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SUMMARY

SMC proteins support vital cellular processes in all
domains of life by organizing chromosomal DNA.
They are composed of ATPase ‘‘head’’ and ‘‘hinge‘‘
dimerization domains and a connecting coiled-coil
‘‘arm.’’ Binding to a kleisin subunit creates a closed
tripartite ring, whose �47-nm-long SMC arms act
as barrier for DNA entrapment. Here, we uncover
another, more active function of the bacterial Smc
arm. Using high-throughput genetic engineering, we
resized the arm in the range of 6–60 nm and found
that it was functional only in specific length regimes
following a periodic pattern. Natural SMC sequences
reflect these length constraints. Mutants with
improper arm length or peptide insertions in the arm
efficiently target chromosomal loading sites and hy-
drolyze ATP but fail to use ATP hydrolysis for reloca-
tion onto flanking DNA. We propose that SMC arms
implement force transmission upon nucleotide hy-
drolysis to mediate DNA capture or loop extrusion.

INTRODUCTION

SMCprotein complexes govern genomemaintenance by control-

ling the 3D organization of chromosomes in interphase and during

celldivision, thecohesionanddisjunctionofsisterchromatids, and

the repair of DNA breaks. They also play roles in establishing pat-

terns of gene expression during development and in disease (Hir-

ano, 2016; Jeppssonet al., 2014;Merkenschlager andNora, 2016;

PetersandNishiyama,2012).All these functionsare inall likelihood

based on the co-entrapment of DNA double helices within the

circumference of an SMC ring (Gligoris et al., 2014). However,

two immediate questions remain unresolved: How does an SMC

ring capture chromosomal DNA, and how does SMC choose suit-

able pairs of DNA segments for co-entrapment over inappropriate

ones?Answering thesekeyquestionswill require adetailedunder-

standing of the chromosomal loading processes.

SMC rings are formed by a dimer of SMC proteins (in Bacillus

subtilis [Bs], a Smc homodimer) and a single kleisin subunit

(ScpA in Bs). The SMC proteins are composed of an ATPase
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‘‘head’’ anda ‘‘hinge’’ dimerization domain and a long connecting

coiled-coil ‘‘arm.’’ The kleisin bridges the SMC heads to form a

complex with circular topology (B€urmann et al., 2013; Gruber

et al., 2003). SMC-kleisin rings associate with two Kite subunits

(a homodimer of ScpB in Bs) or two Hawk subunits (Haering

and Gruber, 2016; Palecek and Gruber, 2015; Wells et al.,

2017) (Figure 1A). Additional factors are involved in the targeting

and chromosomal loading of a given SMCcomplex. InB. subtilis,

ParB/parS acts as loader for Smc-ScpAB by recruiting an

Smc ATPase-cycle intermediate to the replication origin region

(Gruber and Errington, 2009; Minnen et al., 2011; Sullivan et al.,

2009;Wilhelmet al., 2015).UponATPhydrolysis, Smc-ScpAB re-

locates from parS loading sites to distant regions of the chromo-

some, conceivably in a DNA loop extrusion reaction (Gruber,

2014; Minnen et al., 2016; Wang et al., 2015). By co-aligning

the two arms of the chromosome, Smc-ScpAB, with the help of

its chromosomal loader ParB/parS, determines the global fold

of the bacterial chromosome (Le et al., 2013; Marbouty et al.,

2015; Umbarger et al., 2011; Wang et al., 2015). Consistent

with the notion that related processes might organize chromo-

somes in eukaryotes, the cohesin SMCcomplex is known to relo-

cate upon ATP hydrolysis from its centromeric loading sites onto

flanking chromosome arm sequences in yeast (Hu et al., 2011).

All globular parts of the bacterial Smc-ScpAB complex are

essential for its activity. Removal or partial dissociation of ScpAB

renders the complex non-functional (B€urmann et al., 2013; Ka-

mada et al., 2013; Mascarenhas et al., 2002; Soppa et al., 2002).

Abrogation of dimerization at the Smc hinge domain results in

non-functional protein (B€urmann et al., 2013; Hirano and Hirano,

2002; Minnen et al., 2016), and inactivation of the ATPase head

is likewise detrimental (B€urmann et al., 2013; Mascarenhas et al.,

2005; Minnen et al., 2016; Schwartz and Shapiro, 2011). Similar

statements are valid for many other if not all SMC complexes.

In contrast to the globular parts, the functional importance of

the SMC coiled-coil arm is less clear. Artificial opening of cohe-

sin or condensin rings by proteolytic cleavage of their arms ren-

ders these complexes non-functional and releases them from

DNA (Cuylen et al., 2011; Gruber et al., 2003; Ivanov and Nas-

myth, 2005). Other than being passive barriers for entrapped

DNA, it is not clear whether the arms have an active role in any

biochemical mechanism of SMC complexes such as DNA cap-

ture or loop extrusion. However, point mutations in the coiled

coils of cohesin SMC subunits have been identified in several

Cornelia de Lange syndrome patients (Mannini et al., 2013; Orgil
arch 2, 2017 ª 2017 The Author(s). Published by Elsevier Inc. 861
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Figure 1. Coiled-Coil Length Distributions

of SMC Proteins

(A) Subunit composition of SMC-kleisin com-

plexes.

(B) Coiled-coil length distribution of prokaryotic

(Pr; n = 3,337) and eukaryotic (Eu; n = 1,659) SMC

sequences. Arm lengths were estimated on the

basis of multiple sequence alignments. The

dashed line indicates the coiled-coil length of Bs

Smc.

(C) Kernel density estimates for data shown in (B).

Dashed lines indicate positions of prominent

modes.

(D) Arm length distribution for eukaryotic SMC

sequences classified by type of complex.

See also Figure S1.
et al., 2016), consistent with the notion of additional functions for

the SMC arms.

Here,wesetout todelineate functional requirements for thearm

in the biological activity of Smc-ScpAB. On the basis of large-

scale protein engineering approaches involving a systematic

change in the length of the arm and the random insertion of pep-

tides, we have uncovered an unanticipated role that goes beyond

its proposed function as a DNA barrier. The novel activity is tightly

coupled to the ATPase cycle of Smc and requires an arm length

matching a periodic pattern as well as the mechanical integrity

of the arm. We find that disruptions in arm length or rigidity result

in the aberrant accumulation of Smc proteins at the parS loading

sites. Our data uncover a critical step of the chromosomal loading

process and suggest that SMC arms mediate an essential long-

distance DNA transaction driven by the SMC ATPase. We pro-

pose that thearmmediates theopeningof aDNAentrygateduring

DNA entrapment or the active extrusion of DNA loops.

RESULTS

A Multimodal Distribution of SMC Arm Lengths
The sequences and structures of the globular SMC core do-

mains and their interfaces are highly conserved throughout the

phylogenetic tree (B€urmann et al., 2013; Gligoris et al., 2014; Gri-

ese et al., 2010; Haering et al., 2002, 2004; Nolivos and Sherratt,

2014; Woo et al., 2009). The SMC coiled-coil arm, in contrast,
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shows much less conservation at the

sequence level (with the exception of co-

hesin in animals), and little is known about

its structure (White and Erickson, 2006,

2009). Interestingly, however, its overall

length is very similar in Bs Smc, conden-

sin Smc2 and Smc4, and cohesin Smc1

and Smc3, apparently indicating strict

evolutionary conservation of arm length.

To gain a more comprehensive view on

the distribution of arm lengths in SMC

proteins, we used an HHsenser-based

pipeline to aggregate large sets of

diverged SMC sequences (Söding et al.,

2006) (Figure S1). For each sequence,
we identified the positions of head and hinge regions by

sequence alignment and used the mean length of the interlinking

segments as an estimator for coiled-coil length. Surprisingly, we

obtained a clearly multimodal length distribution both for pro-

karyotic and for eukaryotic sequences (Figures 1B and 1C).

The kernel density estimate for prokaryotic Smc showed three

major modes at 238, 341, and 515 amino acids (AA), respec-

tively, and possibly two minor ones at 163 and 423 AA. Interest-

ingly, albeit having a less well defined distribution, eukaryotic

sequences generated two pronounced modes at lengths of

272 and 345 AA. The first one was produced predominantly by

Smc5/6 sequences, whereas the second one was mostly gener-

ated by cohesin’s Smc1/3 and condensin’s Smc2/4 (Figure 1D).

Puzzlingly, it appears that SMC arms underlie an evolutionary

constraint that permits specific lengths in steps of �100 AA

but largely disfavors intermediate lengths. We note that the

real length distributions might be even sharper than our esti-

mates, because our method does not account for insertions of

non-coiled-coil regions in the arm.

Periodic Length Constraints on the Smc Coiled Coil
To identify the functional basis of the length conservation, we

systematically resized the coiled-coil arm of Bs Smc. On the ba-

sis of available disulfide register mapping and structural informa-

tion (B€urmann et al., 2013; Minnen et al., 2016; Soh et al., 2015;

Waldman et al., 2015), we designed a series of 258 successively



Figure 2. High-Throughput Screens for

Functionally Resized Smc

(A) Strategy for an arm truncation screen. Smc

arms were shortened by grafting the hinge and a

short stretch of hinge-proximal coiled coil onto a

shortened head-proximal part (left). An arrow il-

lustrates the tested size-range. Shortened alleles

were assembled by a Golden Gate approach

(right).

(B) Strategy for an arm extension screen. Smc

arms were either extended or shortened by resiz-

ing the Bs part of a functional chimeric Bs/

S. pneumoniae (BsSp) protein. As in (A).

(C) Viability of strains with resized Smc arms.

Modified smc alleles were transformed into smc-

null cells for allelic replacement at the endogenous

locus. Transformation mixtures were plated on

ONAwith antibiotics, and growth was assessed by

the total area of bacterial colonies per plate.

Truncation and extension screen were performed

independently and normalized to their respective

95% growth quantile.

(D) Power spectrum of data shown in (C). The

periods of the major peaks are indicated.

(E) Dilution spotting of strains with short smc al-

leles. Strains were constructed on SMG in the

absence of selection pressure for smc function.

Strains were spotted either on rich (ONA) or mini-

mal (SMG) medium. Expression of the engineered

alleles was probed by western blotting using

polyclonal antibodies raised against full-length

Smc. Note that modification of the Smc protein

possibly removes some of the epitopes. Coo-

massie staining of extracts run on a separate

SDS-PAGE gel is shown as a loading control.

