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Materials and Methods 
 
Calculation of the viscous drag coefficients via Stokesian dynamics 

The centerline 𝒓cl of the bacteria’s helix with diameter 𝐴, length in axial direction 𝐿 and helical pitch 𝜆 
is given by 
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where u is varied between 0 and 𝐿
𝜆
  to describe the complete helix centerline. Any position 𝒓H on the 

bacteria’s surface, other than the ends, can be described by 

𝒓H(𝑢, 𝑣) =  𝒓cl(𝑢) + 𝑑 𝑫𝑒̂t(𝑣)𝑒̂n (2) 

since every position has the same distance d to the centerline (except the ends). The unit vector 𝑒̂n is 
the vector normal to the centerline and  𝑫𝑒̂t(𝑣) denotes the rotation matrix by an angle 𝑣 𝜖 [0, 2𝜋] 
about an axis in direction of the local unit tangent vector 𝑒̂t of the helix centerline. Through variations 
in the parameters 𝑣 and 𝑢 the bacteria’s surface is parameterized. The both ends of the bacteria can be 
represented, in a similar manner, by fixing 𝑢 = 0 or 𝑢 = 𝐿

𝜆
  and by varying 𝑑 and 𝑣. 

 
The diameter A is measured directly in the experiment. The quantities 𝐿 and 𝜆 are determined by the 
experimentally measured arc length s 

𝑠 =  ∫ 𝑑𝑑𝐿/𝜆
0 �𝜕𝒓𝐜𝐜(𝑢)

𝜕𝜕
� =  �(𝜋 𝐴)2 + 𝜆2) (𝐿/𝜆)   (3) 

and the measured end-to-end distance 𝐿ee = �𝒓cl �
𝐿
𝜆
� − 𝒓cl(0)�.  

 
The surface of the helix is divided and represented by 𝑁 point-like beads with an identical effective 
radius a. They are located at positions 𝒓𝑘 with  = 1, … ,𝑁 . A force 𝑭𝑘 is required to move the point-
like particle at a position 𝒓𝑘 through the fluid because the beads have a drag coefficient 𝜁 = 6𝜋 𝜂 𝑎 in a 
solvent of viscosity 𝜂. The beads generate a flow field by moving through the fluid. The flow  𝒖𝑘(𝒓) 
induced by the particle located at 𝒓𝑘 at an arbitrary point in space 𝒓 is given by 

 

𝒖𝑘(𝒓) = 𝑶(𝒓 − 𝒓𝑘)𝑭𝑘 (4) 

with the Oseen tensor1 

𝑂𝑖𝑖(𝒓 − 𝒓𝑘) =
1

8𝜋 𝜂
𝐺𝑖𝑖(𝒓 − 𝒓𝑘) .  (5) 

and the tensorial free space Greens function 𝐺𝑖𝑖 (𝒓) = 1
𝑟
�1 + 𝑟𝑖 𝑟𝑗

𝑟2
�. The parameters 𝑖 = 1, . .3 and 

𝑗 = 1, . . ,3 denote the entries of the matrices 𝑶 and 𝑮 . 
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The flow field 𝒖𝑘(𝒓), which is caused by particle 𝑘 influences via the fluid, respectively via the Oseen 
tensor, the motion of all other particles at 𝒓𝑗 with 𝑗 = 1, . . , 𝑁 and 𝑗 ≠ 𝑘. For a helix moving with the 
velocity 𝒗, all 𝑁 beads fixed on its surface move with the same speed 𝐫̇𝑘 = 𝒗  (𝑘 = 1, … ,𝑁). Every 
moving particle influences via the hydrodynamic interaction all other particles. Therefore, the forces  
𝑭1, … , 𝑭𝑁  required to move the beads with a given velocity 𝒗  are determined by the 𝑁 coupled linear 
equations1 

𝒗 =
𝑭𝑖
ζ

+ � 𝑶(𝒓𝑖 − 𝒓𝑘)
𝑵

𝑘=1,≠𝑖

𝑭𝑘. (6) 

 
For one solution with the velocity 𝒗 nearly parallel to the helical axis and with the total force acting on 
the helical bacterium, 𝑭 = ∑ 𝑭𝑘𝑘  is parallel to 𝒗 . The friction coefficient 𝛾trans  describes the 
proportionality between both quantities: 

𝛾trans 𝒗 = 𝑭. (7) 

For a helix rotating with a frequency 𝜔 around the axis of 𝝎 through its center 𝒓𝐜 = 1
𝑁
∑ 𝒓𝑘𝑘  , the 

velocity of each bead is given by 

𝒓̇𝑘 = (𝒓𝑘 − 𝒓c) × 𝝎. (8) 

Eq. 6 can be used to determine the relation between the bead velocities and the required forces. The 
torque 𝑴  acting on the helix can be expressed in terms of the forces:  
𝑴 = ∑ (𝒓𝑘 − 𝒓c)𝑘 × 𝑭𝑘. For the case in which the rotational axis is nearly perpendicular to the helix 
axis, the two vectors 𝝎 and 𝑴 are related via the rotational friction: 𝛾rot 𝝎 = 𝑴. 
 
 
 
Calculation of the viscous drag coefficients by Boundary Integral Method 
 
The Boundary Integral Method (BIM) exploits the fact that the Stokes equation is linear and can 
therefore be rewritten as an integral equation2 for the flow velocity u(r) at an arbitrary point r inside 
the infinite and initially quiescent fluid: 

𝑢𝑖(𝒓) =  1
4𝜋 𝜂

 ∮ 𝐺𝑖𝑖(𝒓 − 𝒚) 𝑓𝑗(𝒚) 𝑑𝒚𝑆 , (9) 

where summation over the repeated index j is implied, y is a point on the surface S of the bacterium, η 
is the fluid viscosity and f is the surface traction.  
 
When the observation point r is moved to the surface, Eq. 9 can be converted to a linear system of 
equations2 which in our implementation is solved by GMRES3,4. The surface integral in Eq. 9 is 
computed by discretizing the bacterial surface using flat triangles to interpolate between the surface 
nodes. To allow a direct comparison, the nodes of the triangles are taken at the same positions as in the 
Stokesian dynamics calculations (see above).  
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To impose a rotation/translation on the bacterium, each node is coupled by a harmonic spring to an 
auxiliary anchor point. During the simulation, these imaginary anchor points are translated/rotated 
with a prescribed (angular) velocity. By distributing the force of these springs over the local area 
surrounding each node, the force is converted into a surface traction f, which is a term in Eq. 9. The 
solution of the linear system resulting from Eq. 9 then yields the surface velocity u from which the 
desired drag coefficients 𝛾rot and 𝛾trans and can be directly obtained. The translational/rotational 
velocities have been chosen to be small enough that the relation between force and velocity remains 
linear. 
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