
Hybrid Parallel Streamline Extraction Combining MPI and OpenCL

Michael Vetter∗

Universität Hamburg

Stephan Olbrich†

Universität Hamburg

ABSTRACT

Recently scientific simulation application take advantage of mod-
ern accelerator technology more and more. For in-situ visualiza-
tion techniques especially in this case scalability will become an
issue. In this work we present a scalability evaluation for a hybrid
parallelized streamline extraction algorithm.

Index Terms: C.1.2 [Processor Architectures]: Multiple
Data Stream Architectures (Multiprocessors)—Single-instruction-
stream, multiple-data-stream processors (SIMD); C.1.4 [Processor
Architectures]: Parallel Architectures—Distributed architectures;
G.1.o [Numerical Analysis]: General—Parallel algorithms

1 INTRODUCTION

In typical postprocessing scenarios the simulated raw data are
stored by the simulation running in batch mode and processed for
visualization in a seperate task. This visualization can be done ei-
ther interactively or in a batch mode, too. With increasing data vol-
ume this approach leads to a storage bottleneck in both tasks. One
option to evade this bottleneck is to avoid storing the raw data and
do the visualization in-situ with the simulation. Common in-situ ap-
proaches fulfill the full visualization task on the supercomputer run-
ning the simulation and store just the 2D pixel data within a movie.
In contrast, in the DSVR Framework [3, 1] a distributed visualiza-
tion approach has been implemented. In contrast to the simulations’

raw data, which typically scales in volume with O(n3) where n is
the grid size, data volume for storing 3d geometries scales with
O(g) where g is the amount of 3d geometric primitives.

The extraction of streamlines, streaklines, or pathlines is a
widely used method for geometric flow field visualization. Algo-
rithms typically used for the underlying particle tracing are Euler
integration or Runge Kutta integration for example. An overview is
given at [2].

2 PARALLEL ALGORITHMS

A critical challange for most in-situ visualization techniques is the
load balancing. The simulations’ large datasets are usually spread
in domain decomposition over several compute nodes regarding to
the simulations’ best load balancing in massively parallel comput-
ing. In addition to the distributed memory parallelization with MPI
for example, modern accelerator technology get common, demand-
ing for hybrid parallelization schemes. For the visualization the
domain decomposition should be used as given by the simulation,
since data rearrangement is mostly a big communication overhead.
The second issue with scalability for geometric flow field visual-
ization is given by the typically low complexity of the algorithms,
which can not benefit from more than a few cores. For example, the
complexity of the presented algorithm is O(n) where n is the num-
ber of seed points multiplied by the number of supporting points,
which is limited to avoid visual cluttering. So for this kind of algo-
rithms good scalability will mean no, or at least less slowing down

∗e-mail: michael.vetter@rrz.uni-hamburg.de
†e-mail: stephan.olbrich@rrz.uni-hamburg.de

at higher core counts. Speedup can be attained in conjunction with
the simulation by reducing the simulations’ I/O. We have recently
done a comparison of parallel algorithms for in-situ pathline ex-
traction [5]. Analog work for streamline extraction was presented
in [4].

In this work we like to present the evaluation of our approach for
in-situ streamline extraction utilizing OpenCL-kernels spread over
multiple MPI nodes. This algorithm uses 4th order Runge Kutta in-
tegration. We asume a simulation using domain decomposition and
will locate the streamlines on the MPI node which helds the needed
raw data. So the lines may change over the processes by MPI com-
munication. While within Euler integration a line may only pass
over domain boundaries of processes after each integration step,
with 4th order Runge Kutta the lines may also pass over during one
integration step. This has to be handled by the algorithm. So for
streamline extraction we used a modified version (see algorithm 1)
of one of our pathline extraction algorithms described in [5]. This
algorithm was originally executed in parallel on all MPI processes.
For supporting OpenCL enabled devices the second level loop was
complemented by a kernel with one work item for each streamline.

Algorithm 1 streamline algorithm

while in global scope some lines not finished do
while in local scope some lines not finished do

work on next line
while line is not finished and stays in local scope do

integrate line’s next supporting point
end while

end while
exchange not finished lines including runge kutta information
with neighbour domains

end while

3 EVALUATION

We have implemented our approach in C and evaluated it on two
different flow fields. Goal of this evaluation was getting informa-
tion about scalability and performance of the presented algorithm.

For evaluation we used a small compute cluster with 8 nodes.
Each node (HP SL 390) provides 12 cores (2 * Intel Xeon X5650),
48 GB of memory and 3 Nvidia Tesla M2070Q GPGPUs. The
nodes are connected via QDR-Infiniband allowing a maximum
bandwith of 32 Gbit/s. The cluster operates with SLES 11. We used
the gcc comiler suite (in version 4.3.4), mvaphich MPI environment
(in version 1.8) and CUDA runtime environment (in version 4.2).

Scalability

For testing the overall scalability we used a well-known routine by

Crawfis1 producing a tornado-like swirl on a 3D rectilinear grid.
This was used since it represents an real world scenario. The tor-

nado was calculated on a grid consisting of 4003 grid points wich
would not exceed the memory limitations of one Tesla card. As
the algorithm does not scale with data set size but with amount of
seeded lines and supporting points as (see sec. 2), the results can be
easily adopted to larger data sets.

1http://www.cse.ohio-state.edu/~crawfis/Data/Tornado/tornadoSrc.c



0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

T
im

e
[s

]

Number of compute nodes

125k long lines on CPUs
1250k lines on CPUs

50k lines on CPUs

125k long lines on GPUs
1250k lines on GPUs

50k lines on GPUs

Figure 1: Overall runtimes for the extraction of streamlines on a
dataset by Crawfis.