CBB, Coomassie Brilliant Blue; CC, coiled coil.

(F) Dilution spotting of strainswith long smc alleles.

As in (E).

See also Figure S2.
shortened Smc constructs, covering most of the coiled coil

at amino-acid resolution (Figure 2A). We then used a Golden

Gate assembly driven allelic replacement strategy to regenerate

the endogenous locus of a smc deletion strain with the synthetic

variants (Figure S2A). Transformation mixtures were plated on

Oxoid nutrient agar (ONA) solid medium, a condition that is lethal

for the parental smc null strain, and plates were imaged after

36 hr. Bacterial colonies were detected, and the ability of the cor-

responding constructs to support growth on rich medium was

assessed by using the total colony area per plate as a proxy.

Starting from the wild-type arm length of 344 AA, we observed

a gradual loss of function down to a length of 321 AA (Fig-

ure S2B). This was followed by a large region depleted of func-

tional constructs. However, colonies reappeared at arm lengths

between 267 and 253 AA, close to a major mode of the length

distribution obtained by sequence analysis (Figures 1C and

S2B). Next, we restored the shortest functional construct to

full-length size by replacing its hinge domain with the hinge

domain and �100 AA hinge-proximal coiled coil of Strepto-

coccus pneumoniae (Sp) Smc (Figures S2C–S2E). This chimeric
protein, termed BsSpSmc, was then used to extend the SMC

arm beyond its natural length (Figures 2B and S2B). By this

approach, we obtained functional constructs in the arm-length

regions of 330–373 AA and 407–435 AA, separated by a gap of

non-functional constructs. Strikingly, a clear multimodal distri-

bution of viability became apparent in the merged data set of

the shortening and the extension screen (Figures 2C and 2D),

which we confirmed by strain reconstruction without selecting

for Smc function (Figures 2E and 2F).

We then used Fourier analysis to extract underlying periodic-

ities in the viability data set (Figure 2D). Intriguingly, the power

spectrum showed two prominent peaks: one major peak at a

period of 91 AA, close to the super-helical coiled-coil period of

�99 AA, and aminor one at a period of 3.5 AA, which is the a-he-

lical period in coiled coils (Truebestein and Leonard, 2016). Thus,

our genetic data appear to faithfully reflect the 3D structure of the

arm and links it directly to a biologically relevant output. We

conclude that the evolutionary length distribution of SMC se-

quences has a functional basis and that this function is largely

determined by the super-helical structure of their coiled coil.
Molecular Cell 65, 861–872, March 2, 2017 863



Figure 3. Dimerization and ATPase Activity

of Mini-Smc Proteins

(A) In vivo site-specific crosslinking of Mini-Smc

variants at the hinge interface (see also Fig-

ure S2B). In-gel fluorescence after BMOE cross-

linking of strains containing cysless Smc-HaloTag

variants (top) and quantification thereof (bottom)

is shown. Crosslinking was performed in three

separate reactions. Colored boxes indicate 95%

credible intervals, horizontal lines indicate mean

and SD of the data.

(B) Head engagement levels in Mini-Smc proteins

monitored by in vivo site-specific crosslinking at

the reporter residue K1151C (see also Figure S3C)

(Lammens et al., 2004; Minnen et al., 2016). The

SR mutation blocks head engagement, and the

EQ mutation blocks ATP hydrolysis (Figure S3A).

As in (A).

(C) Purification of Smc variants. Purified fractions

were analyzed by SDS-PAGE and Coomassie

staining. KI, Smc ATP-binding mutation K37I.

(D) Steady-state ATPase activity of purified Smc

variants at 0.3 mM protein and variable ATP con-

centration. Activity was determined by a coupled

enzyme assay and data were fitted by the Hill

model (see also Table S3). Data and fits for three

replicates are shown.

See also Figure S3.
Mini-Smc Dimerization and ATPase Activity
Aiming to assess whether alterations in the coiled-coil se-

quences lead to gross protein folding defects, we characterized

the dimerization and enzymatic activity of selected Mini-Smc

constructs. We performed site-specific cysteine crosslinking ex-

periments in vivo and found that dimerization at the hinge

domain was normal in the six tested Mini-Smc proteins (Figures

3A and S3B). Likewise, the Smc head domains engaged robustly

in the presence of a mutation blocking ATP hydrolysis (E1118Q

[EQ]), whereas head engagement was hardly detectable in the

absence of this mutation, as observed with full-length Smc (Min-

nen et al., 2016) (Figures 3B and S3C; see Figure S3A for an over-

view of the SMC ATP hydrolysis cycle). Curiously, the efficiency

of head engagement in Smc(EQ) proteins increased somewhat

as the coiled coil was shortened (Figures 3B and S3D), consis-

tent with our previous proposition that the formation of a rod

by close juxtaposition of the two Smc coiled coils hinders head

engagement (Minnen et al., 2016; Soh et al., 2015).

We then purified Mini-Smc proteins to measure their ability to

hydrolyze ATP in vitro (Figure 3C). All tested functional and non-

functional Mini-Smc proteins hydrolyzed ATP slightly faster than

wild-type Smc at saturating ATP concentrations (higher vmax)

and substantially faster at sub-saturating ATP concentrations

(lower K0.5) (Figures 3D and S3E; Table S3). These findings are

consistent with the enhancement of head-engagement detected
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by crosslinking. Curiously, the non-func-

tional, intermediate-length Mini-Smc pro-

teins displayed the highest apparent

affinity for ATP (Figure 3D; Table S3).

The observed ATPase rates likely origi-

nate from isolated Smc dimers (and not
from inter-dimer collisions), as they are largely independent

from protein concentration (Figure S3F).

Taken together, we conclude that the engineered non-func-

tional Smc variants do not display gross folding defects and

fail to support viability for more specific reasons.

The Coiled Coil Determines Chromosomal Loading
of Smc
Recruitment of Smc-ScpAB to the chromosome has been linked

to a conformational change in the coiled-coil arm (Minnen et al.,

2016; Soh et al., 2015). We therefore investigated whether tar-

geting of Smc-ScpAB to the chromosome was perturbed in

complexes containing Smc variants with shorter coiled coils.

To this end, cells were grown in minimal medium (SMG) and

analyzed by a-ScpB chromatin immunoprecipitation coupled

to deep sequencing (ChIP-seq). Surprisingly, ChIP-seq profiles

of non-functional Mini-Smc complexes revealed a pronounced

enrichment at parS sites compared with other chromosomal lo-

cations, whereas wild-type protein was strongly enriched at the

origin of replication (oriC), but less so at parS (Figures 4A and

S4A). The relative enrichment of Mini-Smc proteins at and near

parS sites and the relative depletion from oriC and chromosome

arms compared with wild-type became especially apparent in

ratiometric comparisons of the ChIP-seq profiles (Figures 4A

and S4A, bottom). This suggests that although Mini-Smc



Figure 4. Chromosomal Loading of Smc-ScpAB Containing Mini-Smc Proteins

(A) ChIP-seq profiles at the oriC region. ChIP was performed with an antiserum raised against ScpB. Normalized counts in reads per million (rpm) are plotted

against the distance from oriC (top). The bottom graph shows the ratiometric analysis against the wild-type profile. For each bin, normalized counts were

compared with the respective wild-type value. The higher value was divided by the lower. For bins where the mutant value was greater than or equal to the wild-

type value, the ratio was plotted above the genome coordinate axis (blue) and below the axis otherwise (orange). EQ, Smc(E1118Q).

(B) ChIP-qPCR against ScpB for mini-smc strains containing an ATPase mutation that prevents head engagement (SR, S1090R). Loci close to parS sites are

colored in blue, loci close to the replication origin are orange, and chromosomal arm positions are white (see Figure 4A, top).

(C) Chromosome entrapment assay for strains containing Mini-Smc complexes. Smc-ScpAB complexes containing Smc-HaloTag variants were site-specifically

cross-linked at hinge and ScpA-Smc interfaces and conjugated to a HaloTag-OregonGreen (OG) substrate. Intact chromosomes were isolated in agarose plugs,

and proteins were extracted under denaturing conditions. Smc-HaloTag species retained in the plug were resolved by SDS-PAGE and detected by in-gel

fluorescence. Species a–g and i are linear, species h/h0 are circular.

See also Figure S4.
constructs were able to target the loading sites, they failed to

redistribute to adjacent loci.

Interestingly, this localization phenotype is similar to the EQ

mutant, which in contrast to the Mini-Smc proteins is blocked

in ATP hydrolysis (Hirano and Hirano, 2004; Minnen et al.,

2016) (Figures 4A and S4A). We confirmed these findings by

ChIP coupled to quantitative PCR (qPCR), which also showed

that the extent of redistribution correlated well with the ability

of Mini-Smc proteins to support fast growth (Figure S4B). Impor-

tantly, chromosomal recruitment was still dependent on Smc

head engagement, because the engagement-blocking mutation

S1090R (SR) abrogated localization (Hirano et al., 2001; Minnen

et al., 2016) (Figure 4B). However, continuous head engagement

seems dispensable for association with the loading sites at least

in Mini-Smc proteins, which engage heads only transiently (Fig-

ure 3B). Together, these findings imply that Mini-Smc proteins

can successfully complete their ATPase cycle but fail to couple

ATP hydrolysis to an essential activity that is accompanied by

re-localization on the chromosome.

In addition to triggering chromosomal redistribution, the Smc

ATP hydrolysis activity has been linked to the capture of DNA

inside the Smc-ScpAB ring. We therefore tested for the associ-
ation of Mini-Smc variants with chromosomal DNA by the chro-

mosome entrapment assay. This is based on the isolation of

intact chromosomal DNA in agarose plugs and the co-purifica-

tion of Smc-ScpA species that have been site-specifically

crosslinked into covalent rings (Wilhelm et al., 2015). All four

tested Mini-Smc proteins associated normally with the kleisin

ScpA as judged by their crosslinking patterns (Figure 4C).

Although the circular species derived from functional Mini-

Smc proteins were retained during chromosome isolation,

non-functional Mini-Smc rings were almost completely ex-

tracted from the chromosome plugs, similar to covalent rings

obtained for Smc(EQ). This shows that non-functional Mini-

Smc proteins largely fail to entrap chromosomal DNA, possibly

because they are directly blocked in an entrapment reac-

tion (e.g., topological loading or non-topological extrusion

of large loops). Alternatively, they might be blocked in an up-

stream or downstream rate-limiting process (e.g., clearance of

loading sites).

