] one step further: the consideration of a
finite but otherwise arbitrary system size allows us to exactly
derive the linear response behavior of LWs to a constant
or harmonic external force based on the Kubo theory. We
derive a generalized Einstein relation, which is eventually
replaced by the classical Einstein relation at long times. We
also obtain the power spectrum of LWs and show that its
low-frequency limit consistently converges to the long-time
diffusion constant, for which we obtain an exact expression.
Our approach is universal in the sense that it leads to results
valid over the entire time evolution of the process including the
turnovers between different regimes, and it holds for ballistic,
superdiffusive, and normally diffusive motion on an equal
footing.
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II. RESULTS AND DISCUSSION

A. Time-averaged mean squared displacement

In the velocity model an LW moves to the left or right
with fixed speed v [3]. It randomly changes directions after
the expiration of a waiting time t . These waiting times are
independent random variables with probability density ψ(t)
[24]. The joint probability density for a jump of length x

given the waiting time t is �(x,t) = 1
2ψ(t)δ(|x| − vt), and

thus confines the free paths of the LW within an expanding
horizon at positions vt [24]. For ψ(t) we choose the form

ψ(t) = τα
c

�
(−α,τ−1

c

)
(1 + t)1+α

exp

(
−1 + t

τc

)
, (1)

turning over from the power-law form ψ(t) � (1 + t)−(1+α)

for t � τc to an exponential wing at t � τc [25] and mean
sojourn time

τ ≡
∫ ∞

0
τψ(τ )dτ = τc�

(
1 − α,τ−1

c

)
�

(−α,τ−1
c

) − 1. (2)

For a finite system the turnover time τc is related to the system
size L via the scaling τc � L/|v|, and is thus a natural physical
parameter. While τc can, in principle, be chosen arbitrarily
large and thus the power-law form of ψ(t) dominates the LW,

the presence of τc ensures that the process eventually diffuses
normally and that it fulfills the physical conditions to apply
linear response theory. Such finite-size effects were indeed
observed empirically for LW dynamics in optical materials
[11], of tracers in the rotating annulus [4], and for animal
motion [18,19].

Our derivations are based on the velocity autocorrelation
Cv(t) = limt ′→∞ |t ′ − t |−1

∫ |t ′−t |
0 v(t ′′)v(t ′′ + t)dt ′′. From the

renewal approach [5,22] we obtain

Cv(t) = v2
�

(
1 − α,

1+|t |
τc

) − ( 1+|t |
τc

)
�

(−α,
1+|t |

τc

)
�

(
1 − α,τ−1

c

) − τ−1
c �

(−α,τ−1
c

) (3)

with the upper incomplete � function �(a,z) [26]. In Fig. 1,
Eq. (3) agrees perfectly with numerical simulations. Via the
Kubo formula [27], from Eq. (3) we obtain the time-averaged
MSD

δ2(�) = lim
T →∞

1

T − �

∫ T −�

0
[x(t + �) − x(t)]2dt (4)

in terms of the lag time � and the measurement time T . It was
noted previously [28] that δ2(�) is equivalent to the stationary-
ensemble average 〈x2(t)〉s of a system prepared at t = −∞
(i.e., independent of its initial condition) and recorded from
t = 0. The exact result becomes

δ2(�) = 2
τ 2
c

∑3
k=2

(−1)k

k!

{(
1+�
τc

)k
�

(
3 − k − α, 1+�

τc

) + (
1+�
τc

)3−k[
�

(
k − α,τ−1

c

) − �
(
k − α, 1+�

τc

)]} + 	

�
(
1 − α,τ−1

c

) − τ−1
c �

(−α,τ−1
c

) , (5)

where we have introduced the auxiliary abbreviation

	 = (1 + �)
{
τ 1+α
c e−1/τc − �

(−α,τ−1
c

)
(ατc + 1/2)

}
−�

(−α,τ−1
c

)
(ατc/2 − 1/3). (6)

The scaling behavior at intermediate times 1 � t � τc follows
from the expansion

�(a,z) = �(a) −
∞∑

k=0

(−1)k
zk+a

k!(k + a)
(7)

and the expansion of Eq. (2)

τ ∼

⎧⎪⎨
⎪⎩

τ 1−α
c �(2−α)

1−α(1−τ−1
c ) , 0 < α < 1,

2−α(1−τ−1
c )

(2−α)
[
α(1−τ−1

c )−1
] , 1 < α < 2.

