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ABSTRACT
Lactococcus lactis subsp. cremoris MG1363 is an important starter culture for dairy
fermentation. During industrial fermentations, L. lactis is constantly exposed to stresses
that affect the growth and performance of the bacterium. Although the response of
L. lactis to several stresses has been described, the adaptation mechanisms at the level
of in vivo fluxes have seldom been described. To gain insights into cellular metabolism,
13Cmetabolic flux analysis and gas chromatography mass spectrometry (GC-MS) were
used to measure the flux ratios of active pathways in the central metabolism of L.
lactis when subjected to three conditions varying in temperature (30 ◦C, 37 ◦C) and
agitation (with and without agitation at 150 rpm). Collectively, the concentrations of
proteinogenic amino acids (PAAs) and free fatty acids (FAAs) were compared, and
Pearson correlation analysis (r) was calculated to measure the pairwise relationship
between PAAs. Branched chain and aromatic amino acids, threonine, serine, lysine
and histidine were correlated strongly, suggesting changes in flux regulation in
glycolysis, the pentose phosphate (PP) pathway, malic enzyme and anaplerotic reaction
catalysed by pyruvate carboxylase (pycA). Flux ratio analysis revealed that glucose was
mainly converted by glycolysis, highlighting the stability of L. lactis’ central carbon
metabolismdespite different conditions.Higher flux ratios through oxaloacetate (OAA)
from pyruvate (PYR) reaction in all conditions suggested the activation of pyruvate
carboxylate (pycA) in L. lactis, in response to acid stress during exponential phase.
Subsequently, more significant flux ratio differences were seen through the oxidative
and non-oxidative pentose phosphate (PP) pathways, malic enzyme, and serine and C1
metabolism, suggesting NADPH requirements in response to environmental stimuli.
These reactions could play an important role in optimization strategies for metabolic
engineering in L. lactis. Overall, the integration of systematic analysis of amino acids
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and flux ratio analysis provides a systems-level understanding of how L. lactis regulates
central metabolism under various conditions.

Subjects Biotechnology, Microbiology
Keywords 13C metabolic flux ratio analysis, L. lactisMG1363, GC-MS, PAAs

INTRODUCTION
Lactococcus lactis is a lactic acid bacterium (LAB) that produces lactate as its main catabolic
by-product (Gaspar et al., 2013; Zhao et al., 2013). The bacterium is generally recognized
as safe (GRAS) and is the primary constituent in many artisanal starter cultures (Brandsma
et al., 2012; Taibi et al., 2011). In addition to producing lactate, L. lactis is also known
to produce organoleptic properties that contribute to flavor, taste and texture (Azizan,
Baharum &Mohd Noor, 2012; Dhaisne et al., 2013). However, the flavor formation ability
of L. lactis depends on the generation and uptake of amino acids by the bacterium (Garcia-
Cayuela et al., 2012; Tanous et al., 2005; Van Kranenburg et al., 2002). Amino acids are
essential for the growth of L. lactis (Adamberg et al., 2009; Ayad et al., 1999; Lahtvee et
al., 2011). It was demonstrated that L. lactis is auxotrophic for several amino acids that
they cannot synthesize from simpler nitrogen sources (Ayad et al., 1999; Trip, Mulder
& Lolkema, 2013; Van Kranenburg et al., 2002; Wegmann et al., 2007). Amino acids are
important in biochemical reactions and metabolic networks (Cocuron, Tsogtbaatar &
Alonso, 2017). They are involved as building blocks for protein synthesis, as signaling
molecules and also in determining physiological conditions (Tanaka et al., 2013).

Previously, the comprehensive metabolome and transcriptome profiles of L. lactis under
different conditions have been described (Chen et al., 2013; Dijkstra et al., 2014a; Dijkstra
et al., 2014b; Ibrahim et al., 2010; Papagianni & Avramidis, 2011; Taibi et al., 2011). Despite
extensive progress, however, the adaptation mechanisms of L. lactis to specific stresses have
rarely been investigated at the level of in vivo fractional fluxes or flux ratios. Particularly, it
is important to gain insight into the metabolic network of L. lactis for better manipulation
of L. lactis as a cell factory. Understanding metabolic fluxes is a prerequisite for fluxomics
by providing insights into cellular physiology and changes in the activity of intracellular
pathways. The mechanisms underlying metabolic fluxes are of great interest because
they can provide better interpretation of an observed phenotype (Weindl et al., 2016).
Subsequently, the control of metabolic fluxes allows better design of metabolic systems
(Sriyudthsak, Shiraishi & Hirai, 2013).

The 13C isotopic labeling approach is the most powerful method for metabolic flux
determination in biological systems. The approach is mostly applied in microbes to probe
their central carbon metabolism (Antoniewicz, 2013). Often proteinogenic amino acids
(PAAs) are used to trace 13C patterns as they are related to the precursor molecules
that are key components of central metabolism (Zamboni et al., 2009). Metabolic flux
ratio analysis is an alternative approach used to calculate the in vivo flux activity and
to investigate intermediary central carbon metabolism (Tao et al., 2012). The approach
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uses simple network topology, 13C-enrichment patterns obtained using NMR or MS and
predefined analytic formulas to measure the relative flux contributions of interesting
metabolic reactions (Fischer & Sauer, 2003; Xiong et al., 2010). Meanwhile, the use of
pattern recognition methods such as principal component analysis (PCA) and correlation
analysis (r) to identify phenotypic variation of metabolite labeling patterns has been
recently reported (Chua et al., 2013; Tanaka et al., 2013). Correlation analysis in particular
allows classification of groups of samples according to their common and/or unique
signatures. The analysis is useful to uncover specific physiologic conditions or states via
the correlation patterns.

