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Practical Criterion for Single-Photon Entanglement at X-Ray Energies

The generation and verification of entanglement is one of the big remaining challenges
in x-ray quantum optics. We generalize a criterion for two-mode entanglement based
on a Bell inequality, which was put forward by Johansen. We show that the experimen-
tally simple criterion detects entanglement even for arbitrary losses behind the source.
Furthermore, a beamsplitter of arbitrary reflectivity can be used to generate two-mode
entanglement from a single-photon input. We investigate a range of other interesting
input states and find that states similar to the single-photon state produce entanglement
as well. The criterion thus provides a robust and practical benchmark for both theoreti-
cal and experimental work on single-photon entanglement. By applying a post-selection
scheme, we demonstrate the importance of two-photon events in experiments, even for
very low event rates. The criterion’s possible experimental implementation at x-ray en-
ergies, requiring only an interferometer and photodetectors, is discussed. We investigate
Mössbauer nuclei in a thin-film cavity as an interferometer and derive a scheme to ex-
tract the first-order coherence 𝑔(1) from its Fano spectrum. Analyzing experimental data,
we show that thin-film cavity systems are capable of sufficiently high coherence for the
interferometry part of the criterion.

Praktikables Kriterium für Einzelphotonverschränkung bei Röntgenenergien

Die Erzeugung und Überprüfung von Verschränkung ist eines der großen verbleibenden
Herausforderungen in der Röntgen-Quantenoptik. Wir generalisieren ein Kriterium für
zwei-Moden-Verschränkung, basierend auf einer Bellungleichung und aufgestellt von Jo-
hansen. Wir zeigen, dass das experimentell einfach umzusetzende Kriterium sogar für
beliebige Verluste hinter der Quelle Verschränkung anzeigt. Weiterhin zeigen wir, dass
ein Strahlteiler von beliebiger Reflektivität benutzt werden kann, um die zwei-Moden-
Verschränkung aus einemEinzelphotoneingang zu erzeugen. Wir untersuchen eine Reihe
von interessanten Eingangszuständen und stellen fest, dass dem Einzelphotonzustand
ähnliche Zustände ebenfalls Verschränkung erzeugen.Dadurch kann das Kriterium als
robuster und praktikabler Maßstab sowohl für theoretische als auch experimentelle Ar-
beiten zur Einzelphotonverschränkung dienen. Mithilfe einer Postselektionsrechnung
wird aufgezeigt, wie wichtig die Beachtung von zwei-Photonen-Ereignissen in Experi-
menten ist, selbst bei sehr niedrigen Zählraten. Die mögliche experimentelle Umsetzung
des Kriteriums im Röntgenbereich mithilfe eines Interferometers und Photodetektoren
wird diskutiert. Wir untersuchen Mößbauerkerne in einer Dünnschichtkavität als In-
terferometer und leiten ein Schema zur Extraktion der Kohärenz erster Ordnung, 𝑔(1),
aus dem Fano-Spektrum ab. Mithilfe einer Analyse experimenteller Daten weisen wir
nach, dass Dünnschichtkavitäten in der Lage sind, ausreichend hohe Kohärenz für den
Interferometrie-Teil des Kriteriums zu erzeugen.



Bell's Theorem
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Chapter 1

Introduction

Quantum theory is so radically different from its predecessors that nowadays, ev-
ery other physical theory is usually called ‘classical physics’. While the theory
is very successful in describing nature to great accuracy, the fundamental con-
cepts did not sit well with many physicists. The most famous quantum skeptic
was Albert Einstein, who himself had challenged the then-established notions
of absolute time and space. He rejected the probabilistic interpretation of quan-
tum theory, summarized in his famous quote “[God] doesn’t throw dice” [EB72].
Einstein, Podolsky, and Rosen formulated the famous EPR thought experiment
[EPR35], in which they considered a pair of entangled particles. They showed the
incompatibility of QT with the classical notions of realism (i.e. that God doesn’t
throw dice) and locality, which is at the heart of classical field theory [Jac07].
EPR concluded that quantum theory is “incomplete”, and demanded a modifica-
tion to comply with local realism. Through the first decades of quantum theory,
this discussion was metaphysical. Quantum theory continued to produce accu-
rate descriptions of reality but was never modified to the satisfaction of EPR. But
in 1964, John S. Bell [Bel64] showed that these classical notions were actually
testable. He derived an inequality for theories satisfying both realism and local-
ity and showed that the actual predictions were different from quantum theory.
Thus, the demanded modification of quantum theory is impossible and quantum
theory’s agreement with experimental data suggested that local realism is false.
Numerous experimental tests of Bell’s inequality have been conducted, starting
with Freedman and Clauser’s first experiment in 1972 [FC72], and the evidence
in favor of quantum theory is overwhelming [Gen05]. The foremost goal of sub-
sequent experiments was to close ‘loopholes’, culminating in three recent refuta-
tions of local realism that are loophole-free [Hen+15][Giu+15][Sha+15].
Only a few years before quantum theory took its first steps, Wilhelm Conrad
Röntgen [Rö98] investigated what we now call x-radiation. It exhibits remark-
able attributes and facilitated valuable applications: because of their short wave-
length, x-rays penetrate matter and thus enable doctors to look inside the human
body [Bus02], material scientists to reveal the structure of crystals [War69], life
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scientists to investigate macromolecules [Dre07] and quantum physicists to ex-
cite high-energy states in atoms, ions [BKS97] and nuclei [Mö58][HT99]. While
Röntgen studied the radiation of x-ray tubes, today’s scientists utilize the advan-
tages of high-brilliance synchrotron [BEW05] or x-ray free-electron laser facilities
[Emm+10][Alt+06], light sources with unprecedented coherence and intensity.
Compared to the ivory tower debate about locality and realism, x-ray science
has been dedicated mostly to hands-on applications. But what might have been
a discrepancy in the last century is a closing gap today. The emerging field of
quantum information science [NC02] has shown that quantum entanglement can
be a resource rather than a limitation, needed for the eagerly anticipated quantum
computers [DiV95] and quantum cryptography devices [BB84][Gis+02]. On the
other hand, the new x-ray light sources have enabled physicists to observe effects
that previously have only been observed with visible light. These include spon-
taneous parametric down-conversion [EM71][Ada03][Tam+11][SH11][Shw+14],
collective Lamb shift [Rö+10], x-ray control with light [Glo+10], x-ray–optical
wavemixing [Glo+12], electromagnetically induced transparency in nuclei [Rö+12],
atomic x-ray lasing [Roh+12][Yon+15], stimulated x-ray emmission [Bey+13], spon-
taneously generated coherences [Hee+13], slow light [Hee+15a] and x-ray ghost
imaging [Pel+16].
In future quantum technology, entangled x-ray fields may play a significant role.
X-ray photons suffer less dispersion than optical photons and can be narrowly fo-
cused due to their short wavelength. While they will not replace optical photons
for all applications, they might serve as a backbone for long-distance quantum
key distribution, utilizing the easy handling of optical photons and low disper-
sion of x-ray photons. Furthermore, x-ray photons facilitate applications that are
simply not possible with optical photons. Ideas of this kind include the manip-
ulation of long-lived nuclear states for storing and releasing energy [Car+01] or
macroscopic quantum entanglement [LKP16].
Quantum entanglement has not yet been observed at x-ray energies. This is
mainly due to the still inferior light sources compared to visible-light optics. There
are, however, proposals for entanglement generation: Spontaneous parametric
down-conversion, the most important source for entangled photon pairs in the
optical regime [Shi03], is also possible at multi-keV energies [EM71][Ada03]. The
generation of polarization-entangled x-ray photon has been proposed by Shwartz
et al. [SH11]. However, x-ray PDC suffers from very small event rates of about one
pair in 10 seconds when driven with a third-generation synchrotron with ∼ 1012

photons per pulse [Ada03].
Pálffy, Keitel, and Evers [PKE09] and Liao and Pálffy [LP14] propose the gener-
ation of single-photon entanglement by magnetic switching of a Mössbauer nu-
clear forward scattering sample [Shv+96]. The synchrotron source has on average
far less than one resonant photon per pulse, giving rise to a single excitation of
the nuclear ensemble [HT99]. This limitation (or differentiator) is the main rea-
son for the interest in single-photon entanglement in the field of nuclear optics.
For entanglement verification, both references suggest the violation of a single-
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photon Bell inequality put forward by Lee and Kim, using only a Mach-Zehnder
interferometer [LK00].
The Lee–Kim proposal also awakened interest in the context of Mössbauer nuclei
in thin-film cavities, a system that has recently been interpreted as an interferom-
eter [Hee+15b] in the framework of a quantum optical model by Heeg and Evers
[HE13]. The prompted research to implement interferometer criterion in these
cavity systems [Zha16] lead to the original project of this thesis.
Our examination of Ref. [LK00] uncovered that it cannot be used for entanglement
detection, which is discussed in section 3.5. The research for a different, exper-
imentally simple entanglement criterion led to the paper by Johansen [Joh96],
who introduced a criterion for two-mode states, based on a Bell inequality. It is
violated by a single-photon entangled state and can be measured using both an
interferometry and a coincidence setup. It builds directly upon the work of Tan,
Holland, and Walls [THW90]. It is simple compared to a proper test of the un-
derlying Bell inequality but requires a coincidence experiment as distinct from
the Lee–Kim proposal. Johansen [Joh96] showed that the idealized case of single-
photon entanglement, generated by a single-photon state impinging on a lossless,
balanced beamsplitter meets the criterion.

In order to be applied as a practical entanglement test, Johansen’s criterion has
to be extended to non-ideal parameters. The goal of this thesis is to generalize
Johansen’s result to lossy optical instruments, a non-balanced beamsplitter and
deviations from the single-photon input.
We start with an introduction to entanglement and Bell’s inequality and present
the derivation of the Johansen criterion in chapter 2. Chapter 3 presents our main
results: We consider losses behind the source and a general, i.e. non-balanced
beamsplitter as a source for entanglement. Both imperfections do not impair the
criterion’s power to detect entanglement. Then, a wide range of states for the
beamsplitter input is presented. The portion similar to the single-photon state
illustrates the robustness of the criterion. The other portion illustrates the dif-
ferences to both classical states and entangled states that do not meet Johansen’s
criterion.
In nuclear excitations, the low rate of resonant photons leads to the assumption
of single-photon phenomena. We will discuss differences between weak classi-
cal states and a single-photon state in the context of entanglement using a post-
selection scheme in section 3.4. In chapter 4, we apply the results to instrumenta-
tion and entanglement proposals for the x-ray regime. After summarizing the re-
quirements, we discuss the feasibility of entanglement detection and possible en-
tanglement generation techniques. In section 4.3, we turn to the system of Möss-
bauer nuclei embedded in thin-film cavities. We assess its ability to implement
the interferometer part of the Johansen criterion by deriving a relation between
the Fano line shape visibility and the coherence of first order. Using experimental
data, we show that nuclei in cavities are capable of meeting the interferometry
requirement of the Johansen criterion.
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Chapter 2

Theoretic Background

In this chapter, we will introduce the concept of quantum entanglement and its
relation to Bell’s inequality, before discussing the special case of single-photon en-
tanglement. Themain part of the chapter will present the derivation of Johansen’s
entanglement criterion [Joh96], following the original derivation closely.