(8)

The intermediate scaling behavior reads〈
δ2(�)

〉
∼

{
t2, 0 < α < 1,

2ζ t3−α, 1 < α < 2,
(9)

where ζ = 1/(3 − α)(2 − α). These are the familiar ballistic
and subballistic diffusion behaviors of LWs, for diverging
(0 < α < 1) and finite (1 < α < 2) mean waiting times
[3,5,24]. As expected, beyond τc the motion becomes nor-
mally diffusive δ2(�) ∼ D(α,τc)�. The long-time diffusion
constant is analyzed below. The right panel of Fig. 1

shows excellent agreement between our rigorous theoreti-
cal result (5) and simulations. The anomalous to normal
diffusion turnover indicates a separation of time scales,
see below.

We emphasize that even for long time series, in which
the particle traverses the system repeatedly, we observe an
anomalous scaling of δ2 on time scales shorter than τc. As
shown below, however, the diffusion coefficients in both the
anomalous and normal regimes explicitly depend on α. Note
that also for finite-size LWs finite T effects of trajectories are
relevant [22].

B. Linear response theory

We now turn to the linear response of an LW to a
small external perturbation Hp = −xf (t), where f (t) may
be explicitly time dependent. Similar to the independence
of the waiting time density ψ(t) of an external force
field of uncoupled CTRW processes [8,29], a biased LW
still switches between ±v, albeit asymmetrically [30]. With
the characteristic time scale τc, the diffusivity converges,
D(α,τc) = limt→∞

∫ t

0 Cv(t ′)dt ′ < ∞, so that we may apply
linear response theory. Note that the general problem of linear
response in superdiffusion remains open, and thus the study
case of LWs is even more relevant [31].
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FIG. 1. (Color online) Time evolution of the velocity autocorrelation Cv(t) (left) and time-averaged MSD δx2 (right). Symbols represent
simulations results, full lines are evaluated from Eqs. (3) and (5). Dashed lines depict the asymptotic scaling. Results are shown for α = 0.5,
1.2, and 1.7, as indicated. The simulation results were obtained from ensembles of 104 trajectories of length 108�1, and τc = 104 (used in all
graphs).

Applying linear response theory for given Hp, we obtain
the perturbed velocity

〈v(t)〉p ≡ d

dt
〈x(t)〉p =

∫ t

−∞
βCv(t − t ′)f (t ′)dt ′, (10)

where β = 1/(kBT ) is the inverse thermal energy. Consider
first a constant force f switched on at t = 0. With the velocity
autocorrelation (3) the average velocity in the perturbed
ensemble becomes

〈v(t)〉p = βf

N

[
2∑

k=0

(−1)k+1

2δk,1−1k!
�

(
α,

1 + t

τc

)
+ �(α,τc)

2

]
,

(11)

where we use the abbreviation

N = �
(
1 − α,τ−1

c

) − τ−1
c �

(−α,τ−1
c

)
, (12)

and where δk,1 is the Kronecker symbol. Moreover, the
parameter � is defined through

�(α,τc) = �
(−α,τ−1

c

)[
2ατ−1

c + α(α − 1) + τ−2
c

]
+ τα

c e−1/τc
(
1 − α − τ−1

c

)
. (13)

The instantaneous response irrespective of α is linear for
the velocity, 〈v(t)〉p ∼ t , corresponding to the ballistic initial

dynamics. At intermediate times 1 � t � τc we find

〈v(t)〉p ∼ βf

{
t, 0 < α < 1,

1
2−α

t2−α, 1 < α < 2,
(14)

i.e., a nonlinear anomalous drift

〈x(t)〉p ∼ βf

{
1
2 t2, 0 < α < 1,

1
(2−α) t

3−α, 1 < α < 2.
(15)

In analogy to the unperturbed MSD, 〈x(t)〉p scales ballistically
for 0 < α < 1 and subballistically for 1 < α < 2 (Fig. 2). We
stress that the average velocity in the perturbed (stationary)
ensemble is time dependent and thus different from the case of
perturbed maps [32]. In the limit t � τc we find the constant
drift velocity 〈v(t)〉p = βf D(α,τc),