In summary, both known ATP hydrolysis-dependent activities

of Smc are specifically lost in the non-functional Mini-Smc pro-

teins (i.e., redistribution from chromosomal loading sites and

the entrapment of DNA). Thus, Smc proteins with illegitimate
Molecular Cell 65, 861–872, March 2, 2017 865



Figure 5. Suppressor Mutagenesis and

Hinge Replacement of Mini-Smc Variants

(A) Suppressor mutations mapped onto the crystal

structure of the T. maritima (Tm) hinge domain

(Protein Data Bank [PDB]: 1GXL). Bs residues are

indicated in black, Tm homologs are indicated

in red.

(B) Mutations in the arm suppress lethality of the

CC320 mini-smc allele. The cartoon illustrates

the position of the suppressor mutations (left).

The panel on the right shows spot dilutions as in

Figure 2D.

(C) Comparison of open conformations of the SMC

hinge (left; PDB: 1GXL) and the Rad50 Zinc

hook (right; PDB: 1L8D). The N-terminal coiled-coil

strands are colored green, and the C-terminal

strands are colored orange. The part that was

substituted to construct a functional Smc(Zh)

chimera is shown in blue and gray, respectively.

(D) Coiled-coil truncation screen of the Smc(Zh)

protein. Data are compared with the arm short-

ening experiment shown in Figure 2C. The growth

axis for Smc(Zh) has been inverted for clarity. As in

Figure 2C.

(E) Spot dilutions and western blot analysis of

Smc(Zh) variants with short coiled coils. As in

Figure 2E.

See also Figure S5.
lengths of coiled coil are unable to couple ATP hydrolysis to an

essential DNA transaction on the chromosome.

An Unrelated Dimerization Domain Supports Smc
Function
The above results suggest that the Smc coiled coil acts as a

functional unit with considerable rigidity. A change in the length

of the coiled-coil arm might thus alter the phase relationship be-

tween its ends; that is, it will modify the orientation of the hinge

with respect to the head (Figure S5A). If so, then locally relaxing

Smc rigidity, for example by introducing point mutations, might

compensate for the shortening of the Smc coiled coil. To test

this, we applied error-prone PCR to screen all non-functional

constructs in the length region of 270–320 AA (named CC270–

CC320) for suppressor mutations in the Smc hinge domain

and 12 AA of the associated coiled coil. However, good suppres-

sor mutations were identified only for a limited number of con-

structs, all harboring a coiled coil with borderline length (Figures

S5B and S5C). Most of the mutations mapped to a conserved

hydrophobic pocket that appears to fix the hinge onto the arm

(Figure 5A) (Haering et al., 2002; Soh et al., 2015). We next

screened the borderline length construct CC320 for suppressor

mutations in other parts of Smc (except for the N-terminal

head region). This yielded few additional suppressors located
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in the Smc coiled coil (Figure 5B). None

of the isolated mutations, however, sup-

pressed major coiled-coil length alter-

ations. Perturbing Smc structure thus

compensates for minor deviations in

coiled-coil length only. These results

provide support for the notion that a sig-
nificant level of rigidity in the Smc coiled coil is functionally

important. Intriguingly, however, the structural integrity of the

coils/hinge junction appears less critical, because apparently

disruptive point mutations are easily isolated in the respective

part of the protein (Figure 5A).

With the aim to test more directly whether the hinge structure is

crucial for Smc function, we next substituted the Smc hinge

domain for the structurally unrelated Zinc-hook (Zh) dimerization

domain of the SMC-like Rad50 protein from Pyrococcus furiosus.

According to available structural information, the Zh and hinge

domains connect differently to the corresponding coiled-coil

arm (Figure 5C) (Hopfner et al., 2002). However, the Zh dimeriza-

tion domain permitted apparently near-normal arm/arm associa-

tion in a chimeric Smc(Zh) protein (Figure S5F). Strikingly, the

Smc(Zh) protein also supported normal growth on nutrient rich

medium. The fold of the dimerization domain in Smc is thus

irrelevant for chromosome segregation in Bacillus subtilis.

We then truncated the arm of the Smc(Zh) construct to test for

any changes in the constraints on arm length. To our surprise, we

obtained a similar bimodal pattern as for the constructs with a

wild-type Smc hinge (Figures 5D and 5E), possibly implying

that a defined attachment of the coiled coil to the dimerization

domain is not required for Smc function. More likely, however,

the geometry of the attachment might be more similar in the



Figure 6. Transposon Screen for Functional

Smc Variants Containing a Randomly In-

serted Peptide

(A) Peptide insertion screen. The cartoon on top

illustrates the region that was targeted by trans-

poson mutagenesis of a smc-targeting construct.

The obtained insertion library was characterized

by deep sequencing, and reads containing the

insert were selected. Insertion read counts for

positions with at least one detected insertion are

shown (top). After transformation of the library into

a smc-null strain, viable clones isolated on ONA

were characterized by Sanger sequencing.

Counts of insert positions among viable isolates

are shown (bottom). Green regions delineate

the head domain, orange delineates the hinge re-

gion, and the blue graph indicates coiled-coil

probability.

(B) Spot dilutions of strains with designed peptide

insertions in the coiled-coil arm. As in Figure 2E.

(C) ChIP-qPCR against ScpB for strains containing

peptide insertions in the Smc arm. Loci close to

Smc loading sites are colored in blue, loci close to

the replication origin are orange, and chromo-

somal arm positions are white (see Figure 4A).

(D) ATPase activity of non-functional Smc variants

with peptide insertions in the coiled-coil arm. As in

Figure 3D.

See also Figure S6.
families of Rad50 and SMC proteins than anticipated from avail-

able crystal structures (Figures 5C, S5F, and S5G).

Together, these findings demonstrate that the nature of the

dimerization domain is surprisingly uncritical, and that the struc-

ture of the arm dominates the phenotype observed for Mini-Smc

proteins.

The Integrity of the Smc Coiled Coil Is Critical for
Chromosomal Loading
Apparently, the Smc arm couples ATP hydrolysis at the Smc

heads to an essential chromosomal activity. Assuming a sce-

nario in which the arm transmits information from the head to

its distal end (or vice versa) (Hirano and Hirano, 2006; Minnen

et al., 2016; Soh et al., 2015), its function might become compro-

mised if such transmission was blocked by other means than

altering its length. We reasoned that this might be achieved by

inserting a flexible peptide into the transmission pathway. There-

fore, from a set of Smc proteins with a peptide insertion at

random positions, all constructs disrupting the force transmis-

sion pathway might be depleted after selection for Smc function.

Following this strategy, we isolated functional Smc variants with

an insertion of a 14-AA-long peptide at a random position.

Briefly, we used in vitro transposon mutagenesis and sub-clon-

ing to generate a library of double-crossover gene-targeting con-

structs that contained short sequences inserted into the smc

open reading frame. The library was characterized by deep

sequencing (Figures 6A and S6A) and was subsequently trans-

formed into a smc deletion strain for allelic replacement. We iso-
lated 190 viable insert-containing clones on ONA and character-

ized them by Sanger sequencing. Many of the recovered alleles

contained insertions in the hinge domain, which mostly mapped

to loops or surface exposed structural elements (Figure S6B).

Intriguingly, the set of viable isolates was considerably depleted

of inserts in the coiled coil (Figure 6A). Whereas the arm accom-

modated 70% of inserts in the input library, this fraction was

reduced to 42% in the set of functional isolates (p < 0.001 by

approximate permutation test). Furthermore, the distribution of

coiled-coil inserts among the functional proteins was highly

non-uniform, with hotspots close to the hinge and at the head-

and hinge-proximal coiled-coil breaks, respectively (Minnen

et al., 2016; Waldman et al., 2015). Insertions in the N-terminal

helix were particularly rarely recovered.

We corroborated our findings by targeted strain construction

in the absence of selection pressure for Smc function, whereby

many of the designed mutants displayed a lethal phenotype on

ONA albeit producing wild-type levels of protein (Figure 6B). It

appears that Smc can be readily modified in or at the hinge

domain, but not in most parts of its coiled coil, consistent with

the notion that the arm might act as a mechanical device for in-

formation transmission. Excitingly, Smc-ScpAB complexes con-

taining Smc variants with peptide insertions in their arm were

impaired in chromosomal redistribution, similar to complexes

containing Mini-Smc proteins (Figures 6C and S4B). The extent

of this phenotype correlated well with viability. Moreover, Smc

proteins with peptide insertions are functional ATPases with

slightly higher vmax and considerably lower K0.5 parameters
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compared with wild-type protein, similar to the Mini-Smc pro-

teins (Figure 6D; Table S3). Taken together, we conclude that

the full coiled-coil arm is intimately involved in a chromosomal

DNA transaction during ATP hydrolysis and that this activity is

absolutely essential for Smc function.

DISCUSSION

The SMC Coiled Coil as a Functional Unit
The DNA entrapment model has been widely used to explain

the biological activities of SMC-kleisin rings. Naturally, DNA

entrapment requires a barrier that prevents DNA escape.

Although the precise location of DNA within SMC complexes is

unknown, the arms likely act as such a barrier because they

make up a large part of the ring circumference. This notion is

supported by the finding that artificial proteolytic cleavage of

the coiled coil releases both cohesin and condensin from chro-

matin (Cuylen et al., 2011; Gruber et al., 2003). If preventing

DNA loss from the complex would sufficiently describe the

function of the SMC arms, then constraints on their structure

are expected to be low: physical integrity and a minimum length

to accommodate the substrate should suffice. Other properties

such as rigidity would probably be unconstrained or even

disfavored.

Electron microscopy, small-angle X-ray scattering, crosslink-

ing/mass spectrometry, and crystallographic experiments for

several SMC complexes suggest that the arms are rigid at least

over a considerable distance (Anderson et al., 2002; Barysz

et al., 2015; Hirano et al., 2001; Huis in ’t Veld et al., 2014;

Soh et al., 2015). In contrast, a recent study of Smc2–4 hetero-

dimers in the atomic force microscope has proposed a persis-

tence length of about 5 nm for the yeast condensin coiled coil

(Eeftens et al., 2016). Compared with a continuous coiled coil

with an expected persistence length of about 150 nm, this is sur-

prisingly flexible (Wolgemuth and Sun, 2006) and would suggest

that the arms of condensin might rather act as passive domain

linkers than as mediators of a biochemical activity. Here, we

present functional evidence that this is not the case for the

coiled coil of Smc-ScpAB. First, the arm of B. subtilis Smc toler-

ates flexible insertions in few positions only, implying that it acts

as a functional unit rather than a chain of loosely connected

coiled-coil segments. Second, a long-distance geometrical rela-

tionship within the arm, determined by its super-helical struc-

ture, appears crucial for Smc function. This property is reflected

in the length distributions of both prokaryotic and eukaryotic

SMC sequences and probably also in those of the more

distantly related MukB, MksB and Rad50 proteins (Figure S1).