Notation

The Dirac Bra–Ket notation (⟨bra| , |ket⟩) will be used throughout to denote pure
states and we will use density matrices 𝜌 to describe mixed states [GT09]. We
will specialize to optical systems, so the creation and annihilation operators 𝑎†, 𝑎,
𝑏†, 𝑏, … for light modes 𝑎, 𝑏,… will arise. They satisfy the standard commutation
relation [WM94]

[𝑎𝑘 , 𝑎
†
𝑙 ] = 𝛿𝑘 𝑙 .

Since we will discuss entanglement of two seperate subsystems, the letters A,
𝑎, 𝛼 ,ℵ will usually refer to the subsystem of ‘Alice’; letters B, 𝑏, 𝛽 ,ℶ to Bob’s sub-
system. Exceptions are |𝛼⟩ for a coherent state and ℬ for the Bell quantity.

2.1 Entanglement

While entanglement is arguably quantum theory’s most distinct feature, it is not
easy to detect. Even deciding whether a given quantum state 𝜌 is entangled
isn’t trivial and remains an open problem for Hilbert spaces of larger dimension
[GT09].
The formal definition of entanglement for a pure state |𝜓 ⟩ on a Hilbert space
ℋ = ℋA ⊗ ℋB is

|𝜓 ⟩ is entangled ∶⇔ |𝜓 ⟩ is not separable, (2.1)
|𝜓 ⟩ is separable ∶⇔ |𝜓 ⟩ = |𝜙⟩A ⊗ |𝜁 ⟩B = |𝜙⟩A |𝜁 ⟩B , (2.2)
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i.e. we can find states |𝜙⟩A, |𝜁 ⟩B on the subspaces ℋA, ℋB to write |𝜓 ⟩ as a product
state.
For mixed states, represented by density matrices 𝜌, the definition is similar:

𝜌 is entangled ∶⇔ 𝜌 is not separable, (2.3)

𝜌 is separable ∶⇔ 𝜌 = ∑
𝑖
𝑝𝑖 𝜌

𝑖
A ⊗ 𝜌𝑖B , (2.4)

where the 𝑝𝑖 are positive probabilities that sum up to one and all 𝜌𝑖A/B are density
matrices on the subspaces. Separable, mixed states are not only product states
but also statistical mixtures of product states. This second definition introduces
classical correlations, which are different from quantum correlations. For exam-
ple, consider having two lollipops, one green and one red. Alice and Bob want
one each, preferably the green one. To be fair, we toss a (fair) coin. If we do not
know the outcome of the coin toss, this can be represented by the density matrix

𝜌mixed = (|r⟩A |g⟩B ⟨r|A ⟨g|B + |g⟩A |r⟩B ⟨g|A ⟨r|B)
1
2
=̂ 1
2

⎛
⎜
⎜
⎝

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞
⎟
⎟
⎠

. (2.5)

The vector |r⟩A |r⟩B corresponds to (1, 0, 0, 0)T and so on. The corresponting ma-
trix element, the upper left one, is zero, because we do not have two red lollipops.
The states shows (anti-)correlation because Alice and Bob never both get the same
color, but is separable by the above definition. Of course, it is objectively deter-
mined who got which lollipop. The uncertainty is just because of not knowing
the outcome of the coin toss. Thus, this state is equivalent to a probability vector,
which is the main diagonal. In contrast to this, consider an entangled state

|𝜓+⟩ = (|r⟩A |g⟩B + |g⟩A |r⟩B)
1
√2

, (2.6)

𝜌entangled = |𝜓+⟩ ⟨𝜓+| =̂ 1
2

⎛
⎜
⎜
⎝

0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

⎞
⎟
⎟
⎠

. (2.7)

While this state’s entanglement can be checked because of the small Hilbert space,
the separability problem is, in general, a hard problem in quantum information
theory. It is therefore natural to seek a measure of entanglement. Furthermore,
we also want to detect entanglement in the laboratory, where the density matrix
is often not directly accessible. Bell’s inequality provides both a theoretical and
experimental test of entanglement: If the state violates a Bell inequality, it is cer-
tainly entangled. In the laboratory, no further assumptions, like on Hilbert space
dimension, have to be made.
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Bob Alice

Source

correlated spin-1/2 particles

Figure 2.1: A Bell experiment with two spin-1/2 particles, two parties Alice and
Bob, and two possible outcomes per measurement. Figure based on [Mik07].

2.2 Bell’s Inequality

A Bell experiment is a test of fundamental principles of nature. It tests whether
a local hidden-variable (LHV) theory can describe nature, which was demanded
by EPR. Quantum theory is at odds with locality because of instantaneous wave-
function collapse and with realism because of its intrinsic probabilistic nature
[Per02].
Assuming a local hidden variable model, Bell proved that certain correlations of
spatially distant measurements cannot exceed a certain bound, Bell’s inequality.
Quantum theory exceeds this bound for certain states, and thus follows Bell’s
Theorem: QT is incompatible with local hidden variables. A very accessible ex-
planation can be found in Peres [Per02, p. 160]. Many Bell experiments have been
performed to decide whether local realism or quantum theory is correct, and the
matter was decided in favor of quantum mechanics [Gen05].
There are several versions of Bell’s inequality. The best-known kind of Bell ex-
periments is depicted in figure 2.1. A source emits a system that is decomposed
into 2 subsystems, for example a pair of spin-12 particles. Alice and Bob perform
one out of 2 measurements (spin-measurement along two different axes, given by
angles 𝜃𝑎, 𝜃𝑏) and each measurement can give 2 different results (spin up or spin
down). The best-known Bell inequality for this setup is the CHSH–Bell inequality
[Cla+69]. It considers a correlation quantity 𝐸(𝜃𝑎, 𝜃𝑏) for correlations of the mea-
surements outcomes of Alice and Bob. The inequality arises when we add this
quantity for different measurement settings 𝜃𝑎, 𝜃𝑏:

ℬ ∶= 𝐸(𝜃𝑎, 𝜃𝑏) + 𝐸(𝜃𝑎, 𝜃
′
𝑏) + 𝐸(𝜃′𝑎, 𝜃𝑏) − 𝐸(𝜃′𝑎, 𝜃

′
𝑏) . (2.8)

ℬ can be bound be local hidden variables to obtain the Bell–CHSH inequality

ℬ
LHV
≤ 2 . (2.9)

But ℬ can exceed this value according to quantum theory. QT’s upper limit was
derived by Cirel’son [Cir80]:

ℬ
QT
≤ 2√2 ≈ 2.83. (2.10)
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A violation of Bell’s inequality implies that the state was entangled. Therefore,
Bell inequalities where amongst the first methods to quantifiy and determine en-
tanglement. A seperable, i.e. not entangled state will certainly not violate a Bell
inequality, but a given entangled state does not necessarily violate it. We therefore
cannot deduce anything from not violating a Bell inequality. Today, implications
for quantum applications are an equally important reason to study Bell violations:
They are linked to the security of quantum cryptography protocols and have ad-
ditional fundamental implications [GT09].
Let us note here for clarification, that the violation of the principle of locality
does not mean that faster-than-light communication is possible [PT04]. Only af-
ter communicating the recorded results of the distant parties do the correlations
exceed classical bounds. Alice’s choices cannot influence Bob’s measurement out-
comes and thus a ‘Bell telephone’ cannot be constructed.
A Bell inequality is certainly a proper tool for an entanglement criterion. Before
introducing a Bell inequality suitable for single-photon entanglement, we will
discuss this special case.

2.3 Single-Photon Entanglement

One might wonder how single-photon entanglement can exist. Entanglement
with two parties involved two particles in the CHSH experiment. While often, the
number of parties (Alice, Bob, …) is equal to the number of particles, this is is not
necessarily the case.
Consider two (e.g. spatial) modes 𝑎 and 𝑏, and a single photon that is in a super-
position of being in one and the other mode:

|𝜓+⟩ = 1
√2

(|1⟩𝑎 |0⟩𝑏 + |0⟩𝑎 |1⟩𝑏) , (2.11)

where |𝑛⟩𝑥 is the 𝑛-photon Fock state [WM94] in mode 𝑥 and the single-photon
state in mode 𝑎 is |1⟩𝑎 = 𝑎† |vac⟩. This state is entangled like eq. (2.6) according
to the seperability criterion and called a single-photon entangled state. It is a bi-
partite state since two modes are entangled.
In the case of two entangled spin-1/2 particles, both parties have one particle to
perform measurements on and the two particles are usually said to be entangled.
Therefore, the concept of single-photon entanglement can be puzzling. The state
(2.11) is clearly not separable and thus an entangled state. In that sense, quantum
theory does not care about the physical realizations of the state; if the pure state
cannot be written as a product state, the state is entangled. A helpful intuition
may be that the two (spatial) modes are entangled by the single photon.
In 1989, Oliver and Stroud [OS89] proposed that a single photon can violate a Bell
inequality. Probably independently, Tan, Holland, and Walls [THW90] showed
that single-photon entanglement violates a Bell inequality put forward by Reid
and Walls [RW86]. Refs. [THW90] and [TWC91] stirred much debate: Since a
single photon is destroyed upon detection, a Bell experiment’s measurements in
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differing bases have to be realized with additional photons, in this case through
the local oscillators of the homodyne detection scheme. However, these addi-
tional photons raise the question whether the anticipated non-local effect can be
attributed to a single-photon or rather to a multi-photon effect [San92a] [TWC92]
[Gra88][San92b] [Har94] [GHZ95] [Per95]. The most simple and striking argu-
ment in defense for single-photon entanglement may be Peres’s: Every measure-
ment apparatus contains particles and the photons of the local oscillators are just
particles of the respective measurement apparatus [Per95]. The generation of the
local oscillators may of course raise practical implications, if the two ‘local’ oscil-
lators are generated from the same light source and thus might carry correlations
themselves. There is continued interest in single-photon entangled states. Lom-
bardi et al. [Lom+02] have realized quantum teleportation with the scheme by
[LK00]1and Knill, Laflamme, and Milburn [KLM01]. Hessmo et al. [Hes+04] have
verified the entanglement proposed by [TWC91] and Hardy [Har94]. More re-
cently, following the suggestion of [JW11], Fuwa et al. [Fuw+15] have violated a
steering inequality, which is connected to the EPR thought experiment.
Instead of violating a fundamental inequality, we will now derive the result by
Johansen [Joh96], which uses the Bell inequality of Reid andWalls and the results
of [THW90] to obtain an entanglement criterion. Such a criterion can help to ver-
ify the entanglement of a source’s states before tackling a fundamental criterion.
Since it is derived from a Bell inequality, these states will violate the proper Bell
test, in contrast to arbitrary entangled states.

2.4 Deriving the Entanglement Criterion

Building on the work of Tan, Holland, and Walls, Johansen put forward a scheme
to measure whether states violate Bell’s inequality using only an interferometer
and a coincidence counter [Joh96]. We will derive the criterion, following Jo-
hansen’s paper. Some steps were shown by [THW90]. We will start from the Bell
inequality by Reid and Walls [RW86].