D(α,τc) = 1

2τcN

2∑
k=0

2δk,1 (−τc)k�
(
k − α,τ−1

c

)
, (16)

compare to Fig. 3. With the Kubo formula we then recover the
Einstein relation

〈x(t)〉p = 1
2βf 〈x2(t)〉s (17)

between the drift 〈x(t)〉p and the stationary MSD 〈x2(t)〉s ,
valid for all t . As a transient, this includes the generalized
Einstein relation [33] with the nonlinear drift 〈x(t)〉p ∼ Kμtμ

v
(t

)
p
/β

f
D

(α
,τ

c)

v
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)
p ∼ t

∼ tμ
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FIG. 2. (Color online) (Left) Drift velocity 〈v(t)〉p normalized to βf D(α,τc) for α = 0.5, 1.2, and 1.7. Symbols: Numerical integration of
βf Cv(t). Full lines: Exact analytical solution (11). (Right) Analytical solution (11) in units of βf with intermediate-time scaling. For visual
convenience the cases α = 1.2 and 1.7 were scaled by a factor of 1/3 and 1/5, respectively.

012116-3
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FIG. 3. (Color online) (Left) Power spectrum of velocity fluctuations for α = 0.5, 1.2, and 1.7. Symbols: Simulation results. Lines: Expected
scaling behavior, see text. (Right) Long time diffusivity D(α,τc) versus τc for the same α values. Lines: Eq. (16). Dashed lines: asymptotic
scaling, Eq. (30).

(μ �= 1). Below we will see the alternative Einstein relation
in the nonstationary ensemble. Figure 2 shows excellent
agreement between the numerical integration of the velocity
autocorrelation and Eq. (14). In Fig. 2, for the normalized
drift velocity the response delay is shortest for the subballistic
case 1 < α < 2 and increases towards smaller α values. As at
long times the drift is proportional to D(α,τc), however, the
absolute drift is stronger for smaller α (Fig. 3). Figure 2 also
shows the multiscale nature of 〈v(t)〉p at larger α, while the
linear scaling for α = 0.5 is nicely fulfilled.

C. Power spectrum

We now consider a periodic perturbation f cos(ωt), i.e., we
study the power spectrum of the velocity fluctuations

S(ω) = lim
T →∞

(2T )−1

∣∣∣∣
∫ T

0
v(t) exp(−iωt)dt

∣∣∣∣
2

, (18)

which can be related to the response via the fluctuation-
dissipation theorem

〈v(t)〉p = βf Re{S(ω)eiωt }. (19)

We calculate S(ω) from the Laplace transform of Cv(t) via

S(ω) = lim
η→0

[C̃v(u = η + iω) + C̃v(u = η − iω)]. (20)

The quantity C̃v(u) is in turn related to the Laplace transform
of the renewal expression

C̃v(u) = u−1 + τu−2(1 − ψ̃(u)). (21)

The Laplace transform of ψ(t), L{ψ(t)}, reads

ψ̃(u) = τα
c exp(u)

�
(−α,τ−1

c

)(
u + τ−1

c

)α
�

(−α,u + τ−1
c

)
. (22)

Depending on the scale of u relative to τ−1
c , it can be shown

that ψ̃(u) has two different expansions given in Appendix A.

For τ−1
c � u � 1 ψ̃(u) behaves as

ψ̃(u) ∼ 1 + Puα

2

(
1 + α

τcu

)
+ [B(α,τc) − τ ]u, (23)

where we have introduced

P = τα
c �(−α)

�
(−α,τ−1

c

) , (24)

with the asymptotic behavior

P ∼ �(−α)α(1 − α)

1 − α
(
1 − τ−1

c

) (25)

as τc → ∞, and

B(α,τc) = τc�(1 − α)

�
( − α,τ−1

c

) (
1 + 1

ατc

)
, (26)

which in the limit τc → ∞ behaves as B(α,τc) ∼ τ for 0 <

α < 1 and as B(α,τc) ∼ τ 1−α
c �(2 − α)/[1 − α(1 − τ−1

c )] for
1 < α < 2. In the regime u � τ−1

c ψ̃(u) has the expansion

ψ̃(u) ∼ 1 − τu + τD(α,τc)u2. (27)