In this study, we aim to compare the central metabolism of L. lactis when subjected
to three conditions varying in temperature (30 ◦C, 37 ◦C) and agitation (with and
without agitation 150 rpm). Using 13C labeled glucose of different compositions and gas
chromatography-mass spectrometry (GC-MS), we examined changes in the proteinogenic
amino acids (PAAs) and measured the fractional distribution of active pathways in the
central metabolism. Briefly, L. lactis subsp. cremoris MG1363 was cultivated in batch
cultures at 30 ◦C with (30WA) and without agitation (30WOA) and at 37 ◦C without
agitation (37WOA). Minimal glucose (0.5 g/l) with different compositions of 13C-labelled
and unlabelled glucose was used as sole carbon source. Flux ratios of active pathways
were then calculated and compared between the different conditions. Collectively, the
concentrations of proteinogenic amino acids (PAAs) and free fatty acids (FAAs) obtained
from intra- and extracellular were compared. Subsequently, Pearson correlation (r) analysis
was carried out to investigate the pairwise relationships between the PAAs, in response
to different compositions of 13C labeled glucose and different conditions. By using this
approach, common amino acids that are present in all conditions were determined.
Overall, the integration between systematic analysis of amino acids and fractional flux
ratios provides insights into the cellular physiology state of L. lactis at the systems level
and specifically highlights the changes in the central carbon metabolism of L. lactis under
dynamic environmental conditions.

MATERIAL AND METHODS
Strains, media and growth conditions
The strain L. lactis subsp. cremoris MG1363 was obtained from Raha Abdul Rahim
(Universiti Putra Malaysia). All cultivations were performed as batch cultivations with
a working volume of 100 ml. Cells were grown in M17 (Oxoid Limited, Hampshire, UK)
media with glucose (0.5 g/l) as carbon source. The medium was composed of ascorbic acid
(0.5 g/L), MgSO4 (0.25 g/L), disodium glycerophosphate (19 g/L), tryptone (5 g/L), soytone
(5 g/L), beef extract (2.5 g/L) and yeast extract (2.5 g/L). A minimum of five biological
replicates were prepared and incubated at 30 ◦C with and without agitation and at 37 ◦C
without agitation. Cell growth was monitored using a spectrophotometer (Beckman DU,
800) by measuring optical density at 600 nm (OD600). Glucose with an isotope label
was purchased from Cambridge Isotope Laboratories, Inc. The glucose solutions were
separately sterile filtered into the media. Two different compositions of glucose, a mixture
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of 20% (wt/wt) [U-13C] glucose and 80% (wt/wt) [1-13C] glucose, and a mixture of 20%
(wt/wt) [U-13C] glucose and 80% (wt/wt) of unlabeled glucose were used. A growth curve
was conducted until 8 hours to determine early, mid and late exponential phases. For
cellular dry weight (CDW) determination, 10 mL of fermentation broth was centrifuged
for 10 min at 4 ◦C at 3,000 rpm, washed with water, and dried at 90 ◦C for 24 h to a
constant weight. Glucose and fermentation by-products (lactate, acetate, ethanol) were
qualitatively measured using GC-MS. Maximum specific growth rate, specific glucose
consumption were determined by regression analysis during exponential growth phase in
the batch cultivation. Meanwhile, the determination of extracellular lactate, ethanol and
acetate were carried out using a 600 Clarus Perkin Elmer GC-MS equipped with a Perkin
Elmer Elite-WAX Polyethylene Glycol (PEG) capillary column (30-m length, 0.25-mm
inside diameter and 0.50 µm thickness).

Extraction of proteinogenic amino acid (PAA) and GC-MS analysis
A comparative analysis between different sampling times (3, 5, 6 h) of proteinogenic amino
acids (PAAs) was performed to determine a suitable sampling time point for harvesting.
Briefly, cell pellets were harvested at three, five, and six hours by centrifugation at 2,000 g
and 4 ◦C. The cell pellets were then washed twice with 1 mL 0.9% NaCI and re-suspended
in 200 µL of 6 M HCI at 105 ◦C for 16 h. The hydrolyzed cell pellets were then dried
overnight on a heating block at 95 ◦C. For derivatization, the sample was dissolved in 20 µL
of N, N -dimethylformamide (DMF). Derivatization was then performed using 20 µL of
N -Methyl-N -ter-butyldimethylsilyl trifluoroacetamide (TBDMSTFA), and incubated in
a heat block at 85 ◦C for 1 h. Prior to that, 50 µL of D4-alanine (20 mg/L) was spiked as
an internal standard. The derivatized sample was then immediately analyzed by GC-MS.
1 µL of derivatized sample was injected into a 600 Clarus Perkin Elmer GC-MS equipped
with a 5MS column (30-m length, 0.25-mm inside diameter and 0.25 µm thickness; Perkin
Elmer). Helium gas was used as a carrier at a flow of 1.5 mL/min. The interface and ion
source temperatures were set at 250 ◦C and 200 ◦C, respectively. The electron impact
voltage was set to 70 eV. The column temperature was initially set at 160 ◦C for 2 min, then
increased to 310 ◦C at a rate of 20 ◦C/min, and then held for 0.5 min. Four fragment ions,
namely [M-57]+, [M-85]+, [M-159]+ and [f302]+ of tert -butyldimethylsilylated amino
acids, were monitored. The GC-MS data were corrected for natural abundances of O, N,
H, Si and C as implemented in FiatFlux (Nanchen, Fuhrer & Sauer, 2007). PAAs were then
validated and quantified. Concentrations were calculated using a standard curve, built
using pure standard if available. Subsequently, the concentrations were corrected against
D4-Alanine values (internal standard) for normalization purposes.