2.4.1 Bell Inequality for Phase-Sensitive Measurements

Reid and Walls’s Bell experiment is depicted in figure 2.2. Consider a general
light source of two single-mode output beams 𝑎, 𝑏, that are spatially separated. To
measure the relative phase, the detection of both beams is of homodyne fashion:
The beams are superposed with local oscillator (LO) modes ℓ𝑎 and ℓ𝑏 , represented
by coherent states |𝛼LO⟩ and |𝛽LO⟩, using balanced (50/50) beamsplitters. In this
thesis, a beamsplitter will always use the phase choice such that the balanced

1Lee and Kim’s paper contains two parts; one about quantum teleportation, and one about a
single-particle Bell inequality. Sec. 3.5 is about the latter.
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Source

BSA
LO

BSB
LO

𝛼 L
O Local

Oscillator A
𝜃𝑎
𝜃 ′𝑎

D𝑐

D𝑑

𝛽LO
Local
Oscillator B

Detector D𝑒

𝜃𝑏 𝜃
′
𝑏

D𝑓

𝑎

𝑏

ℓ𝑎

ℓ𝑏

sum 𝑆𝑎
diff 𝐷𝑎

sum 𝑆𝑏
diff 𝐷𝑏

Alice

Bob

Figure 2.2: Bell experiment using homodyne detection. The source emits light in
two spatial modes. Alice and Bob can perform two measurements by setting one
of two particular phases 𝜃𝑖 , 𝜃

′
𝑖 of the local oscillators. In contrast to the CHSH

case in Fig. 2.1, the measurements yield continuous values. The local observables
𝑆𝑖 and 𝐷𝑖 are combined to correlation quantities 𝐸(𝜃𝑎, 𝜃𝑏), which form the Bell
quantity ℬ.
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beamsplitter is described by relating the annihilation operators like

(𝑐𝑑) = 1
√2

(1 i
i 1) (

𝑎
ℓ𝑎
) , (2.12)

so that the transmitted beam does not get phase shifted. A non-50/50 beamsplitter
with real transmittance amplitude 𝑡 and real reflectance amplitude 𝑟 with 𝑡2+𝑟2 =
1 is in this convention modelled with

(𝑐𝑑) = ( 𝑡 i𝑟
i𝑟 𝑡 ) (

𝑎
ℓ𝑎
) . (2.13)

The homodyne detection is crucial for this setup tomeasure phases and to perform
measurements at both local labs, even when the source emits only one photon in
total.
The two detectors at each lab can measure not only time-averaged intensities but
count rates for coincidence measurement. We will use the quantum theoretic
terms 𝑐†𝑐, 𝑑†𝑑 , 𝑒†𝑒 and 𝑓 †𝑓 for the count rates to simplify notation. The deriva-
tion of the Bell inequality does however not use the quantum properties and is
demonstrated in [RW86] with count rates.
We consider the local observables sum and difference of the two detector rates

𝑆𝑎 ∶= 𝑐†𝑐 + 𝑑†𝑑 = 𝑎†𝑎 + ℓ†𝑎ℓ𝑎 , (2.14)

𝑆𝑏 ∶= 𝑒†𝑒 + 𝑓 †𝑓 = 𝑏†𝑏 + ℓ†𝑏ℓ𝑏 , (2.15)

𝐷𝑎 ∶= 𝑐†𝑐 − 𝑑†𝑑 = i (𝑎†ℓ𝑎 − 𝑎ℓ†𝑎) , (2.16)

𝐷𝑏 ∶= 𝑒†𝑒 − 𝑓 †𝑓 = i (𝑏†ℓ𝑏 − 𝑏ℓ†𝑏) , (2.17)

where we used the beamsplitter relations to obtain the right-hand side expres-
sions. We combine them into the the correlation function or ‘modulation depth’

𝐸(𝜃𝑎, 𝜃𝑏) ∶=
⟨𝐷𝑎𝐷𝑏⟩
⟨𝑆𝑎𝑆𝑏⟩

, (2.18)

which depends on the phases 𝜃𝑎, 𝜃𝑏 of both local oscillators: 𝛼LO = |𝛼LO|ei𝜃𝑎
(analogous for 𝜃𝑏). Unlike the correlation function in the discussed Bell-CHSH-
Experiment [Cla+69], (2.18) can assume continuous values instead of ±1, but |𝐸| ≤
1 holds as well. We define the analogue quantity

ℬ = 𝐸(𝜃𝑎, 𝜃𝑏) + 𝐸(𝜃𝑎, 𝜃
′
𝑏) + 𝐸(𝜃′𝑎, 𝜃𝑏) − 𝐸(𝜃′𝑎, 𝜃

′
𝑏) , (2.19)

and assuming a local hidden-variable theory, one can derive an analogue Bell
inequality [RW86]:

ℬ
LHV
≤ 2 . (2.20)

Quantum theory allows again violation of this inequality up to the same Cirel’son
bound [Cir80] [RW86]

ℬ
QT
≤ 2√2 ≈ 2.83 . (2.21)
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2.4.2 Eliminating the Measurement Parameters

In order to get an entanglement criterion from this Bell inequality, we need to
eliminate the measurement settings. We do this by choosing the LO amplitudes
𝛼LO and 𝛽LO, including the phases 𝜃𝑎, 𝜃𝑏 optimally. The goal is to find an ex-
pression that can be measured by simpler experiments than the homodyne mea-
surement and still provide information on whether the state would exhibit Bell-
violating behavior
First, we express 𝐸 as a function of 𝑎, 𝑎†, 𝑏, 𝑏†, 𝛼LO and 𝛽LO:

⟨𝑆𝑎𝑆𝑏⟩ =⟨(𝑎
†𝑎 + ℓ†𝑎ℓ𝑎) (𝑏†𝑏 + ℓ†𝑏ℓ𝑏)⟩

=⟨𝑎†𝑎 𝑏†𝑏⟩ + ⟨𝑎†𝑎⟩ |𝛽LO|2 + ⟨𝑏†𝑏⟩ |𝛼LO|2 + |𝛼LO|2|𝛽LO|2 (2.22)

⟨𝐷𝑎𝐷𝑏⟩ =⟨i (𝑎†ℓ𝑎 − 𝑎ℓ†𝑎) i (𝑏†ℓ𝑏 − 𝑏ℓ†𝑏)⟩
=⟨𝑎†𝑏⟩ 𝛼LO 𝛽∗LO + ⟨𝑎𝑏†⟩ 𝛼 ∗LO 𝛽LO
− ⟨𝑎𝑏⟩ 𝛼 ∗LO 𝛽∗LO − ⟨𝑎†𝑏†⟩ 𝛼LO 𝛽LO

= |⟨𝑎†𝑏⟩ 𝛼LO 𝛽LO| 2 cos (arg [⟨𝑎†𝑏⟩] + (𝜃𝑎 − 𝜃𝑏))

− |⟨𝑎𝑏⟩ 𝛼LO 𝛽LO | 2 cos (arg [⟨𝑎𝑏⟩] − (𝜃𝑎 + 𝜃𝑏)) (2.23)

We combine these expressions to 𝐸 and arrange it in one 𝜃𝑖-independent part and
one part independent of the magnitudes of the local oscillators:

𝐸(𝜃𝑎, 𝜃𝑏) =ℰ (|𝛼LO|, |𝛽LO|) × 𝜖(𝜃𝑎, 𝜃𝑏) , (2.24)

ℰ =
2 |𝛼LO𝛽LO|

⟨𝑎†𝑎 𝑏†𝑏⟩ + ⟨𝑎†𝑎⟩ |𝛽LO|2 + ⟨𝑏†𝑏⟩ |𝛼LO|2 + |𝛼LO𝛽LO|2
, (2.25)

𝜖 = |⟨𝑎†𝑏⟩| cos (arg [⟨𝑎†𝑏⟩] + (𝜃𝑎 − 𝜃𝑏))

− |⟨𝑎𝑏⟩| cos (arg [⟨𝑎𝑏⟩] − (𝜃𝑎 + 𝜃𝑏)) . (2.26)

In order to find the best measurement settings for violation of 2.20, we need to
maximize ℰ (2.25). To that end, we substitute |𝛼LO| = √𝑥𝑦 , |𝛽LO| = √𝑥𝑦−1 and
arrive at

ℰ =
2

⟨𝑎†𝑎 𝑏†𝑏⟩ 1
𝑥
+ ⟨𝑎†𝑎⟩ 1

𝑦
+ ⟨𝑏†𝑏⟩ 𝑦 + 𝑥

. (2.27)

To maximize ℰ , the denominator has to be minimized. Differentiating with re-
spect to 𝑥 and 𝑦 and setting to zero yields

𝑥 = |𝛼LO𝛽LO| = √⟨𝑎†𝑎 𝑏†𝑏⟩ , (2.28)

𝑦 = |
𝛼LO
𝛽LO | = √

⟨𝑎†𝑎⟩
⟨𝑏†𝑏⟩

. (2.29)
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Thus, if the magnitudes of the LO-amplitudes are chosen in this optimal way, ℰ
becomes

ℰ =
1

√⟨𝑎†𝑎 𝑏†𝑏⟩ + √⟨𝑎†𝑎⟩ ⟨𝑏†𝑏⟩
. (2.30)

Thus, we can write

𝐸(𝜃𝑎, 𝜃𝑏) = 𝐶1 cos (𝜃𝑎 − 𝜃𝑏 + arg[⟨𝑎†𝑏⟩])

+𝐶2 cos (𝜃𝑎 + 𝜃𝑏 − arg[⟨𝑎𝑏⟩]) , (2.31)

with

𝐶1 =
|⟨𝑎†𝑏⟩|

√⟨𝑎†𝑎 𝑏†𝑏⟩ + √⟨𝑎†𝑎⟩ ⟨𝑏†𝑏⟩
and (2.32)

𝐶2 =
|⟨𝑎𝑏⟩|

√⟨𝑎†𝑎 𝑏†𝑏⟩ + √⟨𝑎†𝑎⟩ ⟨𝑏†𝑏⟩
. (2.33)

In order to violate Bell’s inequality ℬ ≤ 2, the LO-phases 𝜃𝑎, 𝜃′𝑎, 𝜃𝑏 , 𝜃′𝑏 have to be
chosen in a suitable way, depending on the expectation values above. We now
want to further eliminate these variables by assuming they are chosen optimally.
We define 𝜉1 = − arg[⟨𝑎†𝑏⟩] − π ∕ 2 and 𝜉2 = arg[⟨𝑎𝑏⟩] − π ∕ 2 and set 𝜕ℬ ∕ 𝜕𝜃𝑖 = 0
to find the extrema. If we use three out of four such conditions, [THW90] showed
that the measurement phases have to be chosen as follows:

𝜃𝑎 = 1
2
(𝜉1 + 𝜉2) , 𝜃′𝑎 = 1

2
(𝜉1 + 𝜉2) −

π
2
, (2.34)

𝜃𝑏 = 1
2
(𝜉1 − 𝜉2) − 𝜁 , 𝜃′𝑏 = 1

2
(𝜉1 − 𝜉2) + 𝜁 . (2.35)

Here, 𝜁 is a free parameter because one degree of freedom is still left. Then, one
can write

ℬ(𝜁 ) = 2√2 √𝐶
2
1 + 𝐶2

2 sin(𝜁 − 𝜁0) , (2.36)

with tan 𝜁0 =
𝐶1 + 𝐶2
𝐶1 − 𝐶2

. (2.37)

Since | sin | ≤ 1, it is necessary for the violation of Bell’s inequality that 𝐶2
1 +𝐶2

2 >
1
2
. If 𝜁 is chosen optimally, for example 𝜁 = 𝜁0 +

π
2
, Bell’s inequality reduces to a

condition on the expectation values:

ℬ = 2√2 √𝐶
2
1 + 𝐶2

2

= 2√2 √|⟨𝑎†𝑏⟩|
2
+ |⟨𝑎𝑏⟩|

2

√⟨𝑎†𝑎 𝑏†𝑏⟩ + √⟨𝑎†𝑎⟩ ⟨𝑏†𝑏⟩

LHV
≤ 2 . (2.38)

12



The measurement parameters were chosen optimally for given expectation val-
ues ⟨𝑎†𝑎 𝑏†𝑏⟩, ⟨𝑎†𝑎⟩, … . Experimentally, these parameters would need to be
measured to optimize the Bell test. This choice allowed us to derive a condition
on the entanglement of the bipartite state that is independent from the particu-
lar measurement. In the following, we will transfer this condition to a simpler
measurement setup.