Using the expressions in C̃v(u) from above, we obtain the
power spectrum given in Eq. (A2) of the Appendix. The exact
expressions contain alternating and oscillating series, which
are quite difficult to evaluate numerically. We therefore focus
on the asymptotic behavior. In the range τ−1

c � ω � 1, we
find

S(ω) ∼ 2ξαωα−2

[
− cos

(
απ

2

)
+ α

ωτc

sin

(
απ

2

)]
, (28)

where

ξα =
{−τα−1

c

/(
α + τ−1

c

)
, 0 < α < 1,

�(2 − α), 1 < α < 2.
(29)

In the limit ω � τ−1
c we have S(ω) ∼ 2D(α,τc), the required

convergence to the long time diffusion coefficient. Figure 3
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shows our asymptotic analytical forms of S(ω) together with
LW simulations and the direct transform of v(t). The LW
behavior is thus a direct generalization of the Lorentzian
shape of the power spectrum of a random telegraph process,
equivalent to an LW with exponential ψ(t).

Moreover, it can be shown that D(α,τc) has the following
asymptotic behavior in the regime τc → ∞,

D(α,τc) ∼ |1 − α|
2

{
τc, 0 < α < 1,

α�(2 − α)τ 2−α
c , 1 < α < 2.

(30)

This rigorous result can also be obtained from scaling
arguments: the characteristic time scale of the intermediate
asymptotic dynamics is τc. From Eq. (9), 〈x2(τc)〉s ∼ τ

γ
c , with

γ = 2 for 0 < α < 1 and γ = 3 − α for 1 < α < 2. Hence
we find D(α,τc) � τ

γ−1
c (Fig. 3): in unbounded systems, the

diffusivity diverges with the system size.
The fluctuation-dissipation relation for LWs is thus

S(ω = 0) = 2D(α,τc) ∼ τmin(1,2−α)
c . (31)

Thus, in superdiffusive systems S(ω = 0) diverges at most
linearly with the system size L � τc, such that for finite
(but otherwise arbitrarily large) L the classical fluctuation-
dissipation theorem holds rigorously, without limitations.
Moreover, as noted already in Ref. [5] a scaling S(ω) ∼ ωα−2

extending to zero frequency for 0 < α < 1 as expected from
ψ(t) without regularization cannot be physical, as it would
imply a divergence of Cv(t = 0), which by definition must
be finite and proportional to 〈v2〉. In Refs. [5,21,28] this
incompatibility was avoided by assuming a low-frequency
cutoff.

D. Ergodic properties and Einstein relations

We now address the ergodic properties of finite-size
LWs. A necessary requirement for ergodicity is that
limt→∞ 1

t

∫ t

0 Cv(t ′)dt ′ = 0 [34,35]. We evaluated this integral
in our derivation of Eq. (14), from which we find for
t,τc → ∞ but t � τc that the dynamics on intermediate time
scales is nonergodic for 0 < α < 1 as the integral tends to
unity, see also Refs. [22,23]. For 1 < α < 2 the integral
converges to zero, formally indicating ergodicity. However, as
shown previously [3,22,23] this regime features an ultraweak
ergodicity breaking, see below.

As mentioned, the time-averaged MSD δ2(�) equals the
ensemble MSD in the stationary state, 〈x2(t)〉s of a system
prepared at t = −∞, and thus δ2(�) and 〈x2(t)〉s are indepen-
dent of the initial condition. In contrast, the ensemble averaged
MSD 〈x2(t)〉ns in the nonstationary state refers to initiation at
t = 0. Both conditions are experimentally relevant. In both
cases the observation is assumed to start at t = 0. For LWs a
stationary state exists for 1 < α < 2 or, for any 0 < α < 2, if
the power-law shape of ψ(t) is regularized at the time scale τc.