Extraction of free amino acid (FAA) and GC-MS analysis
Intra- and extracellular amino acids were extracted and analyzed by GC-MS as described
elsewhere with modification (Smart et al., 2010). In short, an approximately 10 mL of
filtered extracellular sample was taken and freeze dried prior to derivatization using
TBDMSTFA. Meanwhile, quenching and metabolite extraction of intracellular were
performed using cold ethanol and methanol:water (2:1). Each intracellular extract was
then dried and derivatized using TBDMSTFA.
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13C Metabolic flux ratio analysis using Fiat Flux
Flux ratios were calculated using RATIO module of FiatFlux (Nanchen, Fuhrer & Sauer,
2007; Zamboni et al., 2009). Briefly, the mass isotopomer distribution vectors (MDVs) of
PAAs were determined from the respective mass spectra. Correction for natural isotopes
of O, N, H, Si, S and C atoms in the derivatization agent and in the PAAs was carried
out as implemented in FiatFlux (Nanchen, Fuhrer & Sauer, 2007). Using the MDVs of
the PAAs, the MDVs of the respective precursor intermediates namely erythrose-4-P
(E4P), phosphoenolpyruvate (PEP), pyruvate (PYR), pentose-5-P (P5P), acetyl-CoA
(AcCoA), oxaloacetate (OAA), and 2-oxoglutarate (OGA) were derived. The intermediate
metabolite MDVs were then used to calculate the fractional contributions of active
pathways. Specifically, flux ratios were calculated for reactions in glycolysis, oxidative and
non-oxidative pentose phosphate (PP) pathway, malic enzyme and anaplerotic reaction
that create oxaloacetate (OAA) from pyruvate (PYR). Entner-Doudoroff (ED) pathway
and glyoxylate shunt were omitted because the reactions are missing in the genome
of L. lactis (Flahaut et al., 2013; Hoefnagel et al., 2002; Levering et al., 2012; Voit, Neves &
Santos, 2006a; Voit et al., 2006b).

Multivariate statistical analysis
Following data processing, a data matrix consisting of peak areas for the PAAs was
generated. One-way ANOVA was performed using the web-based platformMetaboAnalyst
2.0 (Xia et al., 2012; Xia et al., 2009) to test the significance of differences in the amino
acids among the culture conditions at nominal p< 0.05. Pearson correlation analysis was
then used to explore the associations between amino acid pairs and examine the changes in
the levels of proteinogenic amino acids (PAAs) in response to the different compositions
of 13C labeled and unlabeled glucose and different conditions.

RESULTS AND DISCUSSION
Growth rate of L. lactis under different conditions
13C-metabolic flux ratio analysis uses direct interpretation of 13C patterns to estimate
fluxes. Therefore, the approach requires constant intracellular flux distribution during
the labelling experiment. In this study we used batch cultivation to achieve constant flux
distribution (steady-state). The approach enables parallel fermentation under different
conditions. Initially, pre-cultivations were performed to determine the growth phases and
the physiological parameters for L. lactis when grown at 30 ◦C with (30WA) and without
agitation (30WOA) and at 37 ◦C without agitation (37WOA). The growth of the bacterium
was monitored using plate counts (cfu/mL) and optical density of 600 (OD600). The
results shown in Fig. 1 indicate the growth of L. lactis was slow in the first three hours,
before rapidly increasing after five hours and entered stationary phase after seven hours of
cultivation. The total cell counts at five hours shown in Table 1 indicate high enumeration
is achieved at 30WA.

The presence of lactate, acetate and ethanol were monitored via pH changes and
qualitatively measured (Fig. 2). In this study, lactate was found in all conditions, suggesting
a consistent activity of lactate dehydrogenase (LDH). On the other hand, the reaction is
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Figure 1 Growth curves of L. lactis. L. lactis was grown at 30 ◦C with agitation (150 rpm) (A), 30 ◦C
without agitation (B), and 37 ◦C without agitation (C). Growth was monitored using plate counts
(cfu/mL) and optical density (OD600). The sampling point for harvesting cell pellets was determined after
five hours of cultivation (mid-exponential phase). Values are given as the mean± standard deviation
(n= 5, biological replicates).
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Table 1 Cell counts and pH of L. lactis under different conditions. Cultivation was carried out at 30 ◦C with agitation (150 rpm) (30WA), 30 ◦C
without agitation (30WOA) and 37 ◦C without agitation (37WOA). Measurement was carried after five hours of cultivation (mid-exponential
phase). Values are given as mean± standard deviation (n= 5, biological replicates).