2.4.3 The Johansen Criterion

The measurement-independent Bell condition is again an inequality ℬ ≤ 2. The
idea is now to drop a term of ℬ, introducing a lower bound ℬ′ ≤ ℬ. We drop
the ⟨𝑎𝑏⟩-part and define

ℬ′ ∶= 2√2
|⟨𝑎†𝑏⟩|

√⟨𝑎†𝑎 𝑏†𝑏⟩ + √⟨𝑎†𝑎⟩ ⟨𝑏†𝑏⟩
. (2.39)

Since ℬ′ ≤ ℬ,

ℬ′ LHV
≤ 2 , (2.40)

so violation of ℬ′ ≤ 2 implies violation of the ‘full’ inequality ℬ ≤ 2, but not
vice versa. In that sense, it is weaker. We hope thatℬ′ is large ‘enough’ for some
states and we will see shortly that it is not only sufficient, but just as good as the
full inequality for our main interest, the single-photon entangled state. From now
on, ℬ and ℬ′ denote the quantities as defined in (2.38) and (2.39), independent
of measurement choices.
We would not gain anything by the Johansen criterion if ℬ′ could only be mea-
sured in a Bell test. But fortunately, it depends only on expectation values that can
be found in the (two-mode, equal-time) first and second order coherence functions

𝑔(1) =
⟨𝑎†𝑏⟩

√⟨𝑎†𝑎⟩ ⟨𝑏†𝑏⟩
, (2.41)

𝑔(2) =
⟨𝑎†𝑎 𝑏†𝑏⟩

⟨𝑎†𝑎⟩ ⟨𝑏†𝑏⟩
. (2.42)

We can actually express ℬ′ in terms of the coherence functions:

ℬ′ = 2√2
|𝑔(1)|

1 + √𝑔
(2)

. (2.43)

These quantities can be measured in a much simpler setup than the homodyne
Bell setup with which we started. |𝑔(1)| can be measured by superposing the
two beams on a suitable beamsplitter and measuring the interference visibility, as
in figure 2.4. 𝑔(2) can be measured with one detector in each beam, measuring
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𝑔(2)

ℬ′ > 2

𝑔(2) ≥ |𝑔(1)|2

|SPE⟩

|𝛼⟩𝑎 |𝛼⟩𝑏

𝜌mixed

Figure 2.3: The Johansen entanglement criterion, where ℬ′ > 2 indicates entan-
glement, in yellow–orange, in terms of the two-mode coherence functions 𝑔(1)

and 𝑔(2), as definded in (2.41) and (2.42). Contour lines at ℬ′ = 2, 2.1, …, 2.8.
The region for ℬ′ < 2 is not plotted for clarity. Gray lines indicate the minimum
requirements for |𝑔(1)| and 𝑔(2) at ∼ 0.707 and ∼ 0.172, respectively. ℬ′ is maxi-
mal (2√2) at the lower right corner (1, 1), which corresponds to the single-photon
entangled state |SPE⟩. The single-photon seperable mixed state 𝜌mixed (2.54) is at
(0, 0), a two-mode separable coherent state |𝛼⟩𝑎 |𝛼⟩𝑏 at (1, 1). This state can be
produced by illuminating a beamsplitter with a single coherent beam (see Chp. 3).
For comparison, the condition 𝑔(2) ≥ |𝑔(1)|2 from classical electrodynamics is
shown in light green. As expected, all combinations of |𝑔(1)| and 𝑔(2) which are
allowed by cED do not satisfy the Johansen criterion.
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coincidence, see figure 2.5. The normalizing factors ⟨𝑎†𝑎⟩ and ⟨𝑏†𝑏⟩ of 𝑔(2) can
also be measured in the coincidence setup.
To violate ℬ′ ≤ 2 in a series of measurements with these simple setups implies
that the measured state would violate a Bell inequality in the actual, complicated
Bell experiment as in [THW90]. This may seem paradox. But we needed quantum
theoretic calculations to arrive at this result, so no fundamental question may be
answered by the simple coincidence and interference measurements.
However, these measurements enable us to detect certain Bell-violating, and thus
entangled, states, assuming Quantum Theory is correct. The dependence of ℬ′

on the coherence functions is depicted in Fig. 2.3. For two arbitrary light modes
𝑎, 𝑏, |𝑔(1)| ≤ 1 and 𝑔(2) ≥ 0. Classical light, i.e. classical electrodynamics, allows
only

|𝑔
(1)

|
2
≤ 𝑔(2) (2.44)

because of the Cauchy–Schwarz inequality [Joh96] [TG65]. The ℬ′ inequality is
harder to violate than the cED inequality. This illustrates that the class of local
hidden variable theories is not equivalent to pre-quantum theories, but more gen-
eral.
From Eq. (2.43) follow inequalities for 𝑔(1) and 𝑔(2) due to the general bounds of
the coherence functions:

|𝑔
(1)

| ≤
1
√2

≈ 0.707 , (2.45)

𝑔(2) ≥ (√2 − 1)2 ≈ 0.172 . (2.46)

These two inequalities are necessary for ℬ′ LHV
≤ 2, but not sufficient.

Coherence g(1) and Interference Visibility

The relation between interference visibility and coherence of first order, 𝑔(1), can
be found in textbooks on quantum optics [WM94]. We derive the standard case
here because we will need to modify it later, when investigating interference in
Fano line shapes in section 4.3.
Interference visibility quantifies the contrast of an interference fringe pattern,
e.g. on a screen behind a double-slit. It also occurs in a Mach-Zehnder interfer-
ometer (Fig. 2.4), when measuring the intensity at one output port, e.g. at detector
D𝑐 , for varying phase shifts 𝛥𝜙, e.g. by inserting wave plates in the two arms. The
visibility is defined as

VIS =
𝐼max − 𝐼min
𝐼max + 𝐼min

, (2.47)

where 𝐼max [𝐼min] is the intensity at the maximum [minimum] of the interference
pattern. For a Mach-Zehnder interferometer with two modes 𝑎 and 𝑏, output
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mode 𝑐 can be can be determined by the beamsplitter relation, analogue to (2.13).
Without inserting wave plates, the intensity is given by

𝐼𝑐 = ⟨𝑐
†𝑐⟩ =⟨(𝑡𝑎 + i𝑟𝑏)† (𝑡𝑎 + i𝑟𝑏)⟩

=𝑡2 ⟨𝑎†𝑎⟩ + 𝑟2 ⟨𝑏†𝑏⟩ + i𝑡𝑟 ⟨𝑎†𝑏⟩ − i𝑡𝑟 ⟨𝑎𝑏†⟩

=𝑡2 ⟨𝑎†𝑎⟩ + 𝑟2 ⟨𝑏†𝑏⟩ + 2𝑡𝑟 |⟨𝑎
†𝑏⟩| cos𝛥𝜙 , (2.48)

where 𝛥𝜙 = arg[⟨𝑎†𝑏⟩] + π ∕ 2 is the total relative phase between the interfering
modes. If additional phase shifts 𝜙𝑎 and 𝜙𝑏 are introduced by inserting wave
plates,

𝛥𝜙 = 𝜙𝑎 − 𝜙𝑏 + arg[⟨𝑎†𝑏⟩] + π
2

. (2.49)

Then, 𝐼max [𝐼min] corresponds to a relative phase of 𝛥𝜙 = 0 [𝛥𝜙 = π], the phases
with cos = 1 [cos = −1]. This yields for the visibility

VIS =
2𝑡𝑟 |⟨𝑎

†𝑏⟩|
𝑡2 ⟨𝑎†𝑎⟩ + 𝑟2 ⟨𝑏†𝑏⟩

=
|⟨𝑎

†𝑏⟩|

√⟨𝑎†𝑎⟩ ⟨𝑏†𝑏⟩

2𝑡𝑟√⟨𝑎†𝑎⟩ ⟨𝑏†𝑏⟩
𝑡2 ⟨𝑎†𝑎⟩ + 𝑟2 ⟨𝑏†𝑏⟩

=|𝑔
(1)

|
2𝑡𝑟√⟨𝑎†𝑎⟩ ⟨𝑏†𝑏⟩
𝑡2 ⟨𝑎†𝑎⟩ + 𝑟2 ⟨𝑏†𝑏⟩

. (2.50)

For a balanced beamsplitter 𝑟2 = 𝑡2 = 1 ∕ 2, one obtains

VIS =|𝑔
(1)

|
2√⟨𝑎†𝑎⟩ ⟨𝑏†𝑏⟩
⟨𝑎†𝑎⟩ + ⟨𝑏†𝑏⟩

=|𝑔
(1)

| 𝜒 , (2.51)

with 𝜒 ≤ 1 and 𝜒 = 1 for ⟨𝑎†𝑎⟩ = ⟨𝑏†𝑏⟩. Thus, a balanced beamsplitter does not
give the maximum visibility for imbalanced beams. However, if we choose the
beamsplitter parameters 𝑟 , 𝑡 as

𝑡2 =
⟨𝑏†𝑏⟩

⟨𝑎†𝑎⟩ + ⟨𝑏†𝑏⟩
, 𝑟2 =

⟨𝑎†𝑎⟩
⟨𝑎†𝑎⟩ + ⟨𝑏†𝑏⟩

,

VIS → |𝑔
(1)

| even for 𝜒 ≠ 1 . (2.52)

Experimentally, one can vary the reflectivity until the interference visibility is
maximal.

16



Source

𝜙𝑎

𝜙𝑏

Wave
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Mirror
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D𝑑

D𝑐

𝑎

𝑏

Interference
Visibility
∝ |𝑔(1)|

Figure 2.4: 𝑔(1) measurement in a Mach-Zehnder interferometer: The two beams
are guided by mirrors, phase-shifted by wave plates and recombinded with a
beamsplitter BS. By varying the relative phase 𝛥𝜙, an interference pattern can be
recorded, using only one of the detectors. From the visibility of the interference
pattern VIS = (𝐼max − 𝐼min) ∕ (𝐼max + 𝐼min), the coherence |𝑔(1)| can be derived.
Generally, VIS ≤ |𝑔(1)|.

Source

D𝑎

D𝑏

𝑎

𝑏
⟨𝑎†𝑎⟩ ,
⟨𝑏†𝑏⟩ ,
⟨𝑎†𝑎 𝑏†𝑏⟩
⇒ |𝑔(2)|

Figure 2.5: 𝑔(2) measurement via coincidence counting: An event is recorded only
when both detectors click in the same time-window: ⟨𝑎†𝑎 𝑏†𝑏⟩. The normaliza-
tions ⟨𝑎†𝑎⟩ and ⟨𝑏†𝑏⟩ can also be measured in this setup.
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2.5 Evaluating the Inequality for Some States

Let us now look at some examples to illustrate which states meet the Johansen
criterion and which do not.