To calculate δ2(�) we use the CTRW approach [28], yield-
ing the Laplace transform δ2(u) = 2u−3 − 2u−4(1 − ψ̃(u))/τ .
In the intermediate, anomalous regime 1 � �,t � τc the

following leading order behaviors of δ2(�) emerge:

δ2(�) ∼ �2

(
1 − 2(�/τc)1−α(

α + τ−1
c

)
�(4 − α)

)
(32a)

for 0 < α < 1. At τc → ∞ we recover the ballistic scaling for
infinite trajectories [23,28,32]. For 1 < α < 2,

δ2(�) ∼ 2�3−α

ζ

(
1 − 1

2

(
α + τ−1

c

)
�(4 − α)

[
�

τc

]α−1 )
,

(32b)

and δ2(�) ∼ 2�3−α/ζ for τc → ∞ [22,23,28].
In the nonstationary ensemble the CTRW approach yields

〈x2(u)〉ns = 2(1 − ψ̃(u) + u∂uψ̃(u))/(u3(1 − ψ̃(u)). It can be
shown that in the range u � τ−1

c Eqs. (A3) in Appendix A
have the following behavior for small u:

∂uψ̃(u) ∼ [B(α,τc) − τ ] + α

2
Puα−1

(
1 + α − 1

τcu

)
, (33a)

when τ−1
c � u � 1 and

∂uψ̃(u) ∼ −τ + 2τD(α,τc)u, (33b)

when u � τ−1
c . Using Eqs. (33) in the expression for 〈x2(u)〉ns

we find

〈x2(t)〉ns ∼ t2(1 − α)

(
1 − α

3(1 − α)

t

τc

)
, (34a)

in the range 0 < α < 1, while for 1 < α < 2 we arrive at

〈x2(t)〉ns ∼ 2t3−α

ζ
(α − 1)

(
1 − α(2 − α)

(4 − α)(α − 1)

t

τc

)
. (34b)

Equations (32) and (34) determine the ergodicity breaking
parameter EB(t) = δ2(t)/〈x2(t)〉ns , which for t � τc can be
written compactly as [22,36]

EB(t) ∼ 1

|1 − α|
1 − A1(α)(t/τc)|1−α|

1 − A2(α)(t/τc)
, (35)

where A1(α) and A2(α) are defined as

A1(α) =
{

2
/[(

α + τ−1
c

)
�(4 − α)

]
, 0 < α < 1,(

α + τ−1
c

)
�(4 − α)/2, 1 < α < 2,

(36)

and

A2(α) =
{

α(2α − 1)/[3(α − 1)], 0 < α < 1

α(2 − α)/[(4 − α)(α − 1)], 1 < α < 2.
(37)

From Eq. (35) we observe that the regularization at τc affects
〈x2(t)〉ns more strongly than δ2, which is a natural consequence
of the sliding time average. In the limit τc → ∞ we recover the
ultraweak ergodicity breaking EB(t) ∼ 1/|1 − α| [22,23,28].
Conversely, from the asymptotic forms for u � τ−1

c we find
that on time scales t � τc the system is ergodic, EB(t) = 1.
The regularization of ψ(t) at the characteristic time τc

introduces a natural time scale, beyond which ergodicity is
restored.

The nonstationary MSD 〈x2(t)〉ns depends on the initial
condition. Hence, there exists another variant of the Einstein
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relation. This nonstationary Einstein relation reads

〈x(t)〉ns
p = 1

2βf 〈x2(t)〉ns = 1
2βf κ(t)δ2(t), (38)

where κ(t) = 1 for t � τc and κ(t) = 1/EB(t) for 1 � t � τc.
The stationary form (17) thus differs from the nonstationary
one here by the factor κ(t). For τc → ∞ a similar relation was
reported in Ref. [33]. We can also obtain an exact expression
for the first moment in the presence of s small perturbation
averaged over a time T ,

〈
δ(�)

〉
p

= 1

T − �

∫ T −�

0
[〈x(t + �)〉p − 〈x(t)〉p]dt, (39)

where the angular brackets denote an average over many tra-
jectories, 〈δ(�)〉 = N−1 ∑N

i=1 δi(�). The detailed calculation
and exact result will be presented in a separate work [37],
here we merely present the intermediate-time and long-time
asymptotic results. In the regime 1 � T − � � τc we obtain
in the stationary ensemble〈

δ(�)
〉s
p

∼ βf T �

2

(
1 − 6(T/τc)1−α(

α + τ−1
c

)
�(5 − α)

)
(40a)

for 0 < α < 1 and〈
δ(�)

〉s
p

∼ βf T 2−α�

ζ

(
1 −

(
α + τ−1

c

)
�(5 − α)

6

[
T

τc

]α−1 )
,

(40b)

for 1 < α < 2. For the same regime in the nonstationary
ensemble we arrive at〈

δ(�)
〉ns

p
∼ (1 − α)

βf T �

2

(
1 − α(T/τc)

4(1 − α)

)
(40c)

for 0 < α < 1 and〈
δ(�)

〉ns

p
∼ (α − 1)

βf T 2−α�

ζ

(
1 − α(2 − α)

(5 − α)(α − 1)

T

τc

)
,

(40d)

for 1 < α < 2. If, on the other hand, T − � � τc we recover
in both ensembles the universal result〈

δ(�)
〉
p

∼ βf

2
D(α,τc)�, (41)

which is, most importantly, independent of T . In all cases we
find a linear scaling of 〈δ〉p with the time lag �. Moreover, we
find that just as ergodicity is restored on time scales t � τc, a
time-averaged Einstein relation〈

δ(�)
〉
p

= βf

2
〈δ2(�)〉 (42)

holds as well, irrespective of the choice of the ensemble. The
Einstein relations are valid for sufficiently small magnitudes
of the driving force f such that the system does not exceed
a maximum velocity corresponding to the scale

√
kBTeff/m

set by some effective temperature Teff that corresponds to the
overall energy stored in the system, and nonlinear effects can
be neglected. At τc → ∞ we formally recover the scaling
reported in Ref. [23]. However, as already noted by the
authors of Ref. [33], in the absence of a cutoff time the

corresponding Einstein relation has an “expiration date” (for
an arbitrarily weak bias the Einstein relation will break down
eventually). This means that in the absence of a cutoff time
(e.g., in an infinite system) the range of validity of the cutoff
free analogues of Eqs. (40) with respect to the magnitude
of f , as applied by the authors of Ref. [23], is in fact not
defined, but depends additionally on both T and �. Hence, for
extremely long trajectories, i.e., T → ∞, the relations strictly
only hold for f = 0. In contrast, when ψ(t) is regularized at
τc, the linear response theory for both ensemble- and time-
averaged quantities has a well-defined range of validity and
rigorously recovers the time-averaged Einstein relation (42)
for � � τc.

III. CONCLUSION

Concluding, we investigated the physical properties of
finite-size LWs whose power-law waiting time density is
regularized by a characteristic time scale τc proportional to
the physical system size L. Finite-size LWs thus allow us to
exactly apply the Kubo linear response theory. In the presence
of a constant, weak external force we found that the Einstein
relation holds at all times and for all values of α. In particular,
we discussed both the stationary and nonstationary cases. At
short times the MSD is ballistic, at intermediate times it follows
the classical, anomalous LW scaling, and beyond τc the MSD
is linear in time. For a weak periodic forcing we obtained the
scaling of the spectrum at high frequencies. At low frequencies
it turns over to a plateau whose value is the diffusion coefficient
of the normally diffusive long time behavior at t � τc, and
thus provides the fluctuation-dissipation relation for finite-size
LWs. This diffusion constant explicitly depends on τc and
α. Finite-size LWs provide a complete physical picture for
superdiffusive, physical systems. Due to the time scale τc

classical response theory can be applied, without resorting
to the introduction of artificial cutoffs. In that sense our
present approach expands on relevant previous works on LWs
[3,5,21,23,30].

Physically, these observations correspond to the fact that
when t → τc the anomalous response gradually turns normal,
and the induced velocity never exceeds the thermal velocity. To
cure the diverging linear response behavior in superdiffusive
systems without truncation, for deterministic chaotic systems
it was suggested to introduce a relaxation time tc and split the
velocity correlation Cv into two parts [31]. The anomalous
part of Cv ranges up to tc, beyond which the normal regime
takes over. The velocity correlation Cv(t) discussed in the
present work inherently possesses such properties and does
not demand an ad hoc separation of the integral.

We analyzed the ergodic properties of LWs in terms of the
stationary ensemble averaged MSD 〈x2(t)〉 (equal to δ2) and
the nonstationary MSD 〈x2(t)〉ns . Consistently with the linear
response behavior we find an ultraweak ergodicity breaking
at intermediate times, such that δ2(t) and 〈x2(t)〉ns differ by
a constant, which depends on α and the ratio of lag time �

(or regular time t) and τc. When τc → ∞, this factor reduces
to the known value 1/|1 − α|, while for times beyond τc the
system is ergodic.

LWs naturally extend random walk processes to the
superdiffusive regime. For subdiffusive CTRW processes,
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both the linear response [29,38] and the weakly nonergodic
properties [39,40] were extensively discussed and verified
experimentally, and the ageing behavior analyzed [41]. It will
be interesting to study whether the results obtained here are
indeed observed in experiments, and how (transient) ageing
affects the system response. Another question of interest is
whether the current results can be extended to more general
superdiffusive systems.
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APPENDIX A: EXPANSION OF THE LAPLACE
TRANSFORM OF ψ̃(u)

In the regime u � τ−1
c we obtain

ψ̃(u) = τα
c �(−α)

�
(−α,τ−1

c

) ∞∑
k,l=0

[(
α

l

)
τ−l
c

k!
uk−l+α

−
l∑

m=0

(
l

m

)
(−1)lτ−m

c

�(−α)(l − α)k!l!
uk+l−m

]
. (A1)

For u < τ−1
c we find instead

ψ̃(u) = τα
c �(−α)

�
(−α,τ−1

c

) ∞∑
k,l=0

[(
α

l

)
τ l−α
c

k!
uk+l

−
l∑

m=0

(
l

m

)
(−1)lτ−m

c

�(−α)(l − α)k!l!
uk+l−m

]
. (A2)

The corresponding expansion for the derivatives ∂uψ̃(u) are

∂uψ̃(u) = τα
c �(−α)

�
(−α,τ−1

c

)
×

[ ∞∑
k,l=0

τ−l
c uk−l+α−1

k!

{
u

(
α

l

)
− α

(
α − 1

l

)}

−
l∑

m=0

(
l

m

)
(−1)lτ−m

c

�(−α)k!l!
uk+l−m

×
{

1

l − α
− 1

l + 1 − α

}]
, (A3a)

whereas for u < τ−1
c we instead obtain

∂uψ̃(u) = τα
c �(−α)

�
(−α,τ−1

c

)
×

[ ∞∑
k,l=0

τ l+1−α
c uk+l

k!

{
τ−1
c

(
α

l

)
− α

(
α − 1

l

)}

−
l∑

m=0

(
l

m

)
(−1)lτ−m

c

�(−α)k!l!
uk+l−m

×
{

1

l − α
− 1

l + 1 − α

} ]
. (A3b)

APPENDIX B: FLUCTUATION POWER SPECTRUM

In the regime ω � τ−1
c we obtain

S(ω) = 2τα
c �(−α)

τ�
(−α,τ−1

c

) ∞∑
k,l=0

×
[
aklω

k−l+α−2 −
l∑

m=0

bklmωk+l−m

]
, (B1a)

where the coefficients are given by

akl =
(

α

l

)
τ−l
c

k!
cos

(
[k − l + α − 2]

π

2

)
, (B1b)

bklm = �(−α)−1

(
l

m

)
(−1)lτ−m

c

(l − α)k!l!
cos

×
(

[k + l − m]
π

2

)
(1 − �lm), (B1c)

with δ(ω) and �lm being the Dirac and Kronecker deltas,
respectively. For ω < τ−1

c we get

S(ω) = 2τα
c �(−α)

τ�
(−α,τ−1

c

)
×

∞∑
k,l=0

[
cklω

k+l −
l∑

m=0

dklmωk+l−m

]
, (B2a)

with the expansion coefficients

ckl =
(

α

l

)
τ l−α
c

k!
cos

(
[k + l]

π

2
δ(ω)

)
({1 − δ(ω)}), (B2b)

dklm = �(−α)−1

(
l

m

)
(−1)lτ−m

c

(l − α)k!l!
cos

×
(

[k + l − m]
π

2
δ(ω)

)
[1 − δ(k + l − m)]. (B2c)
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