We reason that the coiled-coil arm of bacterial Smc acts as a

single functional unit and that this finding may generalize to

many if not all types of SMC and SMC-like proteins. Consistent

with this notion, the amino acid sequences of eukaryotic SMC

coiled coils, particularly in cohesin, were found to be conserved

well beyond the levels observed for spacer rods (White and

Erickson, 2006).

Periodic Patterns in Coiled Coils
Coiled coils are formed by a helices with repetitive amino acid

sequence patterns. A heptad repeat typically dominates at the
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fine level of coiled coil sequences, but non-canonical geome-

tries with periods of, for example, 4, 11, 15, or 18 residues do

exist (Gruber and Lupas, 2003; Lupas and Gruber, 2005; True-

bestein and Leonard, 2016). Interfering with the heptad register

disturbs or eliminates protein function whenever a precise local

structure is important. For example, the transcription factor

Gcn4 tolerates 7-amino acid insertions between its DNA bind-

ing domain and the leucine zipper, while 2-, 4-, or 6-amino

acid insertions misalign the two DNA binding domains in a

given Gcn4 dimer and hinder DNA binding (Pu and Struhl,

1991). Similar observations have been made in several engi-

neered histidine kinase dimers, in which extension or short-

ening of a coiled-coil domain linker changes the orientation of

the signaling domain in a phase-dependent manner (Cochran

and Kim, 1996; Möglich et al., 2009). In the case of Smc, we

have also observed that locally breaking the heptad repeat

interferes with protein function (Figure 2D), which is very likely

caused by related effects. The requirement for a continuous

heptad periodicity is particularly clear in Smc proteins that har-

bor a chimeric BsSp arm with a wild-type-like length (Table S5;

Figure S2B, right).

Long-range periodicities in coiled-coil sequences have been

defined in only a limited number of cases. For example, tropomy-

osin folds into a continuous coiled coil of about 280 residues

comprising seven roughly equally sized repeat units (Barua,

2013). The units bind actin monomers within a filament and are

aligned along the tropomyosin coiled-coil superhelix. Internal

deletion of an entire repeat is tolerated. However, removal of

half a repeat or one third of a repeat is interfering with actin bind-

ing and regulation, probably because of misalignment of the

actin-binding sites (Hitchcock-DeGregori and Varnell, 1990).

The 1,000-residue rod of myosin II contains a strong 28-repeat

in charged residues, which probably promotes packing of

myosin into ordered filaments (Decker and Kellermayer, 2008;

McLachlan and Karn, 1982). Accordingly, 14 residues insertions

or deletions alter the packing mode (Atkinson and Stewart,

1991). In these two examples, the long-range repeat pattern

allows the association of the coiled coil with repetitive structures:

the actin polymer and other myosin monomers, respectively. In

case of Smc, however, no such interactions are known at the

moment. Although the helical pitch of DNA and SMC arms are

not compatible, Smc arms from different complexes could in

principle pack into filaments, for example to drive a treadmilling

reaction (Alipour and Marko, 2012). Alternatively, misaligned

Smc arms might prevent the formation of a stable rod interface

within the Smc dimer (Soh et al., 2015). However, we favor the

idea that the arm serves a mechanical function, in addition to

forming the dimer rod.

In Rad50 proteins, there is conformational crosstalk be-

tween the distantly located head and zinc hook dimerization

domains, presumably mediated via the coiled-coil arms (Hohl

et al., 2015). Artificially truncated versions of the yeast

Rad50 protein are defective in genome maintenance, together

underscoring the importance of the Rad50 arm in the repair

of DNA (Hohl et al., 2011). Whether any periodic elements

in the arm are critical, however, is unclear because only a

handful of truncation constructs were tested. Systematic alter-

ations of CC length might uncover many more examples of



Figure 7. Models for the Role of the Coiled-

Coil Arm during DNA Transactions of SMC

(A) Tentative model for the effect of arm length

variation on Smc function. Proteins with a large

offset in the super-helical phase of their coiled

coils (‘‘Out-of-Tune’’ complexes) react differently

to mechanical strain induced during their ATPase

cycle.

(B) Models for Smc arm function during chromo-

somal DNA transactions. After initial recruitment to

the chromosome induced by ATP binding, the

coiled-coil arms of Smc transduce mechanical

energy to open a DNA entry gate (top middle) or

directly act on DNA, for example during loop

extrusion (bottom middle).
long-range patterns in coiled coil proteins with potentially

novel functions.

Proper Arm Geometry Is Required for an ATPase-Driven
DNA Transaction
Given the structural similarities of SMC complexes, it is conceiv-

able that their biological activities are based on a considerably

conserved biochemical mechanism. Consistently, cohesin, con-

densin and Smc-ScpAB each have been shown to entrap DNA

within their ring structure (Cuylen et al., 2011; Gligoris et al.,

2014; Wilhelm et al., 2015). From an abstract perspective, the

chromosomal activity of SMC complexes may be partitioned

into two phases: targeting and redistribution. Of those, targeting

requires ATP-dependent head engagement, whereas redistribu-

tion also requires nucleotide hydrolysis (Hu et al., 2011; Minnen

et al., 2016). Our findings now show that the coiled-coil arm me-

diates an essential DNA transaction after targeting (i.e., during

the redistribution phase). This activity is in all likelihood directly

coupled to nucleotide hydrolysis, because proteins with defec-

tive arms resemble the localization phenotype of the hydroly-

sis-deficient Smc(EQ) protein.We envision that the redistribution

phase is composed of the active DNA entrapment process and

another unknown process that leads to the actual disengage-

ment from the loading site. The latter activity might be related

to an active extrusion of DNA and require continuous ATP hydro-
Mole
lysis, or it might represent processive

diffusion along the substrate, driven by

external motors or thermal motion (Ali-

pour and Marko, 2012; Goloborodko

et al., 2016; Nasmyth, 2001). Thus, a

proper geometry of the coiled-coil arm

is directly required either for DNA entrap-

ment or for a hypothetical ATP-driven

movement along DNA, or for both. Alter-

natively, the coiled-coil arms may inhibit

the Smc ATPase cycle (Figure 3D) to pre-

vent ATPase driven unloading of Smc-

ScpAB from chromosomes. ATP hydroly-

sis mediated unloading has been pro-

posed recently for the related cohesin

complex (Elbatsh et al., 2016; Huber

et al., 2016). Resolving those exciting
alternatives will be crucial for our understanding of SMC com-

plexes, and will possibly require the establishment of single-

molecule observations in a purified system.

The Arms as Force Transmitters during Chromosomal
Loading
Howmight the SMC arm promote DNA loading? DNA capture by

cohesin has been proposed to be mediated by the transient ATP

hydrolysis-driven opening of the cohesin ring. Conceivably, me-

chanical communication between the head domains and the

distal end of the coiled coil might promote opening of an entry

gate, which has been suggested to be located at the Smc1/

Smc3 hinge (Buheitel and Stemmann, 2013; Gruber et al.,

2006) or the Smc3/Scc1 interface (Murayama and Uhlmann,

2015). We envision a scenario whereby the geometry of the

SMC arm is tuned in such a way that it accommodates substan-

tial strain upon head engagement and even more so during ATP

hydrolysis and that this strain eventually dissipates by opening

the DNA entry gate (Figure 7). Changing the coiled-coil length

or flexibility might result in a geometry that can more easily

accommodate such strain without opening the entry gate, and

might thus uncouple gate opening from ATP hydrolysis.

If entry-gate opening also occurred in Smc-ScpAB, then this

process must be feasible without direct contact between the

hinge and other factors such as the ATPase head domain. This
cular Cell 65, 861–872, March 2, 2017 869



is implied by our finding that the Smc hinge can be functionally

substituted by the structurally unrelated Rad50 Zh domain.

Although the Smc(Zh) protein does not contain a hinge, its activ-

ity still depends on a proper coiled-coil geometry (Figure 5D),

indicating that opening of the DNA entry gate might be mainly

mediated by the arms. A corollary is that such a mechanism

would be remarkably robust, because it can tolerate different

dimerization domains, flexible peptide insertions in the hinge-

proximal coiled coil and substantial truncations thereof (Figures

2, 5, and 6).

The SMC Arms Promoting Chromosomal Relocation
Apart from allowing the topological capture of DNA, SMC arms

may play a direct role in the relocation of SMC from loading sites.

They could do so by actively extruding DNA or by enabling SMC

diffusion along DNA driven by thermal motion or external motors.

Dissolving the SMC rod (i.e., the state with associated arms)

during DNA loading and simply re-forming this state upon ATP

hydrolysis might hinder the passage of DNA tracking motors

through the collapsed SMC complex (Stigler et al., 2016). The

work of external motor proteins could thereby be harnessed to

pull DNA through the complex. According to this hypothesis, for-

mation of Smc rods should be defective in short, non-functional

Smc proteins. However, our initial attempts based on cysteine

crosslinking at few available positions failed to uncover an

obvious correlation between the local organization of the Smc

rod in Mini-Smc constructs and their ability to re-localize on

the chromosome or promote growth (data not shown). The

arms could also play a more active role during chromosomal

redistribution. By re-forming Smc rods, they may for example

push DNA from the head domains toward the hinge (or vice

versa), similar to the action of a peristaltic pump (Figure 7). If

so, then the phase shift in Mini-Smc proteins might disrupt the

flow of DNA between the hinge and the head domains.