Parameter 30 ◦Cwithout agitation (30WOA) 37 ◦Cwithout agitation (37WOA) 30 ◦Cwith agitation (30WA)

Cell counts 1.13 ± 0.6×108 1.73 ± 0.1×108 2.08 ± 0.4×108

pH 6.81 ± 0.10 6.90 ± 0.04 6.82 ± 0.01

Figure 2 Measurement of extracellular by-products.Measurement was obtained from 30 ◦C with agita-
tion (150 rpm) (30WA), 30 ◦C without agitation (30WOA) and 37 ◦C without agitation (37WOA). Mea-
surement was carried after five hours of cultivation (mid-exponential phase). Values are given as mean±
standard deviation (n= 5, biological replicates).

responsible for balancing the redox potential by oxidation of NADH to NAD+(Feldman-
Salit et al., 2013). Meanwhile it was reported that lactate and acidification rate increased
under aeration and high temperature conditions (Chen et al., 2015). However, in this study,
no difference in acidification rate was observed (Table 1). This may due to the buffering
capacity of disodium glycerophosphate to maintain the pH culture above 5.7 (Terzaghi &
Sandine, 1975). Low pH causes inhibition of various amino acid and oligopeptide transport
systems, thus affecting the growth of L. lactis (Taibi et al., 2011). Therefore L. lactis requires
well buffered medium so that the culture pH can be maintained between 6.0 and 6.9
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during growth. Notably, acetate was also detected in 30WA and 37WOA, whereas ethanol
was found only in 30WA. The observation suggests a shift from homolactic to mixed-
acid fermentation by L. lactis when exposed to agitation (30WA) and high temperature
(37WOA). Additionally, a shift from formate and ethanol to acetate under glucose limited
and aeration conditions has been reported previously (Nordkvist, Jensen & Villadsen, 2003).

Variations in the fermentation conditions are known to be contributed by several
factors such as sugar consumption rate, fluxes through glycolysis, NADH/NAD+ ratios,
the influence of allosteric effectors on the LDH and pyruvate formate lyase (PFL) enzymes,
growth conditions and effects of dissolved oxygen (Melchiorsen et al., 2000; Puri et al.,
2014). Specifically, the conversion of acetate and ethanol can be initiated by pyruvate
formate lyase (PFL) or pyruvate dehydrogenase (PDH), which converts PYR into acetyl-
coenzyme (AcCoA). AcCoA is then converted into acetate by acetate kinase (ACK) which
produces one ATP. Alternatively, AcCoA can also be reduced into ethanol by alcohol
dehydrogenase (ADH), which generates NAD+ from NADH.

The shift between acetate and ethanol at 30WA and 37WOA could be contributed
by the oxidative stress during aeration and high temperature. It was demonstrated that
aeration during L. lactis fermentation led to heat stress related protection, whereas a
high fermentation temperature trigged robustness towards oxidative stress (Chen et al.,
2013; Dijkstra et al., 2014a; Dijkstra et al., 2014b). In the presence of oxygen, the activity
of pyruvate dehydrogenase (PDH) is reduced and could subsequently limit the supply
of AcCoA and thereby limit the growth of L. lactis. In order to overcome this, acetate is
required to compensate AcCoA (Chen et al., 2013). As shown in Fig. 2, accumulation of
acetate and ethanol indicate the activity of PDH. The activity of NADH oxidase (NOX)may
also contribute to the production of acetate and ethanol. The activity of NOX is known to
be increased under aerobic conditions and play an important role in oxygen consumption,
thus alleviating the effects of oxidative stress towards L. lactis. Moreover, the activity of
NOX under aerobic conditions allows the redirection of flux from ethanol towards acetate
synthesis, generating NAD+ and higher yield of biomass (Jensen et al., 2001).

In the case of ethanol, it was reported that an increase in aeration reduced the activity of
ADH and subsequently reduced the accumulation of ethanol (Jensen et al., 2001). However,
in this study, ethanol was higher under 30WA. Meanwhile, it was reported that a small
amount of ethanol was obtained when L. lactis was grown under microaerobic conditions
but with higher growth rate (Jensen et al., 2001; Nordkvist, Jensen & Villadsen, 2003). In
particular, Jensen et al. (2001) reported that the levels of lactate and ethanol were almost
similar at specific aeration level, but then decreased when aeration was increased. As shown
in Fig. 2, the levels of lactate and ethanol were almost similar at 30WA.Meanwhile, formate
was not detected in the extracellular of L. lactis under 30WA, 30WOA and 37WOA. It
was demonstrated that reaction catalysed by PFL was inactivated under oxygen/ aerated
conditions. Detection of different fermentation by-products at different growth conditions
suggested a redirection of carbon flux in the pyruvate branch point. In particular, an
increase in the flux of PDH may lead to reduction in NADH/NAD+. Therefore alternative
pathways are required to maintain redox balance of NADH/NAD+ in L. lactis. On the
contrary, ethanol was found as the major product when L. lactis was grown on maltose
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Table 2 Physiological parameters of L. lactis under different conditions. Cultivation was carried out at 30 ◦C with agitation (150 rpm) (30WA),
30 ◦C without agitation (30WOA) and 37 ◦C without agitation (37WOA). The specific growth rate (µ) (slope of growth curve) and biomass yield
(Yx/s) (coefficient linear regression (R2)) obtained after five hours of cultivation.

Parameter 30 ◦Cwithout agitation (30WOA) 37 ◦Cwithout agitation (37WOA) 30 ◦Cwith agitation (30WA)

µ 0.35 0.272 0.27
Yx/s 0.897 0.831 0.928

Figure 3 Score plot of PCA (A) and dendrogram (B) of L. lactis at different conditions and different
sampling points. All conditions were obtained using 0.5 g/L of unlabeled glucose. Red represents 37 ◦C
without agitation (37WOA), harvested at three and five hours, green represents 30 ◦C with (30WA) and
without agitation (3OWOA) harvested at three, five and six hours of cultivation. Score plot was achieved
via two principal components with total variation of 64%. Datasets of PAAs were normalized using D4-
alanine for normalization purposes.