For this scalability test we used three configurations, seeding

125∗104 lines with 102 supporting points, 125∗103 lines with 103

supporting points, and 5∗104 lines with 103 supporting points ran-
domly over the volume. The first two cases nearly need the same

amount of flops is for round about 125∗106 integration steps.
First we like to note that the algorithm performs on one GPGPU

up to 2.5 times faster than on one CPU core. For further discussion
we have always utilized full compute nodes using either 3 GPGPUs
or 12 CPU cores. Figure 1 shows the overall scaling of the algo-
rithm, which is not that bad. It achieves maximum performance
utilizing three nodes, but running on more nodes will not hurt the
overall performance in most cases. Just calculating fewer, longer
lines on the GPGPU will lead to a significant performance break-
down when using more than 4 nodes. This is caused by two facts:

1. As the lines get longer, they tend to leave the local dataset
more often, leading to more MPI communication.

2. Since each streamline represents one work item the ratio be-
tween work items and data volume get worse.

On the other hand calculating just 50000 lines with 100 support-
ing points each, the performance using GPGPUs ist also acceptable
even though it is not as good as on CPUs.

Kernel execution times

Since we have seen in the scalability tests that the OpenCL enabled
version of our algorithm may perform bad under some circum-
stances we tried to get more details on this. Beside the algorithm’s
overall speedup we liked to get further information about the kernel
behaviour. As GPGPUs are massively parallel SIMD architectures
they are known to have performance issues with branching on the
one hand and not fully utilized cores on the other hand. Therefore
we used an artificial flow field combining a dipole with a static flow
for calculating streamlines with 300 supporting points each. This
measurement does not take into account any data transfers, execu-
tion times for distributed kernels are summed. First we measured
the execution time of a single launched OpenCL kernel in compar-
ison to one CPU core evaluating the influence of the workload by
seeding 256, 512, and 1024 lines. Figure 2 shows, that the perfor-
mance of the OpenCL kernel is hurt using smaller workloads. The
OpenCL kernel could finish this task up to 6 times faster than a
single CPU. For the same task the overall performance of the algo-
rithm’s GPGPU version over the CPU version was 3 times faster.

In our algorithm branching occurs every time a streamline
could not be calculated completely on one MPI node. So us-
ing a disadvantageous domain decomposition will not only lead to
an increased MPI communication overhead but also to decreased
OpenCL kernel performance. Figure 3 shows the performance of
the pure OpenCL kernel and the equivalent CPU function for dif-
ferent domain decompositions. The CPUs performace is not mea-
surably impaired by branching. On the other hand the OpenCL

0.01

0.1

1

256 512 1024

T
im

e
[s

]

Number of seeded streamlines

CPU

GPU

Figure 2: Kernel execution time for different workloads (256, 512, and
1024 streamlines with 300 supporting points each) on a single MPI
process at logarithmic scale.

0.01

0.1

1

3P 14.4k X

3P 14.4k Y

3P 14.4k Z

24P 14.4k X

24P 14.4k Y

24P 14.4k Z

T
im

e
[s

]

CPU
GPU

Figure 3: Kernel execution time for 3 and 24 MPI processes and
different domain decompositions (partitioning in X, Y, or Z dimension)
at logarithmic scale.

kernel is massively affected by the domain decomposition leading
to a performance degradation of a factor of two.

4 CONCLUSION

In this work we have shown that acceptable scalability as specified
in sec. 2 can be reached using GPGPUs for streamline extraction
even though the algorithm may perform better on CPUs. Scalability
of the OpenCL kernel mainly depends on the amount of seeded
lines. In future work we like to evaluate a presorting of lines to
avoid branching as well as combined utilization of one GPGPU by
more than one process. We also like to compare costs and energy
efficiency of simulation and visualization combined.

ACKNOWLEDGEMENTS

We like to thank Viktor Borbus for supporting our work with his
bachelor thesis.

REFERENCES

[1] N. Jensen, S. Olbrich, H. Pralle, and S. Raasch. An efficient system

for collaboration in tele-immersive environments. In S. N. Spencer,

editor, Proceedings of the Fourth Eurographics Workshop on Parallel

Graphics and Visualization (EGPGV-02), pages 123–132, New York,

Sept. 9–10 2002. ACM Press.

[2] T. McLoughlin, R. S. Laramee, R. Peikert, F. H. Post, and M. Chen.

Over two decades of integration-based, geometric flow visualization.

Computer Graphics Forum, 29(6):1807–1829, 2010.

[3] S. Olbrich, H. Pralle, and S. Raasch. Using streaming and paralleliza-

tion techniques for 3D visualization in a high-performance computing

and networking environment. In L. O. Hertzberger, A. G. Hoekstra, and

R. Williams, editors, High-Performance Computing and Networking,

volume 2110 of Lecture Notes in Computer Science, pages 231–240.

Springer, 2001.

[4] D. Pugmire, H. Childs, C. Garth, S. Ahern, and G. H. Weber. Scalable

computation of streamlines on very large datasets. In Proceedings of

the Conference on High Performance Computing Networking, Storage

and Analysis, SC ’09, pages 16:1–16:12, New York, NY, USA, 2009.

ACM.

[5] M. Vetter and S. Olbrich. Scalability issues of in-situ visualization in

parallel simulation of unsteady flows. In C. Bischof, H.-G. Hegering,

W. E. Nagel, and G. Wittum, editors, Competence in High Performance

Computing 2010, pages 177–190. Springer Berlin Heidelberg, 2012.