Altogether, we conclude that any futuremodel for SMCactivity

needs to incorporate the coiled coil as amajor functional compo-

nent rather than a passive barrier and domain linker.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-ScpB-His6 rabbit antiserum The Gruber Laboratory COD003

Anti-Smc polyclonal rabbit antibody, affinity purified The Gruber Laboratory COD006

Chemicals, Peptides, and Recombinant Proteins

Adenosine triphosphate (ATP) Sigma-Aldrich Cat#A6419-10G

Bis(maleimido)ethane (BMOE) Thermo Scientific Cat#22323

BsaI New England Biolabs Cat#R0535L

BsgI New England Biolabs Cat#R0559L

Certified Low Melt Agarose Bio-Rad Laboratories Cat#161-3111

Dynabeads Protein-G Life Technologies Cat#10004D

Erythromycin AppliChem Cat#A2275,0005

GlycoBlue Ambion Cat#AM9515

HaloTag Oregon Green Ligand Promega Cat#G2802

HaloTag TMR Ligand Promega Cat#G8251

HiTrap Blue HP GE Healthcare Cat#17-0413-01

HiTrap Heparin HP GE Healthcare Cat#17-0407-01

Lincomycin AppliChem Cat#A7697,0005

Nicotinamide adenine dinucleotide (NADH) Sigma-Aldrich Cat#N8129-100MG

Overnight Express Instant TB Medium Merck Cat#71491-5

Oxoid Nutrient Agar (ONA) Oxoid Cat#CM003

Phosphoenolpyruvic acid (PEP) Sigma-Aldrich Cat#P7002-100MG

Phusion HotStart II DNA Polymerase Thermo Scientific Cat#F-549L

Protease Inhibitor Cocktail Sigma-Aldrich Cat#P8849-5ML

Pyruvate kinase/lactate dehydrogenase Sigma-Aldrich Cat#P0294-5ML

Ready-Lyse Lysozyme Solution Epicenter Cat#R1802M

Sm DNase MPIB Core Facility SmDNase

Superose 6 Prep Grade GE Healthcare Cat#17-0489-01

T4 DNA Ligase Thermo Scientific Cat#EL0016

Taq DNA Polymerase New England Biolabs Cat#M0267S

Critical Commercial Assays

No ROX SYBR MasterMix blue dTTP Takyon Cat#UF-NSMT-B0701

NucleoFast 96 PCR Plate Macherey-Nagel Cat#743100.1

EZ-Tn5 < KAN-2 > Insertion Kit Epicenter Cat#EZI982K

NuPAGE 3-8% Tris-Acetate Gels Life Technologies Cat#EA03755BOX

QIAquick PCR Purification Kit QIAGEN Cat#28106

Costar Spin-X Centrifuge Tube Filter Corning Cat#8163

Ovation Ultralow System V2 NuGEN Cat#0344

NEXTflex PCR-Free DNA Sequencing Kit Bioo Scientific Cat#5142-01

Deposited Data

ChIP-seq data This paper SRA: SRP094054

Insertion library sequencing data This paper SRA: SRP094088

Bacillus subtilis reference genome NCBI NC_000964

Experimental Models: Organisms/Strains

E. coli: BL21-Gold (DE3) MPIB Core Facility N/A
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B. subtilis: 1A700, smc ftsY::ermB, trpC2 The Gruber Laboratory BSG1002

B. subtilis: 1A700, Dsmc ftsY::ermB, trpC2 The Gruber Laboratory BSG1007

B. subtilis: 1A700, smc(E1118Q) ftsY::ermB, trpC2 The Gruber Laboratory BSG1008

B. subtilis: 1A700, smc(S1090R) ftsY::ermB, trpC2 The Gruber Laboratory BSG1046

B. subtilis: 1A700, smc(Pf Rad50 Zinc hook) ftsY::ermB, trpC2 This paper BSG1075

B. subtilis: 1A700, smc(C119S, C437S, C826S, C1114S)-TEV-His12-

HaloTag(C61V, C262A) ftsY::ermB, trpC2

The Gruber Laboratory BSG1360

B. subtilis: 1A700, smc(C119S, C437S, C826S, C1114S, K1151C)-TEV-

His12-HaloTag(C61V, C262A) ftsY::ermB, trpC2

The Gruber Laboratory BSG1457

B. subtilis: 1A700, smc(C119S, C437S, C826S, C1114S, K1151C, E1118Q)-

TEV-His12-HaloTag(C61V, C262A) ftsY::ermB, trpC2

The Gruber Laboratory BSG1488

B. subtilis: 1A700, smc(C119S, C437S, G657A, G658A, G662A, G663A,

C826S, C1114S, E1118Q, K1151C)-TEV-His12-HaloTag(C61V, C262A)

ftsY::ermB, trpC2

The Gruber Laboratory BSG1598

B. subtilis: 1A700, smc(C119S, C437S, C826S, S1090R, C1114S, K1151C)-

TEV-His12-HaloTag(C61V, C262A) ftsY::ermB, trpC2

The Gruber Laboratory BSG1600

B. subtilis: 1A700, smc(C119S, C437S, R558C, N634C, C826S, C1114S)-

TEV-His12-HaloTag(C61V, C262A) ftsY::ermB, trpC2

The Gruber Laboratory BSG1638

B. subtilis: 1A700, smc(S19C, R558C, N634C, R1032C)-TEV-HaloTag

ftsY::ermB, cat::scpA(E52C, H235C), dnaN(N114C, V313C)::specR, trpC2

The Gruber Laboratory BSG1782

B. subtilis: 1A700, smc(S19C, K37I, R558C, N634C, R1032C)-TEV-HaloTag

ftsY::ermB, cat::scpA(E52C, H235C), dnaN(N114C, V313C)::specR, trpC2

The Gruber Laboratory BSG1784

B. subtilis: 1A700, smc(S19C, R558C, N634C, R1032C, E1118Q)-TEV-HaloTag

ftsY::ermB, cat::scpA(E52C, H235C), dnaN(N114C, V313C)::specR, trpC2

The Gruber Laboratory BSG1786

B. subtilis: 1A700, smc(494-GGSGGSGGSGG, 678-GGSGGSGGSGG)

ftsY::ermB, trpC2

This paper BSG1835

B. subtilis: 1A700, smc ftsY::ermB, specR::scpA DscpB, trpC2 The Gruber Laboratory BSG1891

B. subtilis: 1A700, Dsmc ftsY::specR, trpC2 This paper BSG1919

B. subtilis: 1A700, smc(C119S, C437S, A715C, C826S, C1114S)-TEV-His12-

HaloTag(C61V, C262A) ftsY::ermB, trpC2

The Gruber Laboratory BSG1921

B. subtilis: 1A700, rncS smc(Dhinge) ftsY::tetL, trpC2 This paper BSG1957

B. subtilis: 1A700, smc(1-392)-SGPGGGGGRQNSQ-smc(393-1186)

ftsY::ermB, trpC2

This paper BSG2017

B. subtilis: 1A700, smc(1-394)-SGPGGGGGRQQAS-smc(395-1186)

ftsY::ermB, trpC2

This paper BSG2018

B. subtilis: 1A700, smc(1-479)-SGPGGGGGRQYQA-smc(480-1186)

ftsY::ermB, trpC2

This paper BSG2021

B. subtilis: 1A700, smc(1-725)-SGPGGGGGRQGLR-smc(726-1186)

ftsY::ermB, trpC2

This paper BSG2026

B. subtilis: 1A700, smc(1-480, 487-684, 690-1186) ftsY::ermB, trpC2 This paper BSG2088

B. subtilis: 1A700, smc(1-463, 487-684, 708-1186) ftsY::ermB, trpC2 This paper BSG2089

B. subtilis: 1A700, smc(1-438, 487-684, 733-1186) ftsY::ermB, trpC2 This paper BSG2090

B. subtilis: 1A700, smc(1-435, 487-684, 736-1186) ftsY::ermB, trpC2 This paper BSG2091

B. subtilis: 1A700, smc(1-399, 487-684, 772-1186) ftsY::ermB, trpC2 This paper BSG2092

B. subtilis: 1A700, smc(1-395, 487-684, 776-1186) ftsY::ermB, trpC2 This paper BSG2093

B. subtilis: 1A700, smc(1-359, 487-684, 815-1186) ftsY::ermB, trpC2 This paper BSG2094

B. subtilis: 1A700, smc(1-356, 487-684, 818-1186) ftsY::ermB, trpC2 This paper BSG2104

B. subtilis: 1A700, smc(1-480, 487-684, 690-1186, C119S, C437S,

R558C, N634C, C826S, C1114S)-TEV-His12-HaloTag(C61V, C262A)

ftsY::ermB, trpC2

This paper BSG2118
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B. subtilis: 1A700, smc(1-463, 487-684, 708-1186, C119S, C437S,

R558C, N634C, C826S, C1114S)-TEV-His12-HaloTag(C61V, C262A)

ftsY::ermB, trpC2

This paper BSG2119

B. subtilis: 1A700, smc(1-435, 487-684, 736-1186, C119S, R558C, N634C,

C826S, C1114S)-TEV-His12-HaloTag(C61V, C262A) ftsY::ermB, trpC2

This paper BSG2120

B. subtilis: 1A700, smc(1-399, 487-684, 772-1186, C119S, R558C, N634C,

C826S, C1114S)-TEV-His11-HaloTag(C61V, C262A) ftsY::ermB, trpC2

This paper BSG2121

B. subtilis: 1A700, smc(1-395, 487-684, 776-1186, C119S, R558C, N634C,

C826S, C1114S)-TEV-His12-HaloTag(C61V, C262A) ftsY::ermB, trpC2

This paper BSG2122

B. subtilis: 1A700, smc(1-480, 487-684, 690-1186, C119S, C437S,

C826S, C1114S, E1118Q, K1151C)-TEV-His12-HaloTag(C61V, C262A)

ftsY::ermB, trpC2

This paper BSG2133

B. subtilis: 1A700, smc(1-463, 487-684, 708-1186, C119S, C437S,

C826S, C1114S, E1118Q, K1151C)-TEV-His12-HaloTag(C61V, C262A)

ftsY::ermB, trpC2

This paper BSG2134

B. subtilis: 1A700, smc(1-435, 487-684, 736-1186, C119S, C826S,

C1114S, E1118Q, K1151C)-TEV-His12-HaloTag(C61V, C262A)

ftsY::ermB, trpC2

This paper BSG2135

B. subtilis: 1A700, smc(1-399, 487-684, 772-1186, C119S, C826S,

C1114S, E1118Q, K1151C)-TEV-His12-HaloTag(C61V, C262A)

ftsY::ermB, trpC2

This paper BSG2136

B. subtilis: 1A700, smc(1-395, 487-684, 776-1186, C119S, C826S,

C1114S, E1118Q, K1151C)-TEV-His12-HaloTag(C61V, C262A)

ftsY::ermB, trpC2

This paper BSG2137

B. subtilis: 1A700, smc(1-486, SpnSmc(398-768), 685-1186) ftsY::ermB, trpC2 This paper BSG2348

B. subtilis: 1A700, smc(1-483, SpnSmc(398-768), 688-1186) ftsY::ermB, trpC2 This paper BSG2349

B. subtilis: 1A700, smc(1-435, SpnSmc(398-768), 736-1186) ftsY::ermB, trpC2 This paper BSG2350

B. subtilis: 1A700, smc(1-399, SpnSmc(398-768), 772-1186) ftsY::ermB, trpC2 This paper BSG2351

B. subtilis: 1A700, smc(1-395, SpnSmc(398-768), 776-1186) ftsY::ermB, trpC2 This paper BSG2352

B. subtilis: 1A700, smc(1-349, SpnSmc(398-768), 825-1186) ftsY::ermB, trpC2 This paper BSG2353

B. subtilis: 1A700, smc(1-321, SpnSmc(398-768), 853-1186) ftsY::ermB, trpC2 This paper BSG2354

B. subtilis: 1A700, smc(1-438, SpnSmc(398-768), 733-1186) ftsY::ermB, trpC2 This paper BSG2355

B. subtilis: 1A700, smc(1-347, SpnSmc(398-768), 829-1186) ftsY::ermB, trpC2 This paper BSG2356

B. subtilis: 1A700, smc(1-438, 487-684, 733-1186, C119S, C437S, R558C,

N634C, C826S, C1114S)-TEV-His12-HaloTag(C61V, C262A) ftsY::ermB, trpC2

This paper BSG2403

B. subtilis: 1A700, smc(1-435, 487-684, 736-1186, C119S, C826S, C1114S,

K1151C)-TEV-His12-HaloTag(C61V, C262A) ftsY::ermB, trpC2

This paper BSG2408

B. subtilis: 1A700, smc(1-438, 487-684, 733-1186, S1090R) ftsY::ermB, trpC2 This paper BSG2409

B. subtilis: 1A700, smc(1-435, 487-684, 736-1186, S1090R) ftsY::ermB, trpC2 This paper BSG2410

B. subtilis: 1A700, smc(1-480, Pf Rad50 Zinc hook, 691-1186) ftsY::ermB, trpC2 This paper BSG2414

B. subtilis: 1A700, smc(1-463, Pf Rad50 Zinc hook, 708-1186) ftsY::ermB, trpC2 This paper BSG2415

B. subtilis: 1A700, smc(1-438, Pf Rad50 Zinc hook, 733-1186) ftsY::ermB, trpC2 This paper BSG2416

B. subtilis: 1A700, smc(1-435, Pf Rad50 Zinc hook, 736-1186) ftsY::ermB, trpC2 This paper BSG2417

B. subtilis: 1A700, smc(1-427, Pf Rad50 Zinc hook, 744-1186) ftsY::ermB, trpC2 This paper BSG2418

B. subtilis: 1A700, smc(1-398, Pf Rad50 Zinc hook, 773-1186) ftsY::ermB, trpC2 This paper BSG2419

B. subtilis: 1A700, smc(1-462, 487-684, 709-1186) ftsY::ermB, trpC2 This paper BSG2479

B. subtilis: 1A700, smc(1-462, 487-684, 709-1186, L525H) ftsY::ermB, trpC2 This paper BSG2480

B. subtilis: 1A700, smc(1-462, 487-684, 709-1186, Q547R) ftsY::ermB, trpC2 This paper BSG2481

B. subtilis: 1A700, smc(1-458, 487-684, 713-1186) ftsY::ermB, trpC2 This paper BSG2482

B. subtilis: 1A700, smc(1-458, 487-684, 713-1186, L525H) ftsY::ermB, trpC2 This paper BSG2483

B. subtilis: 1A700, smc(1-458, 487-684, 713-1186, Q547R) ftsY::ermB, trpC2 This paper BSG2484
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B. subtilis: 1A700, smc(C119S, C437S, T495C, C826S, C1114S)-TEV-His12-

HaloTag(C61V, C262A) ftsY::ermB, trpC2

This paper BSG2485

B. subtilis: 1A700, smc(1-462, 487-684, 709-1186, C119S, C437S, T495C,

C826S, C1114S)-TEV-His12-HaloTag(C61V, C262A) ftsY::ermB, trpC2

This paper BSG2486

B. subtilis: 1A700, smc(1-462, 487-684, 709-1186, C119S, C437S, T495C,

L525H, C826S, C1114S)-TEV-His12-HaloTag(C61V, C262A) ftsY::ermB, trpC2

This paper BSG2487

B. subtilis: 1A700, smc(1-462, 487-684, 709-1186, C119S, C437S, T495C,

Q547R, C826S, C1114S)-TEV-His12-HaloTag(C61V, C262A) ftsY::ermB, trpC2

This paper BSG2488

B. subtilis: 1A700, smc(1-458, 487-684, 713-1186, C119S, C437S, T495C,

C826S, C1114S)-TEV-His12-HaloTag(C61V, C262A) ftsY::ermB, trpC2

This paper BSG2492

B. subtilis: 1A700, smc(1-458, 487-684, 713-1186, C119S, C437S, T495C,

L525H, C826S, C1114S)-TEV-His12-HaloTag(C61V, C262A) ftsY::ermB, trpC2

This paper BSG2493

B. subtilis: 1A700, smc(1-458, 487-684, 713-1186, C119S, C437S, T495C,

Q547R, C826S, C1114S)-TEV-His12-HaloTag(C61V, C262A) ftsY::ermB, trpC2

This paper BSG2494

B. subtilis: 1A700, smc(1-438, 487-684, 733-1186, C119S, C437S, C826S,

C1114S, K1151C)-TEV-His12-HaloTag(C61V, C262A) ftsY::ermB, trpC2

This paper BSG2511

B. subtilis: 1A700, smc(Pf Rad50 Zinc hook, C119S, C437S, C826S,

C1114S)-TEV-His12-HaloTag(C61V, C262A) ftsY::ermB, trpC2

This paper BSG2512

B. subtilis: 1A700, smc(Pf Rad50 Zinc hook, C119S, C437S, A715C, C826S,

C1114S)-TEV-His12-HaloTag(C61V, C262A) ftsY::ermB, trpC2

This paper BSG2513

B. subtilis: 1A700, smc(1-438, 487-684, 733-1186, C119S, T495C, C826S,

C1114S)-TEV-His12-HaloTag(C61V, C262A) ftsY::ermB, trpC2

This paper BSG2531

B. subtilis: 1A700, smc(1-462, 487-684, 709-1186, D280G) ftsY::ermB, trpC2 This paper BSG2578

B. subtilis: 1A700, smc(1-462, 487-684, 709-1186, Q320R) ftsY::ermB, trpC2 This paper BSG2579

B. subtilis: 1A700, smc(1-462, 487-684, 709-1186, E323K) ftsY::ermB, trpC2 This paper BSG2580

B. subtilis: 1A700, smc(1-438, 487-684, 733-1186, S19C, R558C, N634C,

R1032C)-TEV-HaloTag ftsY::ermB, cat::scpA(E52C, H235C), dnaN(N114C,

V313C)::specR, trpC2

This paper BSG2617

B. subtilis: 1A700, smc(1-435, 487-684, 736-1186, S19C, R558C, N634C,

R1032C)-TEV-HaloTag ftsY::ermB, cat::scpA(E52C, H235C), dnaN(N114C,

V313C)::specR, trpC2

This paper BSG2618

B. subtilis: 1A700, smc(1-399, 487-684, 772-1186, S19C, R558C, N634C,

R1032C)-TEV-HaloTag ftsY::ermB, cat::scpA(E52C, H235C), dnaN(N114C,

V313C)::specR, trpC2

This paper BSG2619

B. subtilis: 1A700, smc(1-395, 487-684, 776-1186, S19C, R558C, N634C,

R1032C)-TEV-HaloTag ftsY::ermB, cat::scpA(E52C, H235C), dnaN(N114C,

V313C)::specR, trpC2

This paper BSG2620

Recombinant DNA

pSG682 pJET1.2 ermB cassette This paper pSG682

pSG841 pJET1.2 ylqB region This paper pSG841

pSG849 pJET1.2 ftsY region This paper pSG849

pSG956 pJET1.2 PfRad50 zinc hook This paper pSG956

pSG1134 pUC19 ‘rncS smc locus with ermB This paper pSG1134

pSG1497 pET-22b Smc This paper pSG1497

pSG1525 pET-Gate2 mazEF This paper pSG1525

pSG1580 pJET1.2 BsSmc hinge This paper pSG1580

pSG2356 pJET1.2 (398-768)SpSmc hinge-coils This paper pSG2356

pSG2914 pET-Gold1 Smc(1-438, 487-684, 733-1186) This paper pSG2914

pSG2915 pET-Gold1 Smc(1-435, 487-684, 736-1186) This paper pSG2915

pSG2916 pET-Gold1 Smc(1-399, 487-684, 772-1186) This paper pSG2916

pSG2917 pET-Gold1 Smc(1-395, 487-684, 776-1186) This paper pSG2917

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

pSG2920 pET-Gold1 Smc(K37I, 1-463, 487-684, 708-1186) This paper pSG2920

pSG2921 pET-Gold1 Smc(K37I, 1-438, 487-684, 733-1186) This paper pSG2921

pSG2965 pET-Gold1 Smc(394-SGPGGGGGRQ) This paper pSG2965

pSG2966 pET-Gold1 Smc(479-SGPGGGGGRQ) This paper pSG2965

Oligonucleotides

qPCR primers, see Table S2 This paper N/A

PCR primers for HTP genetic engineering, see Table S5 This paper N/A

Software and Algorithms

Bowtie2 v2.2.5 Langmead and

Salzberg, 2012

http://bowtie-bio.sourceforge.net/

bowtie2/index.shtml

BLAST v2.3.0 NCBI ftp://ftp.ncbi.nlm.nih.gov/blast/

executables/blast+/

Clustal Omega v1.2.0 Sievers et al., 2011 http://www.clustal.org/omega/

HHSenser webserver Söding et al., 2006 https://toolkit.tuebingen.mpg.de/

hhsenser

MSAProbs v0.9.7 Liu and Schmidt, 2014 http://msaprobs.sourceforge.net/

homepage.htm

Wolfram Mathematica Wolfram Research Inc. http://www.wolfram.com/

mathematica/

Wolfram Language package for the analysis of insertion screens This paper https://github.com/fbuermann/

InsertionMapping

Other

Coiled-coil length prediction data, see Table S4 This paper N/A

HTP genetic engineering data, see Table S5 This paper N/A

Insertion screen data, see Table S6 This paper N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to, and will be fulfilled by the Lead Contact, Stephan Gruber (stephan.

gruber@unil.ch).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bacillus subtilis Strains and Growth
B. subtilis strains are based on the parental strain 1A700. Allelic replacement was performed by double-crossover recombination at

the endogenous smc locus using natural competence (B€urmann et al., 2013). Transformants were selected on SMG solid medium

with appropriate antibiotics. Strains were single-colony purified and verified by a combination of marker testing, phenotype testing,

PCR and Sanger sequencing where appropriate. For dilution spot assays cells were grown to stationary phase in liquid SMG and 92

and 95 fold dilutions were spotted onto solid medium (B€urmann et al., 2013). Strain usage for all reported experiments is listed in

Table S1.

METHOD DETAILS

Protein Sequence Analysis
The super-helical period of the Smc coiled coil was estimated with CCCP (Grigoryan and Degrado, 2011) using the coiled coil from

PDB: 4RSJ. Coiled-coil probabilities were computed with Marcoil (Delorenzi and Speed, 2002).

Sets of divergedSMCandSMC-like sequenceswereobtainedas follows (FigureS1A). First, a referencemultiple sequencealignment

(MSA) of 18 SMC hinges (6 bacterial, 6 archaeal, 6 eukaryotic) was constructed with MSA-Probs (Liu and Schmidt, 2014). Reference

alignments for MukB, MksB and Rad50 were similarly constructed using sequences of the respective dimerization domains. Then,

the alignments were used as queries for HHSenser searches (Söding et al., 2006). The resulting sequence sets were filtered with

PSI-BLAST formembers containing significant homology to referenceMSAs of N-terminal head (HeadN) andC-terminal head (HeadC)

with a threshold of E < 1. For Rad50 proteins, sequences were discarded that displayed E < 1 with the SMC hinge reference MSA.
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For coiled-coil length estimation, batches of 200 sequences were aligned to reference MSAs for HeadN, HeadC and dimerization

domain using Clustal Omega (Sievers et al., 2011). Sequences were additionally filtered as follows: In the domain referenceMSAs, all

positions were chosen that contained non-gap residues in at least 75% of the reference sequences. Then, target sequences were

picked from the Clustal MSAs that had non-gap residues in at least 75% of those positions. Domain boundaries were defined as

the outermost residues aligning to the referenceMSAs. N- and C-terminal coiled-coil strands were defined as the interlinking regions

between the head regions and the dimerization domain. Sequences were discarded for which the length of the shorter coiled-coil

strand was less than 75% of the length of the longer strand. Arm length was defined as the mean length of N- and C-terminal

coiled-coil strands.

Finally, sequence sets were filtered by classification as described below. Prokaryotic SMC, MukB and MksB were classified as

either Smc, MukB or MksB. For each of those sets, retrieved sequences belonging to non-target classes were discarded. Eukaryotic

SMC were either classified as Smc1, Smc2, Smc3, Smc4, Smc5, or Smc6. Classification of Rad50 proteins was omitted. Sequence

classification was performed as follows: For each protein class, sequences for HeadN, Hinge and HeadC were extracted from

four reference sequences. For each unknown protein, the corresponding domain sequences were extracted and Smith-Waterman

similarities to the reference domains were computed using the BLOSUM62 matrix. Similarity scores were normalized for domain

length, and the class that obtained the highest average similarity score was defined as the protein class. Datasets are listed in

Table S4.

High-throughput Allelic Replacement Screening
PCR primers were designed based on disulphide mapping of the Smc coiled-coil register (Minnen et al., 2016), and PCRs for 50- and
30-regions of the smc gene were performed in 96-well plates using Phusion DNA Polymerase (New England Biolabs). DNA was pu-

rified in NucleoFast 96 PCR plates (Macherey-Nagel). Circular targeting constructs were assembled in Golden Gate reactions using

BsaI and T4 DNA ligase (Engler et al., 2008) with cloned and sequence verified modules for the dimerization domain (pSG956,

pSG1580, pSG2356), the downstream ftsY gene (pSG849), an ermB marker cassette (pSG682), a downstream homology region

(pSG841), and a non-replicating plasmid backbone containing a mazF toxin gene (pSG1525) (Figure S2A). The mazF gene was

used to efficiently counter-select single-crossover integration. Reaction mixtures were transformed into either a smc deletion strain

(BSG1919; for the truncation screen with a wild-type Smc hinge) or a smc null strain lacking the hinge region of the smc gene

(BSG1957; for all other high-throughput assays). The latter approach was chosen due to larger homology for double-crossover

recombination resulting in improved transformation efficiencies. Note that the hinge-deletion strain cannot regenerate a wild-type

allele from the transformed constructs (unless the construct encodes wild-type Smc) due to missing homology. Transformants

were selected on Oxoid nutrient agar (ONA) with 0.4 mg/mL erythromycin and 10 mg/mL lincomycin at 37�C.
Plates were imaged 36 hr after transformation. Colonies were identified and quantified by an automated segmentation approach in

WolframMathematica. Briefly, the position of the plate was determined in the images, positions of small ellipsoid objects on the plate

were identified, and objects were classified into colony and non-colony groups using the built-in Classify function and a small training

set. The total area of colonies per plate was obtained and was scaled to metric dimensions by using the known diameter of the plate.

Datasets are listed in Table S5.

Suppressor Screening
Suppressor screens were essentially performed as described above, except for the incorporation of a �600 bp fragment that had

been amplified by error-prone PCR using Taq DNA Polymerase.

Protein Purification and ATPase Activity Assay
Wild-type and Mini-Smc proteins were produced without tags in E. coli BL21-Gold(DE3) in Overnight Express Instant TB Medium

(Merck Millipore) for 17 hr at 24�C. Cells were resuspended in lysis buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM EDTA,

1 mM DTT, 10% sucrose) and sonicated. The soluble phase was loaded on a HiTrap Blue HP 5 mL column (GE Healthcare) and

was eluted with a linear gradient of buffer containing 1 M NaCl. The main peak elution fractions where diluted in buffer (50 mM

Tris-HCl pH 7.5, 1 mM EDTA, 1 mM DTT) to a conductivity equivalent of 50 mM NaCl (z8 mS/cm). The sample was loaded on a

HiTrap Heparin HP 5 mL column (GE Healthcare) and was eluted with a linear gradient of buffer containing 2 M NaCl. The main

peak fractions where pooled and concentrated to 2 mL in an Amicon Ultra-15 Centrifugal Filter Unit (Merck Millipore). The sample

was loaded on a XK 16/70 Superose 6 PG column (GE Healthcare) in gel filtration buffer (50 mM Tris-HCl pH 7.5, 100 mM NaCl,

1 mM EDTA, 1 mM DTT). Main peak fractions where pooled, concentrated to 8 mg/mL and stored at �80�C. Protein concentration

was determined by absorbance using theoretical molecular weight and molar absorptivity values.

The ATPase assay was carried out on a Synergy Neo Hybrid Multi-Mode Microplate reader (BioTek) monitoring the oxidation of

NADH by absorbance at 340 nm in a pyruvate kinase/lactate dehydrogenase coupled reaction (Kornberg and Pricer, 1951). The final

protein concentration in the assay was 0.3 mM in assay buffer (50 mM HEPES-KOH pH 7.5, 50 mM NaCl, 2 mMMgCl2, 1 mM NADH,

1 mM ATP), and measurements were carried out at 25�C.
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Site-specific in vivo Cross-linking
Cultures of 200 mL SMG were inoculated to OD600 = 0.004 and grown to OD600 = 0.02 at 37�C. Cells were harvested by filtration,

washed in cold PBS + 0.1% glycerol (PBSG), and split into three aliquots of 0.85 OD units. Cells were re-suspended in 200 mL

PBSG and cross-linked with 0.5 mM BMOE for 10 min on ice. The reaction was quenched by the addition of 14 mM 2-mercaptoe-

thanol. Cells were pelleted and re-suspended in 30 mL of PBSG containing 75 U/mL ReadyLyse Lysozyme, 750 U/mL Sm DNase,

5 mM HaloTag TMR Substrate and protease inhibitor cocktail (Sigma). Lysis was performed at 37�C for 15 min. Then, 10 mL of 4X

LDS-PAGE buffer were added, samples were incubated for 5 min at 95�C and resolved by SDS-PAGE. Gels were imaged on a

Typhoon FLA9000 (GE Healthcare) with Cy3 DIGE filter setup.

Chromosome Entrapment Assay
The chromosome entrapment assay measures the co-purification of covalently circularized Smc–ScpAB with the chromosome

(Wilhelm et al., 2015). Cells were grown, cross-linked and quenched as described above, except for the use of 3.75 OD units cell

mass, 1 mM BMOE, 28 mM 2-mercaptoethanol and a reaction volume of 100 mL. ReadyLyse Lysozyme (400 U), protease inhibitor

and HaloTag Oregon Green substrate (1 mM final) were added. The cell suspension was mixed immediately in a 1:1 ratio with a 2%

solution of Low Melt Agarose (BioRad) equilibrated at 70�C and was cast into 100 mL agarose plugs using plug molds (BioRad).

Agarose plugs were incubated for 20min at 37�C protected from light, and then loaded into the wells of a 6%SDS-PAGE Tris-glycine

gel. The gel was run for 60 min at 25 mA protected from light.

Agarose plugs were then re-extracted from the PAGE gel and transferred into 1.5 mL Eppendorf tubes. 1 mL of Wash Buffer (‘WB’:

0.01 mM EDTA, 0.5 mM Tris, 0.5 mMMgCl2, 0.01% SDS) was added per agarose plug. Plugs were incubated for 10 min with gentle

agitation protected from light. This step was repeated once. Wash buffer was then discarded and replaced by 100 mL fresh WB sup-

plemented with 50 U of Sm DNase. Plugs were incubated at 37�C for 30 min. Plugs were melted at 85�C for 2 min under vigorous

agitation. The samples were frozen at �80�C and stored overnight.

Samples were then thawed, centrifuged for 10 min at 4�C and 14,000 3 g and transferred to a 0.45 mm CoStar Spin-X Tube Filter

(Corning) and spun for 1 min at 10,0003 g. The flow-through was concentrated in a Speed Vac (Thermo Scientific, no heating, 2.5 hr

running time). The concentrated sample was re-suspended in LDS Sample Buffer (NuPage) containing 200 mM DTT and heated for

3 min at 70�C. Samples were loaded on a 3%–8% Tris-Acetate gel (Life Technologies) and run for 2.5 hr at 35 mA per gel at 4�C. Gels

were scanned on a Typhoon scanner (FLA 9000, GE Healthcare) with Cy2-DIGE filter setup.

Chromatin Immunoprecipitation
Cultures of 200mLSMGwere inoculated toOD600 = 0.004 and grown toOD600 = 0.02 at 37�C.Cells were fixed by addition of 20mL of

buffer F (50mMTris-HCl pH 7.4/24�C, 100mMNaCl, 0.5 mMEGTA pH 8.0/24�C, 1mMEDTA pH 8.0/24�C, 10% Formaldehyde) and

incubation for 30 min at room temperature. Cells were harvested by filtration and washed in PBS. A cell mass corresponding to 2 OD

units was re-suspended in 1 mL TSEMS (50 mM Tris pH 7.4/24�C, 50 mMNaCl, 10 mM EDTA pH 8.0/24�C, 0.5 M sucrose, protease

inhibitor cocktail) containing 6 mg/mL lysozyme. Protoplasting was done by shaking at 37�C for 30 min. Protoplasts were washed

once in 2 mL TSEMS, re-suspended in TSEMS, split into 3 aliquots and pelleted. Pellets were frozen in liquid nitrogen and stored

at �80�C.
Pellets were re-suspended in 1 mL buffer L (50 mM HEPES-KOH pH 7.5/24�C, 140 mMNaCl, 1 mM EDTA pH 8.0/24�C, 1% Triton

X-100, 0.1% Na-deoxycholate) containing 0.1 mg/mL RNase A and protease inhibitor cocktail. The suspension was sonicated in a

Covaris E220water bath sonicator for 5min at 4�C, 100W, 200 cycles, 10% load and filling level 0. The extract was centrifuged at 4�C
and 20,000 3 g and 100 mL were kept as input reference. For immunoprecipitation, 750 mL of the extract were loaded on 50 mL

Dynabeads Protein-G charged with 50 mL Anti-ScpB antiserum and incubated for 2 hr on a wheel at 4�C. Beads were washed at

room temperature in 1 mL each of buffer L, buffer L5 (buffer L containing 500 mM NaCl), buffer W (10 mM Tris-HCl pH 8.0/24�C,
250 LiCl, 0.5% NP-40, 0.5% Na-Deoxycholate, 1 mM EDTA pH 8.0/24�C) and buffer TE (10 mM Tris-HCl pH 8.0/24�C, 1 mM

EDTA pH 8.0/24�C). Beads were resuspended in 520 mL buffer TES (50 mM Tris-HCl pH 8.0/24�C, 10 mM EDTA pH 8.0/24�C, 1%
SDS). The reference sample was mixed with 100 mL buffer L, 300 mL buffer TES and 20 mL 10% SDS. Cross-links were reversed

over-night at 65�C with shaking.

For phenol/chloroform extraction, samples were cooled to room temperature, vigorously mixed with 500 mL phenol equilibrated

with buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA) and centrifuged for 10 min at 20,000 3 g. Then, 450 mL of the supernatant was

vigorously mixed with 450 mL chloroform and centrifuged for 10 min at 20,0003 g. For DNA precipitation, 400 mL of the supernatant

were mixed with 1.2 mL GlycoBlue, 40 mL of 3 M Na-Acetate pH 5.2/24�C and 1 mL ethanol and incubated for 20 min at �20�C.
Samples were centrifuged at 4�C and 20,000 3 g for 10 min, and the precipitate was washed in 500 mL of 70% ethanol, dissolved

in 250 mL buffer PB (QIAGEN) for 15 min at 55�C, purified with a PCR purification kit (QIAGEN), and eluted in 50 mL buffer EB.

For qPCR, samples were diluted in water (1:10 for IP and 1:100 for input), and duplicate 10 mL reactions (5 mL master mix, 1 mL of

3 mM primer mix, 4 mL sample) were run in a Rotor-Gene Q device (QIAGEN) using NoROX SYBRMasterMix (Takyon) and the primer

pairs listed in Table S2.

For deep-sequencing, DNAwas fragmented to�200 bp and libraries were prepared using theOvation Ultralow Library Systems V2

Kit (NuGEN) with 15 PCR cycles. Single-read sequencing was performed on a HiSeq 3000 (Illumina) with 150 bp read length.
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Transposon Insertion Screen
A modified EZ-Tn5 transposon (Epibio) containing BsgI restriction sites was randomly inserted into a double-crossover targeting

construct for the endogenous smc locus (pSG1134). A fragment that reached to the stop codon but lacked the first�8%of the coding

sequence was cut from the primary library, purified from backbone and insert-free fragments by gel electrophoresis, and subcloned

into the parental vector. Then, the transposon cassette was replaced in a BsgI Golden Gate reaction by a short sequence permitting

translation in either direction in all three reading-frames (CTGTCTGGACCGGGAGGCGGAGGAGGCAGACAG). The library was

treated with XhoI to remove residual transposon containing plasmids and was amplified in E. coli. The library was transformed

into a smc deletion strain and viable transformants were selected on ONA with antibiotics. Candidates were streaked for single

colonies, the inserts were mapped by PCR and characterized by Sanger sequencing. Insert positions of viable isolates are listed

in Table S6.

For deep-sequencing of the input library, a sequencing library was prepared using the NEXTflex PCR-Free Library Prep Kit (Bioo

Scientific). Fragment size after fragmentation and sizing was �400 bp. Single-read sequencing was performed on a HiSeq 3000

(Illumina) with 150 bp read length.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of Cross-Linking Efficiencies
Protein bands were quantified in Wolfram Mathematica. Background at the band was estimated with a moving median filter and

subtracted. Credible intervals for cross-linking experiments were estimated from posterior distributions using a normally distributed

likelihood with mean m and standard deviation s, a uniform prior over [0, 1] for m and a 1/s^2 prior for s. All data points for technical

replicates are shown in the figures. The definition of the center and precisionmeasurements are reported in the figure legends (mean,

standard deviation, 95% credible interval).

Fourier Analysis
For Fourier analysis, the growth datasets of truncation and extension screens were normalized to their 95% quantiles andmerged by

averaging at overlapping positions. Then, the region between coiled-coil lengths of 253-435 AA was used to compute the discrete

Fourier transform.

Steady-State Enzyme Kinetics
Time series were corrected for data from a protein-free reference. Absorbance differences were converted to concentration differ-

ences using the molar absorptivity of NADH. The specific steady-state reaction rate vwas determined from the slope of a linear fit to

the time series divided by the protein concentration. Substrate-concentration dependent reaction rates v were fit to the Hill model:

vðcÞ= cn vmax

cn +Kn
0:5

where c is the ATP concentration, n is the degree of cooperativity between ATP binding sites, vmax is themaximum rate, andK0.5 is the

ATP concentration at half-maximum rate. Parameter and precision estimates (mean and standard deviation) were computed from

best-fit parameters to multiple independent titration series (Table S3).

Analysis of qPCR Data
qPCR data were fit to a 5-parameter logistic model (Spiess et al., 2008):

fðtÞ= ðc� bÞðExpðaðt � dÞÞ + 1Þ�e +b

where t is the time in cycles and a, b, c, d, e aremodel parameters. The threshold cycle (CT) was defined as the position of the second-

derivative maximum of the fit:

CT = �
log

�
1
2

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5e2 + 6e+ 1

p
+ 3e+ 1

��
� ad

a

Amplification efficiencies were not determined and IP/input ratios were calculated as a 2DCT, where DCT = CT (Input) – CT (IP) and

a is a constant determined by extraction volumes and sample dilutions. Data are presented as the mean of duplicate PCR reactions.

Analysis of ChIP-seq Data
Deep-sequencing data for the immunoprecipitate were mapped to the B. subtilis reference genome (centered on its first coordinate)

using Bowtie 2 (Langmead and Salzberg, 2012). Reads were filtered for mapping quality (MAPQ) greater than 10, reduced to bins of

100 bp, smoothed with an averaging sliding window of 3 bins, and normalized for total read count. A 400 bp region centered at

genome coordinate 3776100 was excluded from analysis due to an apparent amplification artifact in the negative control sample.

Data are presented in reads per million (rpm).
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For ratiometric analysis, the reduced data of each sample was compared to the reduced data of the wild-type sample (Minnen

et al., 2016). For each bin, the larger value was divided by the smaller, and the resulting ratio was plotted above the coordinate

axis for value(mutant) R value(WT) and below the axis otherwise. Ratios above 20 were treated as outliers and set to 1.

Analysis of Insertion Library Sequencing Data
Reads containing the insert were identified and mapped to the parental vector pSG1134 with Wolfram Mathematica. We observed

78,369 reads containing the insert. Of those, 87.3%mapped to the targeted region. In this region, 27.6% of codons were hit at least

once (Figure S6A) (virtually 100% are expected at this sequencing depth for a uniform distribution of insertion events). We detected a

transposition bias in one of the two possible orientations, but no bias with respect to the reading frame (Figure S6A). The number of

the first codon directly at or upstream of the insertion site not leading to an amino acid substitution was defined as the insertion site at

protein level.

Permutation Test
To test for a difference in enrichment of coiled-coil inserts, library and isolate samples of the transposon screen were subjected

to an approximate permutation test. First, for each sample we computed the fraction f of inserts mapping to the coiled coil, and

used r = f isolates/f library = 0.6016 as a test statistic. We then pooled the samples, resampled 1000 times without replacement, and

computed r for each resampling. We did not observe a single event where r % 0.6016. We estimate that p < 0.001 and infer that

the viable isolates are depleted from inserts in their coiled-coil arm relative to inserts in other regions of the protein.

Kernel Density Estimation
Modes of coiled-coil length distributions were obtained from kernel density estimates using a Gaussian kernel with a bandwidth of

8 AA (4 AA for display).

DATA AND SOFTWARE AVAILABILITY

ChIP-seq data reported in this paper has been deposited at the NCBI Sequence Read Archive under the accession number SRA:

SRP094054.

Deep-sequencing data of the insertion library reported in this paper has been deposited at the NCBI Sequence Read Archive under

the accession number SRA: SRP094088.

AWolfram Language package for the analysis of insertion screens is available at https://github.com/fbuermann/InsertionMapping.
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