(Solem, Dehli & Jensen, 2013). Finally, the physiological parameters (maximum specific
growth rate µ, biomass yield Yx/s) highlighted in Table 2 were determined by regression
analysis during the mid-exponential growth phase in the batch cultivations. It was found
that 30WOA had the highest growth rate, whereas 30WA and 37WOA showed similar
growth rates.

The determination of sampling point
To assess the sensitivity of flux analysis to the sampling time point and different conditions,
we compared the proteinogenic amino acid (PAA) profiles, obtained from three, five and
six hours of cultivation. A total of nine biological replicates, represented 30WA, 30WA
and 30WOA were initiated in parallel, harvested at different sampling times and evaluated
using principal component analysis (PCA) (Fig. 3). The PCA score plot (Fig. 3A) indicated
no discrimination patterns between different sampling time points for all conditions,
suggesting that changes in metabolism are minimal when isotopic labeling of biomass
was achieved throughout the cultivation. Specifically, the score plot showed that different
sampling time points obtained from 37WOA were clustered together, whereas different
sampling time points taken from 30WA and 30WOA were overlapping (Fig. 3B). In batch
cultures, a metabolic pseudo-steady state is usually assumed during exponential growth
phase (Zamboni et al., 2009). During this phase, cells are steadily dividing at their maximal
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specific condition. It was suggested that labeling experiments should be continued long
enough for metabolic pools to turn over several times to achieve isotopic steady state.
For example, compared to glycolysis, the TCA cycle may require several hours to achieve
isotopic steady state. Overall the PCA showed that cells can be harvested at five hours of
cultivation with OD600 between 0.8 and 1.2. Therefore, in later experiments, all cultures
were harvested after five hours of incubation.

Proteinogenic amino acid (PAA) profiles
Like other cells, environmental perturbations can have a significant impact on the
metabolome of L. lactis. Amino acids are the basic substrates that act as regulators in
many metabolic pathways. Thus amino acids can be viewed as a network that adapts
to various physiological conditions. Consequently, detailed analysis of amino acids is
important for 13C metabolic flux ratio analysis because the analysis relies on labeling
enrichment or mass distribution vectors (MDVs) which are independent of metabolite
levels (Buescher et al., 2015). Using GC-MS, 16 PAAs (including ornithine) were detected
in L. lactis after five hours of cultivation. As shown in Fig. 4, the concentration of PAAs is
expressed as mM (mmol/L) as opposed to mM/gCDWh. The PAAs show clear variation in
their concentration according to the respective conditions. Overall, the concentration of
PAAs was higher in cells growing at 30WA than when growing at 30WOA and at 37WOA
(Fig. 4A). Alanine and lysine were higher at 30WA and 30WOA, whereas aspartate,
glutamate and glycine increased in 37WOA. Collectively, we compared the concentration
of PAAs and intra- (Fig. 4B) and extracellular (Fig. 4C) free amino acids (FAAs). In
addition to PAAs, determination of metabolic fluxes using FAAs has been described (Mori
et al., 2011; Okahashi et al., 2014). PAAs are favourable for metabolic flux analysis because
they are abundant in nature and easily extracted using hydrolysis. Interestingly, we found
that the levels of intracellular FAA were higher than extracellular FAA and PAA levels.
Specifically, the PAAs alanine, aspartate, glutamate and lysine were higher in all conditions,
while intra- and extracellular alanine and glycine increased in all conditions. The abundance
of these PAAs may influence the calculation of metabolic flux analysis and therefore should
be taken into consideration.

Namely, variation in the levels of intra- and extracellular FAAsmay indicate the specificity
of cellular activities carried by L. lactis. Since L. lactis was cultivated in M17 medium,
additional cofactors and nucleosides allow better transport of peptides than in defined
media (Adamberg, Seiman & Vilu, 2012). Generally, the study of amino acid compositions
in L. lactis under different environmental perturbations has been described (Lahtvee et al.,
2011; Marreddy et al., 2010; Papagianni, Avramidis & Filiousis, 2007). Several amino acids
are found in large amount including glutamate, serine, and aspartate. Namely, aspartate
and glutamate are essential amino acids in L. lactis and are regarded as stimulating amino
acids (Adamberg et al., 2009). These amino acids are sources of nitrogen, required during
transamination to convert amino acids into the corresponding α-keto acids (Pudlik &
Lolkema, 2012). Aspartate in particular is a precursor for the synthesis of five other amino
acids, as well as for pyrimidine synthesis. Aspartate is also a nitrogen donor for purine
biosynthesis and is further involved in synthesizing proteins, DNA, RNA, and ATP (Wang
et al., 2000).
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Pearson correlation (r) analysis of PAAs
Typically, the selection of 13C-labeled carbon sources depends on the metabolic flux
distribution inside of the target cells. Therefore, different compositions of 13C labeled and
unlabeled glucose are often used to increase the precision of metabolic flux calculations
and to resolve different pathways of central carbon metabolism. It was suggested that
[1, 2-13C] glucose and a mixture of [1-13C] and [U-13C] glucose at 80%:20% are best to
calculate flux levels of the pentose phosphate (PP) pathway, glycolysis and the TCA cycle,
whereas a mixture of non-labeled, [1-13C], and [U-13C] glucose is suitable to measure the
flux of the glyoxylate pathway reaction (Fischer & Sauer, 2003; Fischer, Zamboni & Sauer,
2004; Maeda et al., 2016). In particular, an investigation of useful carbon tracers for 13C
metabolic flux analysis in L. lactis has not been described. To investigate the correlation
between PAAs in response to different compositions of 13C labeled and unlabeled glucose
and different conditions, we measured the level of PAAs and used Pearson correlation
analysis to calculate the relationship between pairs of PAAs. Figure 5 shows two-way
hierarchical clustering analysis heat map representation of the correlation matrices of PAA
levels, obtained from 0%:80% (wt/wt) of [U-13C] glucose and unlabeled glucose (Fig. 5A)
and 20%:80% (wt/wt) of [U-13C] glucose and [1-13C] glucose (Fig. 5B). The correlations
were visualized in color-coded correlation matrices with color gradient ranging from red
to green. In this representation, red indicates high positive correlation and green represents
high negative correlation. In addition, we excluded alanine from the analysis because of
inconsistent values found in labeling experiments.

The correlation matrices obtained from 20%:80% (wt/wt) of [U-13C] glucose and
unlabeled glucose indicated that branched amino acids (valine, isoleucine, leucine)
and aromatic amino acids (phenylalanine, tyrosine) were correlated strongly (r ≥ 0.7)
among PAAs in all conditions (Fig. 5A). Specifically, under 30WA and 30WOA, branched
chain amino acids were positively correlated with proline and phenylalanine. Growth
under 37WOA indicated that valine and leucine were positively correlated with proline.
Meanwhile, correlation matrices obtained from 20%:80% (wt/wt) of [U-13C] glucose and
[1-13C] glucose also revealed that correlations of branched amino acids (valine, isoleucine,
leucine) were higher in all conditions (Fig. 5B). Specifically, leucinewas positively correlated
with serine, proline and threonine at 30WA.At 30WOA, glycine showed positive correlation
with proline and aspartate. Threonine also showed strong correlation with branched chain
amino acids at 30WOA,while the correlations between histidine and lysine were remarkably
higher at 30WA and 37WOA (Fig. 5B). In particular, positive correlation with histidine
was only observed when growing on the mixture of [U-13C] glucose and [1-13C] glucose.

Namely, the results suggest similar PAAs with strong correlation are found in all
conditions, suggesting their consistent role in L. lactis in response to environmental
perturbations. These PAAs can be regarded as the common amino acids found in L. lactis
under different conditions, thus 13C enrichment patterns of these amino acids are crucial
for reliable metabolic flux analysis of L. lactis. Specifically, the interweavement of these
amino acids indicates flux regulation of glycolysis, the pentose phosphate (PP) pathway and
involvement of malate (MAL) and oxaloacetate (OAA). Namely, branched chain amino
acids are associated with pyruvate (PYR), OAA and 2-oxoglutarate (OGA). Phenylalanine

Azizan et al. (2017), PeerJ, DOI 10.7717/peerj.3451 11/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.3451


Figure 4 Comparative analysis of amino acids at different concentrations (mM). The proteinogenic
amino acid (PAA) (A) and free amino acids (FAAs) obtained from intra- (B) and extracellular (C) of
L. lactis were collected after five hours of cultivation. The concentrations of amino acid were obtained after
five hours (5 h) of cultivation. 30WA represents 30 ◦C with agitation, 30WOA represents 30 ◦C without
agitation and 37WOA represents 37 ◦C without agitation. Values are given as mean± standard deviation
(n= 5, biological replicates).
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Figure 5 The correlation matrices of PAA profiles using Pearson correlation analysis (r). L. lactis was grown on 20%/80% (wt/wt) of [U-13C]
glucose and unlabeled glucose (A) and 20%/80% (wt/wt) of [U-13C] glucose and [1-13C] glucose (B) at 30WA, 30WOA and 37WOA. Ornithine was
included in the analysis. 30WA represents 30 ◦C with agitation, 30WA represents 30 ◦C with agitation, 30WOA represents 30 ◦C without agitation
and 37WOA represents 37 ◦C without agitation.

and tyrosine are related to phosphoenolpyruvate (PEP) and erythrose 4-P (E4P). Lysine is
contributed by acetyl-CoA (AcCoA) and OGA whereas histidine is linked to pentose-5-P
(P5P). Overall, differences and similarities in the correlation patterns reveals that the PAAs
can be interpreted as a fingerprint of the underlying cellular metabolism and could be
useful for optimization of 13C labelling experiments in L. lactis.