Single-Photon Entangled State

Let the state of the light source be the single-photon entangled state

|SPE⟩ = |𝜓𝜙⟩ = 1
√2

(|1 0⟩ + ei𝜙 |0 1⟩)

= 1
√2

(|1⟩𝑎 |0⟩𝑏 + ei𝜙 |0⟩𝑎 |1⟩𝑏) , (2.53)

where |𝑛⟩𝑖 denotes the 𝑛-photon Fock state in the mode 𝑖 and 𝜙 is an arbitrary
phase. Then, ⟨𝑎†𝑎 𝑏†𝑏⟩ = 0, ⟨𝑎†𝑎⟩ = ⟨𝑏†𝑏⟩ = | ⟨𝑎†𝑏⟩ | = 1 ∕ 2 and therefore
ℬ′ = 2√2 > 2. In terms of coherence functions, |𝑔(1)| = 1, |𝑔(2)| = 0. This is the
maximal violation, even of the ‘full’ inequality ℬ ≤ 2. It is independent of the
relative phase 𝜙.

Single-Photon Mixed state

However, if the source emits a classical mixture of ‘1 photon in A and none in B’
and ‘1 photon in B and none in A’, for example by tossing a coin to determine the
direction of the photon, the state is given by the density matrix

𝜌mixed = 1
2
(|1 0⟩ ⟨1 0| + |0 1⟩ ⟨0 1|) = 1

2

⎛
⎜
⎜
⎝

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞
⎟
⎟
⎠

. (2.54)

Again, 𝑔(2) = 0. But this state does not exhibit any interference so ⟨𝑎†𝑏⟩ = 0 =
𝑔(1), thus also ℬ′ vanishes, hence ℬ′ ≤ 2 is satisfied. This is expected since this
fully mixed state is not entangled (see sec. 2.1).

Two-Photon state

The difference between the full ℬ inequality and the Johansen criterion ℬ′ can
be illustrated with the superposition of vacuum with the two-photon state

|2𝛾⟩ = 𝑠 |1 1⟩ + √1 − 𝑠2 |0 0⟩ . (2.55)

This state is similar to the output of a parametric down-converter, which is dis-
cussed in [THW90] for this Bell inequality. For (2.55), ⟨𝑎†𝑏⟩ vanishes for all 𝑠,
such that

ℬ′ = 0 (2.56)
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and the Johansen criterion cannot detect entanglement. But the expectation value
⟨𝑎𝑏⟩ fromℬ, which was dropped in the derivation ofℬ′, is ⟨𝑎𝑏⟩ = 𝑠√1 − 𝑠2. The
coincidence is ⟨𝑎†𝑎 𝑏†𝑏⟩ = 𝑠2 and the count rates yield ⟨𝑎†𝑎⟩ = ⟨𝑏†𝑏⟩ = 𝑠2. Thus,

ℬ = 2√2 𝑠√1 − 𝑠2
𝑠 + 𝑠2

,

ℬ > 2 for 0 < 𝑠 < 1 ∕ 3 , (2.57)

so the state is entangled at least for 0 < 𝑠 < 1 ∕ 3. This is one example for an
entangled state the Johansen criterion cannot detect. Since not every entangled
state violates a given Bell inequality, there are even entangled states that violate
neither the ℬ nor the ℬ′ inequality.

We showed in the previous sections how an entanglement criterion can be de-
rived from a Bell inequality. Figure 2.6 shows the derivation in a flow-chart form.
Starting with a complicated experiment involving local oscillators, the criterion
can be checked in two simple experiments: coincidence and interferometry.
We gave a prototype example for an entangled state that is detected by the cri-
terion: the ideal single-photon entangled state. As pointed out by e.g. [Joh96]
[TWC91], such a state may be generated by a single-photon in one mode that
impinges on a balanced beamsplitter. We will now turn to such a source of entan-
glement but generalize to a lossy, imbalanced beamsplitter.
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Local Realism
(LHV)

ℬ
LHV
≤ 2

ℬ (𝑎, 𝑏, |𝛼LO|, |𝛽LO|, 𝜃𝑎, 𝜃𝑏,…)

QT

ℬ(𝑎, 𝑏)

QT maximize

ℬ′( 𝑔(1), 𝑔(2)) ≤ ℬ
?
≤ 2

drop term

ℬ′ = 2√2 |𝑔(1)|
1+√𝑔(2)

?
≤ 2

QT

Alice

Bob

Figure 2.6: Overview of the inequalities used in this work. Starting from Local
Realism in the form of Local Hidden Variable Models, one can derive the Bell
inequality ℬ ≤ 2 for the homodyne detection experiment in the first row. Quan-
tum theory gives an expression for ℬ, depending on measurement parameters
and properties of the source. Using this expression, we optimized the parameters
of measurement, namely local oscillator parameters |𝛼LO|, |𝛽LO|, 𝜃𝑎, 𝜃′𝑎, 𝜃𝑏 , 𝜃′𝑏 , ar-
riving in the second row. Thus, only the properties of the source (𝑎, 𝑏) remain.
ℬ′ follows from ℬ by dropping a positive term and is thus strictly smaller than
ℬ. Then, we expressed ℬ′ in terms of quantities, that are accessible in simpler
experiments, namely coincidence counting and interferometry. Thus, we arrived
at the third row, at Johansen’s criterion. Since we used quantum theory, a vi-
olation of,𝑏𝑝 ≤ 2 does not refute Local Realism. Rather, an entangled states is
detected. One would need to perform the homodyne Bell experiment (first row
and Fig. 2.2) to refute LHV theories.
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Chapter 3

A Practical Criterion

In the following chapter, we will investigate the Johansen criterion and its prac-
ticality concerning non-ideal parameters. Specifically, we will show that a lossy,
imbalanced beamsplitter can be used just as well as a balanced, lossless beamsplit-
ter as an entanglement source. We will derive the criterion for the input mode
of the beamsplitter and show an intuitive representation in photon statistics. We
will see that not only the single-photon input can produce Johansen-criterion-
entanglement.
In the last section (3.5), we will make a short detour and discuss a different pro-
posal for a single-photon Bell inequality, put forward by Lee and Kim [LK00].

We now want to consider a source consisting of a beamsplitter, illuminated by a
singlemode of light. This ismotivated by the fact that the single-photon entangled
state (2.53) can be produced by a single-photon Fock state |1⟩𝑢 at the input port
𝑢 of a balanced beamsplitter (and vacuum at the other input port). The source
beamsplitter is defined with the input port 𝑢, empty port 𝑣 and output ports 𝑎′,
𝑏′ as

(𝑎
′

𝑏′) = (ℵ iℶ
iℶ ℵ ) (𝑢𝑣) (3.1)

⇒ (𝑢𝑣) = ( ℵ −iℶ
−iℶ ℵ ) (𝑎

′

𝑏′) , (3.2)

where the real parameters ℵ2 + ℶ2 = 1 (the Hebrew letters Alef and Bet, respec-
tively). In the lossless case, 𝑎′ = 𝑎 and 𝑏′ = 𝑏. Losses will be introduced shortly.
Using (3.2) for the mode 𝑢, we can write a single-photon input:

|1⟩𝑢 = 𝑢† |vac⟩ (3.3)

= (ℵ𝑎 − iℶ𝑏)† |vac⟩ (3.4)
= ℵ |1⟩𝑎 |0⟩𝑏 + iℶ |0⟩𝑎 |1⟩𝑏 , (3.5)

which, for a balanced beamsplitter (ℵ = ℶ = 1 ∕ √2), gives the single-photon en-
tangled state 2.53 with phase 𝜙 = π∕2. Irrespective of the phase, this state violates
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∝ 𝑡2𝑏

𝑎

𝑏

Source

Figure 3.1: A single-mode source and a beamsplitter can act as a source for
two-mode entanglement. In order to gain a practical criterion, we consider the
general case of an imbalanced beamsplitter and losses thereafter, again modelled
by beamsplitters. The first beamsplitter splits the single mode 𝑢 (𝑣 is empty) into
modes 𝑎′ and 𝑏′ with relative intensities ℵ2 and ℶ2. The fictitious beamsplitters
introduce losses, producing the actual modes 𝑎 and 𝑏. The loss-beamsplitters
have transmittivity 𝑡2𝑎 and 𝑡2𝑏 and also have vacuum at the other input ports.

the inequality ℬ′ ≤ 2 maximally with ℬ′ = 2√2, and thus ℬ = 2√2. Thus, an
ideal beamsplitter reduces the problem of entanglement generation to finding a
single-photon source. We will now investigate whether this also holds for non-
ideal beamsplitters and non-ideal single-photon sources, which is important for
applications.

3.1 Lossy, Imbalanced Beamsplitter Source

Wemodel losses after the initial beamsplitter with additional, fictitious beamsplit-
ters as depicted in Fig. 3.1. The modes directly after the initial beamsplitter are 𝑎′

and 𝑏′ and the modes after the loss beamsplitters are called 𝑎 and 𝑏, as they exit
the source. The loss beamsplitter in the A path has the nomenclature: Input port
𝑎′, empty input port 𝑣𝑎, main output port 𝑎, and loss output port 𝑙𝑎. The loss is
parametrized by the real transmittance amplitude 𝑡𝑎 (and reflectivity amplitude
𝑟𝑎). In the B path, the names are analogous. The beamsplitter relation is

(𝑎𝑙𝑎
) = ( 𝑡𝑎 i𝑟𝑎

i𝑟𝑎 𝑡𝑎
) (𝑎

′

𝑣𝑎
) . (3.6)

The beamsplitter approach preserves the total photon number and the operator
commutation relations. We lose photons because we omit the modes 𝑙𝑎 and 𝑙𝑏
‘downstream’ and only consider 𝑎 and 𝑏.
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3.2 Criterion for the Initial Mode

In order to determine the degree of violation for various input states and beam-
splitter parameters, we expressℬ(𝑎, 𝑎†, 𝑏, 𝑏†), using the beamsplitter relations, as
ℬ(𝑢, 𝑢†,ℵ, 𝑡𝑎, 𝑡𝑏). The other parameters are fixed by conditions such as ℵ2 +ℶ2 =
1. We do this for the fullℬ quantitiy, because it is independent from theℬ → ℬ′

derivation. We will get expressions for both ℬ and ℬ′ for the case of a beam-
splitter source.
We need to expand the two-mode expectation values on the right-hand side of
eq. (2.38) using the beamsplitter relations. First, the modes 𝑎 and 𝑏 will be written
as linear combinations of the pre-loss modes 𝑎′ and 𝑣𝑎 (𝑣 for vacuum) (and 𝑏′

and 𝑣𝑏 respectively). This represents the loss beamsplitters. Then, the modes 𝑎′

and 𝑏′ will be written in linear combinations of 𝑢 and 𝑣 , arising from the main
beamsplitter (as in eq. 3.1). Since the ports 𝑣 , 𝑣𝑎 and 𝑣𝑏 are vacuum ports, i.e. they
are not illuminated by light, expectations values of the form ⟨…𝑣𝑏⟩ or ⟨𝑣†

𝑏 …⟩ will
vanish because 𝑣𝑏 |0⟩𝑣𝑏 = 0. Only terms such as 𝑣𝑣† = 𝑣†𝑣 + 1 would contribute,
but since all expectation values inℬ are normal-ordered, such terms do not arise.
The calculation for the expectation value ⟨𝑎†𝑏⟩ will be demonstrated in detail:

⟨𝑎†𝑏⟩ = ⟨(𝑡𝑎𝑎
′ + i𝑟𝑎𝑣𝑎)

† (𝑡𝑏𝑏
′ + i𝑟𝑏𝑣𝑏)⟩

= ⟨(𝑡𝑎𝑎
′† − i𝑟𝑎𝑣

†
𝑎) (𝑡𝑏𝑏

′ + i𝑟𝑏𝑣𝑏)⟩

= 𝑡𝑎𝑡𝑏 ⟨𝑎′†𝑏′⟩ + i𝑡𝑎𝑟𝑏 ⟨𝑎′†𝑣𝑏⟩⏟⏟⏟⏟⏟⏟⏟
𝑣𝑏|0𝑣𝑏⟩=0

−i𝑟𝑎𝑡𝑏 ⟨𝑣†
𝑎𝑏′⟩⏟⏟⏟⏟⏟⏟⏟

⟨0𝑣𝑎|𝑣†
𝑎 =0

+𝑟𝑎𝑟𝑏 ⟨𝑣†
𝑎𝑣𝑏⟩⏟⏟⏟⏟⏟⏟⏟
=0

= 𝑡𝑎𝑡𝑏 ⟨𝑎′†𝑏′⟩

= 𝑡𝑎𝑡𝑏 ⟨(ℵ𝑢 + iℶ𝑣)† (iℶ𝑢 + ℵ𝑣)⟩

= 𝑡𝑎𝑡𝑏 ⟨(ℵ𝑢
† − iℶ𝑣†) (iℶ𝑢 + ℵ𝑣)⟩

= 𝑡𝑎𝑡𝑏(iℵℶ ⟨𝑢†𝑢⟩ + ℵ2 ⟨𝑢†𝑣⟩⏟⏟⏟⏟⏟
=0

+ℶ2 ⟨𝑣†𝑢⟩⏟⏟⏟⏟⏟
=0

−iℵℶ ⟨𝑣†𝑣⟩⏟⏟⏟⏟⏟
=0

)

= i𝑡𝑎𝑡𝑏ℵℶ ⟨𝑢†𝑢⟩ . (3.7)

Analogously, one can calculate the remaining expectation values that are of in-
terest, arriving at

⟨𝑎†𝑏⟩ = i𝑡𝑎𝑡𝑏ℵℶ ⟨𝑢†𝑢⟩ (3.8)
⟨𝑎𝑏⟩ = i𝑡𝑎𝑡𝑏ℵℶ ⟨𝑢𝑢⟩ (3.9)

⟨𝑎†𝑎 𝑏†𝑏⟩ = 𝑡2𝑎 𝑡
2
𝑏ℵ2ℶ2 ⟨𝑢†𝑢†𝑢𝑢⟩ (3.10)

⟨𝑎†𝑎⟩ = ℵ2𝑡2𝑎 ⟨𝑢†𝑢⟩ (3.11)

⟨𝑏†𝑏⟩ = ℶ2𝑡2𝑏 ⟨𝑢†𝑢⟩ (3.12)
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Note for eq. 3.10 that 𝑎 and 𝑏† do commute, therefore 𝑎†𝑎𝑏†𝑏 = 𝑎†𝑏†𝑎𝑏. Inserting
these expressions into the Bell expression ℬ(𝑎, 𝑏) (2.38) gives

ℬ = 2√2 √|⟨𝑎†𝑏⟩|
2 + |⟨𝑎𝑏⟩|2

√⟨𝑎†𝑎 𝑏†𝑏⟩ + √⟨𝑎†𝑎⟩ ⟨𝑏†𝑏⟩
(3.13)

= 2√2 √|i𝑡𝑎𝑡𝑏ℵℶ ⟨𝑢†𝑢⟩ |2 + |i𝑡𝑎𝑡𝑏ℵℶ ⟨𝑢𝑢⟩ |2

√𝑡
2
𝑎 𝑡2𝑏ℵ2ℶ2 ⟨𝑢†𝑢†𝑢𝑢⟩ + √ℵ2ℶ2𝑡2𝑎 𝑡2𝑏 ⟨𝑢†𝑢⟩2

(3.14)

ℬ(𝑢) = 2√2 √| ⟨𝑢†𝑢⟩ |2 + | ⟨𝑢𝑢⟩ |2

√⟨𝑢†𝑢†𝑢𝑢⟩ + ⟨𝑢†𝑢⟩
. (3.15)

We can observe that both loss and reflectivity parameters cancel out due to the
unique construction ofℬ. This also holds for losses alone, irrespective of a beam-
splitter. Thus, no loss-channel or imbalanced beamsplitter may compromise the
entanglement of a source for the Johansen criterion.
Interestingly, this feature depends on the optimal choice in the derivation ofℬ(𝑎, 𝑏).
In chapter 2, we chose independent local oscillator amplitudes, like Johansen.
THW, on the other hand, decided to set |𝛼LO| = |𝛽LO|. Then, the loss and balance
parameters do not cancel because the denominator would then contain (⟨𝑎†𝑎⟩ +
⟨𝑏†𝑏⟩) ∕ 2 instead of (⟨𝑎†𝑎⟩ ⟨𝑏†𝑏⟩)1/2.
The Johansen criterion quantityℬ′ analogously translates, by removing the ⟨𝑢𝑢⟩
term (either before or after the beamsplitter relations), to

ℬ′(𝑢) = 2√2
⟨𝑢†𝑢⟩

√⟨𝑢†𝑢†𝑢𝑢⟩ + ⟨𝑢†𝑢⟩

= 2√2

√𝑔
(2)(𝑢) + 1

, (3.16)

with

𝑔(2)(𝑢) =
⟨𝑢†𝑢†𝑢𝑢⟩

⟨𝑢†𝑢⟩2
. (3.17)

In fact, the beamsplitter automatically ensures full coherence of first order, i.e.

|𝑔
(1)(𝑢)| =

|i𝑡𝑎𝑡𝑏ℵℶ ⟨𝑢†𝑢⟩|

√ℵ2𝑡2𝑎 ⟨𝑢†𝑢⟩ ℶ2𝑡2𝑏 ⟨𝑢†𝑢⟩
= 1 , (3.18)

so only the 𝑔(2) part survives. The inequality for 𝑔(2)(𝑢), equivalent toℬ′(𝑢) ≤ 2,
is then

𝑔(2)(𝑢)
LHV
≥ (√2 − 1)2 ≈ 0.172 , (3.19)
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so we need only very small 𝑔(2) in one mode to meet the entanglement criterion.
We will investigate specific states shortly, but before, let us introduce an intuitive
reformulation of the criterion for the initial mode.

3.2.1 Photon Statistics Criterion

Alternatively to writing ℬ′ in terms of the second coherence function, one can
also express it in the intuitive quantities mean 𝜇 and variance 𝜎2 of the photon
number 𝑁 = 𝑢†𝑢:

𝜇 = ⟨𝑢†𝑢⟩ (3.20)

𝜎2 =⟨(𝑢
†𝑢)2⟩ − ⟨𝑢†𝑢⟩2 (3.21)

= ⟨𝑢†𝑢†𝑢𝑢⟩ + 𝜇 − 𝜇2 . (3.22)

Rearranging and inserting in (3.16) yields

ℬ′ = 2√2
𝜇

√𝜎2 − 𝜇 + 𝜇2 + 𝜇
. (3.23)

The square root in the denominator is always real since ⟨𝑢†𝑢†𝑢𝑢⟩ ≥ 0. Therefore
𝜎2 ≥ 𝜇 −𝜇2. This leads to a region in the 𝜇/𝜎2-plane that is generally forbidden. In
general, for a non-integer 𝜇, the variance will be larger than zero because then, at
least two Fock states (number states) are superposed and thus there is a variance.
Only Fock states have vanishing variance 𝜎2.
These forbidden regions between each pair (|𝑛⟩ , |𝑛 + 1⟩) have the form of a parabola
of the same shape as the first, 𝜎2 ≥ 𝜇 − 𝜇2, but shifted to the right. The first two
can be seen in Fig. 3.2.
The same figure shows the photon statistics in terms of 𝜇 and 𝜎2 and the region
that gives violation for the inequalityℬ′(𝑢)

LHV
≤ 2. This region is entirely enclosed

in the sub-Poissonian region 𝜎2 < 𝜇, which is inaccessible for classical electrody-
namics. Themaximal violationwithℬ′ = 2√2 is at the arc of the forbidden region,
corresponding to states of at most one photon (3.24) The ideal single-photon state
is at (1,0) and we see that it is surrounded by a region of ℬ′ violation. Therefore,
sufficiently small deviations from the single-photon state will preserve that vio-
lation. A coherent state of arbitrary 𝛼 exhibits Poisson distribution with 𝜎2 = 𝜇.

3.3 Some Interesting Initial States

We will now investigate some states for the beamsplitter input in more detail.
Some are in the ‘proximity’ of the single-photon state and some contrast it. In-
terestingly, the coherent state appears to be in its proximity, depending on the
meaning of this word, and shows completely different behaviour.
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Figure 3.2: The criterion for the beamsplitter input mode in terms of the photon
statistics: mean photon number 𝜇 = ⟨𝑛⟩ and variance Var(𝑛) = 𝜎2 = ⟨𝑛2⟩ − ⟨𝑛⟩2.
The orange region depicts ℬ′ > 2. ℬ′ is = 2√2 (maximal) at the border between
the orange and the light blue region, ℬ′ = 2 at the border to the white space.
Contour lines are shown for ℬ′ = 2.1, 2.2,… . The values of ℬ′ below 2 are
not plotted. The point (0, 0) corresponds to the zero-photon Fock state |0⟩, (1, 0)
to |1⟩, and so forth. The light blue region is impossible even by quantum theory
since a superposition of Fock states cannot have vanishing uncertainty in photon
number. The superposition 𝑐0 |0⟩ + 𝑐1 |1⟩ maps to the outline of the first blue
‘bump’. The region of violation is encompassed by the sub-Poissonian region 𝜎2 <
𝜇. An example for Poissonian light with 𝜎2 = 𝜇 (dotted straight line) is coherent
light. The short red and green dashed lines near |1⟩ are the single-photon-added
coherent state 𝑢† |𝛼⟩ and displaced coherent state 𝐷𝛼 |1⟩, respectively, for values
of 𝛼 with violation.
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3.3.1 At Most One Photon

If we consider a general state with only up to one photon, i.e. of the form

𝜌≤1𝛾 = 1
2
(𝑝 |0⟩ ⟨0| + 𝑞 |0⟩ ⟨1| + 𝑞∗ |1⟩ ⟨0| + (1 − 𝑝) |1⟩ ⟨1|) , (3.24)

we can see that this yields 𝑔(2) = 0 because 𝑢𝑢 |1⟩ = 𝑢𝑢 |0⟩ = 0 and thus maximal
violation of the inequality

ℬ′ = 2√2 ≰ 2 . (3.25)

This holds independent of the parameters 𝑝 and 𝑞. Also incoherent mixtures vio-
late maximally because the coherence is only important between the two modes.
But this coherence is secured by the beamsplitter.
This is an interesting result, since it means that the source does not need to meet
hard requirements on the production rates. Compared to the state |2𝛾⟩ from
sec. 2.5, this is more robust since there, only small values of 𝑠 violate the full
inequality, corresponding to a parametric converter with low gain [THW90].
However, let us revisit the statistics criterion and Fig. 3.2. The closer we are to
|0⟩, the closer we get to the critical ℬ′ = 2 contour. Therefore, we want to be
fairly close to the single-photon Fock state |1⟩ if possible. From there, any kind
of perturbation in the state can be tolerated, as long as it is sufficiently small:
Any perturbation will change 𝜇 and 𝜎 continuously, so a small change will keep
ℬ′ > 2.

3.3.2 Not-Exactly-Single-Photon States

We said that not only the single-photon state but also arbitrary deviations from it
produce detectable entanglement. Two examples for ‘not-exactly-single-photon
states’ are the photon-added coherent state (SPAC) and the displaced single-photon
state (DSP). Both are connected to the coherent state |𝛼⟩ by the displacement
operator [WM94]

𝐷𝛼 = exp (𝛼𝑢† − 𝛼 ∗𝑢) , with (3.26)

𝐷𝛼 |vac⟩ = |𝛼⟩𝑢 .

This relation is equivalent to the exponential form in (3.30), since 𝑢 |vac⟩ = 0,
so only the 𝑢† in 𝐷𝛼 survives. Consider the single-photon added coherent state
(SPAC state)

|SPAC⟩ = 1
𝑁𝛼

𝑢† |𝛼⟩ = 𝑢†𝐷𝛼 |vac⟩ . (3.27)

It models a plane-wave background for a single-photon. In the limit of small 𝛼 ,
|SPAC⟩ goes to |1⟩, so we get violation ofℬ′ ≤ 2 for 𝛼 ≲ 0.225. For large values of
𝛼 , the state is similar to the coherent state, and the criterion is not met anymore.
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The corresponding statistics of the states is depicted in Fig. 3.2 in the red, dashed
line close to the forbidden region.
A similar state is the ‘displaced single-photon state’

|DSP⟩ = 𝐷𝛼 |1⟩ = 𝐷𝛼𝑢
† |vac⟩ , (3.28)

which, for small alpha, is similar again to |1⟩. It is not equal to SPAC, since 𝑎 and
𝑎† do not commute. For 𝛼 ≲ 0.25, the state also violates theℬ′ ≤ 2 inequality. Its
statistics is depicted in Fig. 3.2 in the green dashed line.
The SPAC and DSP states show that a classical ‘background’ radiation in the form
of a coherent state may be tolerated. Since |𝛼|2 is the mean photon number for
the coherent state, the limit 𝛼 ≈ 1 ∕ 4 implies that the background count rate has
to be smaller than 1 ∕ 16 of the single-photon count rate.

3.3.3 Coherent State

In contrast to this, consider a coherent state |𝛼⟩𝑢 at the input of the beam splitter.
Coherent states have mean photon mumber 𝜇 = |𝛼|2 and 𝜎2 = |𝛼|2. One can
quickly calculate from 𝑢 |𝛼⟩𝑢 = 𝛼 that

𝑔(2)(𝑢) = 1 ,
ℬ = 2 ≤ 2 ,

ℬ′ = √2 ≤ 2 . (3.29)

In fact, the state behind the beamsplitter is seperable, resulting from the exponen-
tial form of the coherent state [WM94]. For a balanced beamsplitter:

|𝛼⟩𝑢 = e−|𝛼|2/2 e𝛼𝑢
†

|vac⟩

= e−|𝛼|2/2 e𝛼(𝑎
†+i𝑏†)∕√2 |vac⟩

= e−(|𝛼|/√2)2∕2 e𝛼𝑎
†∕√2 e−(|𝛼|/√2)2∕2 ei𝛼𝑏

†∕√2 |vac⟩

= | 𝛼 ∕ √2⟩𝑎 | i𝛼 ∕ √2⟩𝑏
, (3.30)

which is a separable pure state (see eq. 2.2). This also holds for an arbitrary beam-
splitter with √2 replaced by reflectivity ℵ and ℶ, and for arbitrary 𝛼 . This result
is expected since the coherent state is a rather ‘classical’ state [WM94].
On the other hand, if we choose |𝛼| to be very small, the number of photons
per unit time becomes very small, too. This is often associated with ‘at most one
photon’, which might be very intuitive: If only one photon exits the source in
every hour, there shouldn’t be any multi-photon contributions. The overlap of a
coherent state with a Fock state is

|⟨𝑛 | 𝛼⟩|2 = e−|𝛼|2 |𝛼|2𝑛

𝑛!
, (3.31)
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which also suggests that for |𝛼| ≪ 1, the overlap with 𝑛 ≥ 2 can be neglected.
However, the result ℬ = 2 holds for any |𝛼| > 0. It is therefore crucial not to
make the approximation

|𝛼⟩ ⟼ [ |0⟩ + 𝛼 |1⟩ ] ∕ 𝑁 wrong, even for small 𝛼 . (3.32)

We have seen that for any state of the form 𝑐0 |0⟩ + 𝑐1 |1⟩, 𝑔(2)(𝑢) will vanish.
Therefore, neglecting multi-photon events (e.g. for weak coherent states) renders
ℬ′ maximal automatically and ‘destroys’ the classical structure of the coherent
state. We will see that taking |2⟩ into account will suffice, because this allows
high values of 𝑔(2).
While this cosideration was on the basis of input states, a similar conclusion will
be presented for in the section on post-selection (3.4), which considers discarding
events after the experiment.

3.3.4 At Most Two Photons

Let us look at the inequality from another angle. Consider states of the form

|𝜓 ⟩input = 𝑐0 |0⟩𝑢 + 𝑐1 |1⟩𝑢 + 𝑐2 |2⟩𝑢 , (3.33)

i.e. superpositions of the Fock states up to 2 photons. These states cover a range
of different phenomena. They contain perfect ℬ′ = 2√2 states (for 𝑐2 = 0) and
also states that violate ℬ ≤ 2 but not ℬ′ ≤ 2, since the ⟨𝑢𝑢⟩ part of ℬ is propor-
tional to 𝑐∗0𝑐2. Furthermore, these states allow us to compare the post-selection
schemes in sec. refsecps with the results without this post-selection, since the
post-selection can only be calculated for a rather small subset of the whole Hilbert
space.
We can restrict to real, positive parameters 𝑐𝑖 without loss of generality: The only
expectation value in ℬ where the relative phases play a role is ⟨𝑢𝑢⟩ ∝ 𝑐∗0𝑐2. But
ℬ is a function of | ⟨𝑢𝑢⟩ |, so the relative phase drops out. If we included |3⟩𝑢
at the input state, the relative phase of 𝑐∗0𝑐2 and 𝑐∗1𝑐3 would survive in ℬ. We do
not include |3⟩𝑢 for two reasons: because the | ⟨𝑢𝑢⟩ |-part is not included in ℬ′,
which is of main interest, and because adding |3⟩𝑢 to the post-selection calcula-
tion would be uneconomic.
Figures 3.4 and 3.3 show the values of ℬ and ℬ′ for the whole parameter set
{𝑐0, 𝑐1, 𝑐2} ≥ 0 as contour plots. Because of normalization, the graph’s origin cor-
responds to 𝑐0 = 1, i.e. |𝜓 ⟩input = |0⟩𝑢 . The Fock states |1⟩𝑢 and |2⟩𝑢 can be found
in the lower right and upper left corner, respectively.
The contours of the ℬ′-Plot 3.3 are rather similar to the representation in 𝜇 and
𝜎2: Along the superposition of |0⟩ and |1⟩, ℬ′ is maximal and drops when other
contributions are added. Around |0⟩, ℬ′ drops faster than around |1⟩.
Figure 3.4 shows the similar contour plot forℬ. Compared withℬ′, this contains
an additional region of violation in the lower left. Here, small 𝑐0 and moderately
small 𝑐2 give rise to rather large values of ⟨𝑢𝑢⟩ ∝ 𝑐∗0𝑐2, while the denominator of

29



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

𝑐1

𝑐2

|0⟩ |1⟩

|2⟩

ℬ′ > 2

ℬ′ = 2√2

Figure 3.3: Johansen quantity ℬ′ for the Hilbert space of up to two photons.
The axes are 𝑐1 and 𝑐2, the amplitudes of |1⟩ and |2⟩. The origin is |0⟩ due to
normalization, the lower right corner |1⟩ and the upper left corner |2⟩. ℬ′ is
maximally violated for any superposition (or mixture) of |0⟩ and |1⟩, except |0⟩
itself. At |1⟩, the critical (ℬ′ = 2)-contour is as far away as possible, it is therefore
more robust than e.g. (|0⟩ + |1⟩) ∕ √2.

ℬ remains rather small, achieving up to the maximal value of ℬ = 2√2.
These findings fit well into our previous results and will allow us to investigate
the effect of discarding certain events (post-selection) in sec. 3.4.

3.3.5 Beyond the Johansen Criterion

In order to illustrate that ℬ′ does not cover all entangled states, and not even all
states that violate the full ℬ inequality, we investigate some specific examples.
We already saw that in the set of states with at most two photons (sec. 3.3.4),
some states violate only ℬ but not ℬ′. We will revisit 𝑐0 |0⟩ + 𝑐2 |2⟩, introduce
the well-known squeezed state and show that the statistics of these states is very
different from the single-photon.
States that violate ℬ but not ℬ′ utilize the ⟨𝑢𝑢⟩ term in ℬ. Therefore, we need
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Figure 3.4: Full Bell quantity ℬ for the Hilbert space of up to two photons. The
axes are identical to figure 3.3. ℬ includes the term | ⟨𝑢𝑢⟩ | which is omitted
in ℬ′, therefore a second region with ℬ > 2 appears near the origin, at small
𝑐1, large 𝑐0 and moderately small 𝑐2. The overall values are considerably larger
due to the additional term ⟨𝑢𝑢⟩. The (ℬ = 2)-contour reaches the origin. Weak
coherent states (|𝛼| ≲ 0.3) can be approximated with up to two photons. This
truncated coherent state lies on the (ℬ = 2)-contour close to |0⟩ (line too short
to depict).

states with significant amplitudes for Fock states |𝑛⟩ and |𝑛 + 2⟩ at the same time,
preferably for multiple 𝑛. But at the same time, the coincidence ⟨𝑢†𝑢†𝑢𝑢⟩ and
photon rate ⟨𝑢†𝑢⟩ must not become too large.

Squeezed Vacuum

The squeezed vacuum has the peculiar feature that only even-numbered Fock
states are populated:

|0, 𝜁 ⟩ = 𝑐0 |0⟩ + 𝑐2 |2⟩ + … + 𝑐2𝑛 |2𝑛⟩ + … . (3.34)
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It is defined using the unitary (single-mode) Squeezing operator [GK04]

𝑆𝜁 = exp [12 (𝜁
∗𝑢𝑢 − 𝜁𝑢†𝑢†)] , (3.35)

with complex squeezing parameter 𝜁 = 𝑟ei𝜉 . It produces a squeezed coherent
state if used together with the displacement operator 𝐷𝛼 :

𝐷𝛼𝑆𝜁 |vac⟩ = |𝛼 , 𝜁 ⟩ squeezed coherent state (3.36)

and squeezed vacuum is the squeezed state swith 𝛼 = 0. The squeezing operator
satisfies th following relations with the creation and annihilation operators 𝑢, 𝑢†

of the form

𝑆†
𝜁 𝑢 𝑆𝜁 = 𝑢 cosh 𝑟 − ei𝜉𝑢† sinh 𝑟 , (3.37)

𝑆†
𝜁 𝑢

†𝑆𝜁 = 𝑢† cosh 𝑟 − e−i𝜉𝑢 sinh 𝑟 , (3.38)

from which the expectation values ⟨𝑢𝑢⟩ , 𝑢†𝑢, ⟨𝑢†𝑢†𝑢𝑢⟩ can be calculated. After
a bit of using these identities, we arrive at an expression for ℬ for the squeezed
vacuum state with 𝜁 = 𝑟 real:

ℬ|0,𝜁 ⟩ = 2√2 √|cosh 𝑟 sinh2 𝑟|
2 + sinh4 𝑟

sinh4 𝑟 + √sinh2 𝑟 (cosh2 𝑟 + 2 sinh2 𝑟)
. (3.39)

One finds that ℬ > 2 for 𝑟 ≲ 0.4. The corresponding statistics is shown in Fig. 3.5
in a red, dashed line. Remarkably, it lies in the super-Poissonian region, similar
to the state 𝑐0 |0⟩ + 𝑐2 |2⟩.

c1 |1⟩ + c3 |3⟩

Another interesting state is the superposition of the single-Photon Fock state with
the 3–photon Fock state. It covers bothℬ′ by the single-photon part and the ⟨𝑢𝑢⟩
part by 𝑐∗1𝑐3. It is also depicted in Fig. 3.5, where it can be seen that the area of
ℬ violation for this state is larger than the region of ℬ′ statistics violation, as
expected. While interesting to consider, these states cannot be checked in the
simple coincidence–and–interferometer setup.

3.4 Post-selection

We investigated in section 3.3.3 the effect of truncating a coherent state such that
only 𝑐0 |0⟩ + 𝑐1 |1⟩ survives and showed that this always yields ℬ′ violation be-
cause 𝑔(2)(𝑢) = 0 for these states. This has implications for experiments with low
event rates. The two-photon event rate is then naturally even smaller and true
2–photon-events may not be reliably detected. We will therefore investigate how
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Figure 3.5: Various states that violate the full ℬ ≤ 2 inequality for comparison
with the photon statistics variant for the ℬ′ criterion. The states are plotted as
lines with their respective values of 𝜇 and 𝜎2 for parameters with which they
violate ℬ ≤ 2. The axis and regions are the same as in figure 3.2. The red dashed
line is (𝜇, 𝜎2) of the squeezed vacuum state |𝜁 ; 0⟩ for all 𝜁 such that ℬ ≤ 2 is
violated. It utilizes the ⟨𝑢𝑢⟩-part of ℬ (3.15) because only even-numbered Fock
states are populated. It violates for values of 0 < |𝜁 | < 0.4. For small 𝜁 , it is similar
to the two-Fock-state superposition 𝑐0 |0⟩ + 𝑐2 |2⟩ (violet). Both lie, remarkably,
in the super-Poissonian region, which is accessible even for classical light. The
third state 𝑐1 |1⟩+ 𝑐3 |3⟩ (green) violates both ℬ′ ≤ 2 for small 𝑐3 and only ℬ ≤ 2
for larger 𝑐3 because of ⟨𝑢𝑢⟩, up to 𝑐3 ≈ 0.34.
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the measurement of the criterion is affected if we discard events. We call this
procedure post-selection. There are other notions of post-selection, e.g. that one
discards events where some cross-check measurement yielded an unfavorable re-
sult. This is not meant here.
We will only consider post-selecting for states that are produced by a beamsplit-
ter, not general two-mode states, for simplification.
Just before measurement, we apply the projection operator to the wavefunction
(or density matrix) and renormalize. For post-selecting events with at least one
photon detection, we discard the case that both detectors do not click, i.e.:

|𝜓 ⟩ ↦ 1

√𝑁𝜓
(1 − |0 0⟩ ⟨0 0|) |𝜓 ⟩ and (3.40)

𝜌 ↦ 1
𝑁𝜌

(1 − |0 0⟩ ⟨0 0|) 𝜌 (1 − |0 0⟩ ⟨0 0|) (3.41)

Where |0 0⟩ represents no photons at both detectors in arms A and B. These pro-
jection operations have to be performed at the expectation values {⟨𝑎𝑏⟩ ,…}, in
our case at the expression ℬ(𝑎, 𝑏) (2.38) or ℬ′(𝑎, 𝑏) (2.39).
The projection operators cannot be transferred via beamsplitter relations. There-
fore, we start with a state at the beamsplitter input, e.g. |1⟩𝑢 = 𝑢† |vac⟩ and
calculate its propagation through the beamsplitters via the (inverse) beamsplitter
relations. We arrive at a 4-mode expression: modes 𝑎, 𝑏, 𝑙𝑎, 𝑙𝑏 where 𝑙𝑎 and 𝑙𝑏 are
the loss modes of the fictious loss-beamsplitters, see Fig. 3.1. We measure only at
the modes 𝑎 and 𝑏, so we can disregard and trace-out the loss modes.
The effort to calculate in this ‘forward’ direction in comparison to the previous
‘backwards’ direction scales with the complexity of the input state. Every creation
operator 𝑢† has to be written as a superposition of output states 𝑎†, 𝑏†, 𝑙†𝑎 , 𝑙

†
𝑏 . Af-

ter mulitiplying out all these terms, the expressions like 𝑎†𝑎†𝑏† |vac⟩ have to be
written as the Fock states √2 |2⟩𝑎 |1⟩𝑏 . Thus, we restrict ourselves to a class of
states with arbitrary superpositions of the Fock states |0⟩ , |1⟩ , |2⟩:

|𝜓 ⟩input = 𝑐0 |0⟩𝑢 + 𝑐1 |1⟩𝑢 + 𝑐2 |2⟩𝑢 (3.42)

= (𝑐0 + 𝑐1𝑢
† + 𝑐2

1
√2
𝑢†𝑢†) |0⟩𝑢 (3.43)

While this state is certainly not general, it covers the part of the Hilbert space
of maximal violaton of the ℬ′ inequality for 𝑐2 = 0 and allows us to inspect the
effect of a perturbing part with 𝑐2. As an extra, we can also formulate a state that
violates 𝐵 ≤ 2 but not ℬ′ ≤ 2 because the ⟨𝑎𝑏⟩ part of ℬ grows with 𝑐∗0 ⋅ 𝑐2.
The tedious but straight-forward calculation yields a state ket |𝜓 ⟩output, depend-
ing on 𝑐0, 𝑐1, 𝑐2,ℵ, 𝑡𝑎 and 𝑡𝑏 . The post-selection projection operators, the renormal-
izing and the following calculation of expectation values have been automated by
a computer algebra program. The output states are then combined into the ex-
pressions for ℬ and ℬ′.
Because of the projection operators, the loss parameters 𝑡𝑎, 𝑡𝑏 and the beamsplitter
parameter ℵ do not cancel in ℬ and ℬ′.
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Figure 3.6: ℬ′ for the Hilbert space of up to two photons, like in figure 3.4, with
post-selecting events that had at least one detector click, assuming a balanced
beamsplitter and no losses. ℬ′ is independent of 𝑐0. At the circle 𝑐21 + 𝑐

2
2 = 1, the

value ofℬ′ is equal to theℬ′ for the case without post-selection. Thus, this plot
can be constructed from figure 3.3 by radial projection from the sphere inwards.
The area of violation of ℬ′ ≤ 2 is sufficiently larger than without post-selection
(Fig. 3.3).

3.4.1 Post-selecting Events with at Least One Photon

First, we look at the post-selection scheme that discards any events without a pho-
ton detection. The projection operator is the one given in eq. 3.40. The resulting
ℬ and ℬ′ depend on 𝑐0, 𝑐1, 𝑐2,ℵ, 𝑡𝑎 and 𝑡𝑏 . Here, losses and beamsplitter param-
eters do not cancel out. We can restrict again to real parameters 𝑐𝑖 as explained
in subsection 3.3.4.

Balanced, Lossless Case

Fig. 3.6 shows ℬ′ for the balanced lossless case, i.e. 𝑡𝑎 = 𝑡𝑏 = 0 and ℵ2 = 1 ∕ 2.
The depicted parameters are the real coefficients 𝑐1 and 𝑐2. The plot therefore
covers all the pure Fock states as input: |0⟩ for 𝑐1 = 𝑐2 = 0, |1⟩ for 𝑐1 = 1 and |2⟩
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Figure 3.7: ℬ′ for a coherent input |𝛼⟩𝑢 , imbalanced beamsplitter, balanced
losses and post-selecting events with at least one detector click. The lower axis is
the transmittivity amplitude 𝑡𝑎 = 𝑡𝑏 = √1 − loss) of each arm, i.e. the most loss is
to the left; the left axis is the modulus of the coherent state parameter |𝛼|. Even
though the coherent state is a classical input, post-selecting at-least-one-photon
events renders the outcome to ‘entangled’. Furthermore, loss increasesℬ′. Note
that this plot is a result of approximating the coherent state with a state of at
most two photons. As explained in the text, this approximation is only valid for
|𝛼| ≲ 0.3. The upper part is included to show that ℬ′ ≤ 2 is possible in this
approximation.

for 𝑐2 = 1, i.e. at the corners. The Contours are radial, i.e. the 𝑐0 part does not
matter at all. Instead, the ratio of 𝑐1 and 𝑐2 determines the value of ℬ′. Without
the post-selection (Fig. 3.3), this is not the case. Here, the Fock state |1⟩ is more
robust than the superposition 𝑐0 |0⟩ + 𝑐1 |1⟩.

Coherent state

Since the post-selection scheme ensures violation of the ℬ′ LHV
≤ 2 inequality even

for states with rather small ℬ′ without post-selection, we can even get classical
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radiation to violate the inequality, using our scheme. Consider the single-mode
coherent state |𝛼⟩𝑢 , defined via 𝑢 |𝛼⟩𝑢 = 𝛼 |𝛼⟩𝑢 at the input. As discussed in
section 3.2, this state yields ℬ′ = √2 ≤ 2 without post-selection. The Fock-state
representation for the coherent state is

|𝛼⟩𝑢 = e−
|𝛼|2
2 e𝛼𝑢

†
|vac⟩ (3.44)

= e−
|𝛼|2
2

∞
∑
𝑛=0

𝛼𝑛

√𝑛!
|𝑛⟩ , (3.45)

so for small |𝛼|, only Fock states |𝑛⟩ with small 𝑛 are macroscopically popu-
lated. We showed that neglecting 𝑛 ≥ 2-Fock states makes 𝑔(2)(𝑢) = 0 and thus
ℬ′ = 2√2 automatically. However, keeping the |2⟩ term suffices to allow for finite
𝑔(2)(𝑢). Thus, for |𝛼| ≤ 0.3, a coherent state can be approximated to fairly good ac-
curacy with only three Fock states {|0⟩ , |1⟩ , |2⟩}, since | ⟨𝑛 = 3⟩ 𝛼 = 0.3|2 ≈ 10−4.
Then,

|𝛼⟩𝑢 ≈ 1
√𝑁

(|0⟩𝑢 + 𝛼 |1⟩𝑢 +
𝛼2

√2
|2⟩𝑢) with 𝑁 = 1 + 𝛼2 + 𝛼4

2
. (3.46)

This state shows ℬ′ ≈ √2 for |𝛼| ≤ 0.3, just like the full coherent state.
If we now introduce post-selection on this state, we can investigate its effect on the
coherent state. Figure 3.7 showsℬ′ for this truncated coherent state, using post-
selection, with some other parameters fixed and one loss parameter 𝑡𝑎 variable.
We find that discarding the no-click events indeed yields values forℬ′ larger than
2, which is impossible without postselection. In fact, it seems to be impossible
to find values for the parameters ℵ, 𝑡𝑎 and 𝑡𝑏 for which ℬ′ ≤ 2 for 𝛼 ≤ 0.3.
Additionally to the importance of the two-photon events, we see that also events,
or experimental runs, without photon clicks have to be taken into account in order
to not overestimate ℬ′ and get a ‘false positive’ for entanglement detection.

3.4.2 Post-selecting Events with at Most One Photon

We have seen in the section 3.2 that input states with at most one photon exhibit
maximal violation of the Bell inequality. Thus, it is intuitive that post-selecting
events whith at most one detector click should provide a likely violation as well.
We use the projection operator given by

|𝜓 ⟩ ↦ 1

√𝑁𝜓
(1 − |1 1⟩ ