English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The role of electronic metal-support interactions and its temperature dependence: CO adsorption and CO oxidation on Au/TiO2 catalysts in the presence of TiO2 bulk defects

MPS-Authors
/persons/resource/persons84554

Heenemann,  Maria
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22071

Schlögl,  Robert
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;
Department of Heterogeneous Reactions, Max-Planck-Institut für Chemische Energiekonversion;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Wang, Y., Widmann, D., Heenemann, M., Diemant, T., Biskupek, J., Schlögl, R., et al. (2017). The role of electronic metal-support interactions and its temperature dependence: CO adsorption and CO oxidation on Au/TiO2 catalysts in the presence of TiO2 bulk defects. Journal of Catalysis, 354, 46-60. doi:10.1016/j.jcat.2017.07.029.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-CDBD-C
Abstract
We report results of a comprehensive study on the effect of bulk defects on the catalytic behavior of Au/TiO2 catalysts in the CO oxidation reaction, combining quantitative information on the amount of surface and bulk defects from in situ
non-contact electrical conductivity measurements after pretreatment and
during reaction with information on the electronic/chemical state of the Au nanoparticles (NPs) provided by in situ
IR spectroscopy. Treating the catalyst in strongly reducing atmosphere (10% CO/90% N2) at 400 °C results in a distinct increase in electrical conductivity, indicative of the formation of defects (oxygen vacancies), which are stable at 80 °CinN2. Long-term kinetic measurements performed at 80
°C show a distinctly lower activity of the bulk reduced catalyst, which increases slowly with time on stream, directly correlated with the decreasing abundance of bulk defects. The detrimental effect of bulk defects on the CO oxidation activity is shown to originate from the lowered CO adsorption strength and hence very low COad coverage on the Au NPs due to electronic metal-support interactions (EMSIs) induced by the presence of TiO2 bulk defects, in good agreement with our recent proposal (Wang et al., ACS Catal. 7 (2017) 2339). For reaction at -20 °C, EMSIs lead to a promoting effect on the CO oxidation, pointing to a change in the dominant reaction mechanism, away from the Au-assisted Mars-van Krevelen mechanism dominant at 80 °C. The role of EMSIs in the CO oxidation reaction and its temperature dependence is discussed in detail.