13C Metabolic flux ratio analysis
To calculate the fractional contribution of central carbon metabolism, we used 13C
metabolic flux ratio analysis that relies on the detection of PAAs labelling enrichment, also
known as mass distribution vector (MDV) (Buescher et al., 2015;Nanchen, Fuhrer & Sauer,
2007; Zamboni et al., 2009). The MDVs of PAAs were used to calculate the fraction labeling
(FL) of precursor intermediates and subsequently used to measure the flux ratios of active
pathways in central carbon metabolism. Specifically, 24 FLs of precursor intermediates
calculated fromMDVs of PAAs were obtained (Fig. 6). Using these FLs, we then calculated
the flux ratios (fraction of the total pool (%)) of active pathways and visualized the values
according to the conditions (Figs. 7A, 7B). Each flux ratio map contains reactions of the
glycolysis, the oxidative and non-oxidative pentose phosphate (PP) pathway, as well as
metabolic node of oxaloacetate (OAA), catalyzed by pyruvate carboxylase (pycA), malic
enzyme and serine and C1 metabolism and fermentation by-products (Fig. 7B) (Flahaut et
al., 2013; Hoefnagel et al., 2002; Jensen et al., 2002). In particular, the size of stoichiometric
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Figure 6 Comparisons of fraction labeling (FL) of precursor intermediates of central metabolism. The
data were calculated from MDVs of PAAs, obtained using different compositions of 20%:80% of [U-13C]
glucose and unlabeled glucose (A) and 20%:80% (wt/wt) of [U-13C] glucose and [1-13C] (B). 30WA repre-
sents 30 ◦C with agitation, 30WOA represents 30 ◦C without agitation and 37WOA represents 37 ◦C with-
out agitation.

models for flux ratios is often reduced to lower the risk of numerical problems (Kogadeeva
& Zamboni, 2016). In this study, model reduction was carried out by omitting several
pathways and cofactors that have not been reported in L. lactis. In case of TCA cycle,
L. lactis is reported to have an incomplete TCA cycle (Vido et al., 2004). Therefore the
reaction is omitted except for malate (MAL) and oxaloacetate (OAA) which are involved
in malic enzyme and reaction that creates OAA from PYR (Wang et al., 2000).

In the case for flux ratios for reactions catalysed by LDH, ACK and ADH, the carbon
tracer (glucose) used in this study was not suitable to further resolve the fluxes. It was
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Figure 7 Simplified network models of L. lactis grown at different conditions. (A) The flux ratios
visualized in bar chart was calculated using Fiatflux. The experimental error (error bars) was estimated
from redundant mass distributions using FiatFlux. (B) Simplified flux map that describes the central
carbon metabolism of L. lactis when grown at 30 ◦C with agitation (30WA), 30 ◦C without agitation
(30WOA) and 37 ◦C without agitation (37WOA). Each flux map includes the reactions of the glycolysis,
the oxidative and non-oxidative pentose phosphate (PP) pathways, as well as the reactions catalyzed by
pyruvate carboxylase, malic enzyme and serine and C1 metabolism. Fermentation by-products of lactate,
acetate and ethanol were also included in the flux map. Abbreviation; G6P, glucose-6-phosphate; F6P,
fructose-6phosphate; G3P, glyceraldehyde-3-phosphate; P5P, ribose-5-phosphate; S7P, sedoheptulose-
7-phosphate; E4P, erythrose-4-phosphate; 3PG, 3-phosphoglyceric acid; PEP, phosphoenolpyruvate;
pyruvate, PYR; oxaloacetate, OAA; malic acid, Mal; acetyl-CoA, AcCoA.

suggested that these pathway fluxes can be further elucidated using [1, 2-13C2] glucose or
fructose and/or by using a mixture of [3-13C] lactate and naturally labeled ethanol (Adler
et al., 2013).

The 20%:80% of [U-13C] glucose and unlabeled glucose composition (Fig. 6A)
indicated higher FLs of pentose-5-P (P5P) fragments at 30WA than other conditions.
The results strongly suggest activity in the pentose phosphate (PP) pathway. Generally,
the flux contributions of the pentose phosphate (PP) pathway can be measured via the
transketolase (TK) and transaldolase (TA) reactions. TK catalyzes the transfer of a 2-C
fragment containing a ketone group from xylulose-5-P (Xu5P) to the 5-C ribose-5-P (R5P)
to produce sedudoheptulose-7-P (S7P) and G3P. TK may also transfer a 2-C fragment
(containing a ketone group) from Xu5P to erythrose-4-P (E4P) to produce F6P and G3P.
Meanwhile, TA facilitates the transfer of a 3-C from S7P to G3P to produce E4P and F6P.
The fraction of the total pool (%) in Fig. 7A showed that the activity of TK and TA in the
PP pathway was reflected by flux ratios of P5P from glucose-6-P (G6P), P5P from G3P
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and S3P and P5P from E4P. P5P from glucose-6-P (G6P) was calculated as a lower bound
reaction because TK can reversibly cleave P5P thus leading to multiple cycling through
the PP pathway (Fischer & Sauer, 2003; Sauer et al., 1999). The flux ratios indicated 30% of
P5P was generated from G6P at 30WA (Fig. 7A) and more than 65% of P5P was generated
from G6P at 30WOA (Fig. 7A) and 37WOA (Fig. 7A). The fraction of P5P from G3P and
S7P was 10% for 37WOA (Fig. 7A) whereas the fraction of P5P from E4P showed that
70% of P5P was generated from E4P at 30WA (Fig. 7A) and 25% of P5P was generated
from E4P at 37WOA (Fig. 7A). The higher FLs of P5P(2–5) suggest that the C-3–C-4
carbon bonds in P5P were cleaved. The results also suggest that P5P was generated from
fructose-6-P (F6P) and glyceraldehyde-3-P (G3P). The increase of flux in the PP pathway
leads an increase of NADPH via the oxidative pathway. NADPH is required for many
biosynthesis pathways and particularly important to reduce reactive oxygen species (ROS).
As a facultative anaerobe, L. lactis very often encounter a challenge from oxygen. Therefore,
L. lactis has to reorganize its metabolism in response to this challenge. Interestingly, flux
ratios through the oxidative PP pathway increased at 30WOA (Fig. 7B) and at 37WOA only
(Fig. 7A). Meanwhile, the non-oxidative phase is responsible for production of ribose-5-P
for generating G6P and subsequently maintaining NADPH production.

The FLs of precursor intermediates obtained from 20%:80% (wt/wt) of [U-13C] glucose
and [1-13C] (Fig. 6B) indicated higher FLs for fragments of oxaloacetate (OAA), OGA,
PEP, pyruvate (PYR) and acetyl-CoA (AcCOA). FLs of PYR andOAA are useful to calculate
the glycolysis and the PP pathway branch ratios. A combination of [U-13C] glucose and
[1-13C] has generally been used to decipher the relative fluxes connecting the lower part
of glycolysis and the TCA cycle. In this study, the flux ratios indicated that 60% of PEP
was contributed by glycolysis, suggesting a substrate level phosphorylation in L. lactis,
by converting sugars via the glycolytic pathway (Neves et al., 2005). Additionally, it has
been reported that L. lactis growth on minimal glucose (55 mM) led to the formation of
extremely homolactic fermentation by increasing the activities of phosphofructokinase
(PFK), pyruvate kinase (PYK) and lactate LDH and therefore led to accumulation of lactate
(Papagianni, Avramidis & Filiousis, 2007). As shown in Fig. 2, lactate is detected in all
conditions, together with acetate and ethanol.

On the other hand, differences in the FLs of PEP(2–3) and PYR(2–3) suggest the activity
of the malic enzyme reaction in L. lactis. Specifically the fraction of total pool (%) showed
that the lower bound of PYR from MAL was below than 60% in all conditions and the
upper bound of PYR from MAL almost exceeded 80% for all conditions. The fraction of
PYR obtained from malate via malic enzyme were determined by comparing the MDV
of PYR(1–2) and MAL(1–2). Additionally, this reaction contributes to the production of
NADPH and therefore could play a role as alternative pathway to fulfil the requirement of
NADPH in L. lactis. Moreover, regulation ofmalic enzyme could lead to differentmetabolic
modes in response to environmental perturbation (Adler et al., 2014).

Higher flux ratios of OAA from PYR suggest the activation of pyruvate carboxylase
(pycA) in L. lactis, which convert PEP or PYR respectively, to OAA. OAA is important
in L. lactis as precursor for aspartate synthesis to synthesize other amino acids, as well
as for pyrimidine synthesis and as nitrogen donor for purine biosynthesis (Wang et al.,
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2000). At 30WA, 70% of OAA was contributed by PYR, whereas approximately 50%
of OAA was contributed by PYR at 30WOA and at 37WOA. Activity of pycA suggests
an intracellular acid tolerance response (ATR) in the L. lactis towards low pH. Changes
in pH are contributed by accumulation of lactate and acetate, which were detected in
the extracellular. Additionally, an increase of pycA suggests the conversion of PYR for
regeneration of cofactors in glycolysis and the TCA cycle (Budin-Verneuil et al., 2005).

Meanwhile the reversible exchange of serine and glycine can be measured using the
fraction of serine (SER(1–3)) from glycine (GLY(1–2)) and a C1 unit versus the fraction
that is identical with PEP(1–3) (Fischer & Sauer, 2003). Lower FLs for serine (SER), glycine
(GLY) and C1 suggest that serine and glycine were not interconverted and may not be used
for C1 metabolism. However, approximately 20% of flux ratios of SER from GLY were
calculated at 30WA. In particular, the reaction was reported to enhance the production
of NADPH (Fan et al., 2014). Since the production of NADPH through the oxidative PP
pathway at 30WA was lower due to lower flux, this reaction could become an alternative
pathway to facilitate the NADPH requirement under the particular condition. Additionally,
it was suggested that L. lactis has developed other pathway to provide NADPH as L. lactis
is known to have incomplete TCA cycle, which is used to recycle the NADH pool for the
respiratory chain (Vido et al., 2004).

CONCLUSIONS
In this study, we used 13C-based metabolic flux analysis and GC-MS to determine the
fractional contributions of L. lactis central metabolism in response to 30WA, 30WOA
and 37WOA. By using different compositions of 13C labeled and unlabeled glucose,
the variability and pairwise correlation of PAAs and the flux ratios of active pathways
were measured. Intracellular FAAs were higher than extracellular FAAs and PAAs. PAA
correlation analysis suggested that several amino acids were strongly correlated in all
conditions. Branched chain and aromatic amino acids, alanine, aspartate, glutamate and
glycine were identified as the common amino acids observed in L. lactis under different
conditions and can be regarded important for reliable 13C based metabolic flux analysis
for L. lactis. Namely, glucose was mainly converted via glycolysis in L. lactis, despite the
different conditions. The flux ratios for the oxidative phase PP pathway were relatively high
at 30WOA and 37WOA, indicating the NADPH requirement in response to oxygen related
stress. Malic enzyme activity was also detected in L. lactis based on differences found in the
FLs of PEP and PYR. Higher flux ratios through OAA from PYR suggested intracellular
acid tolerance response (ATR) in response to pH stress in L. lactis. Taken together, our
results provide insights into the cellular physiological state of L. lactis and a systems-level
understanding of how L. lactis regulates central metabolism in various conditions.
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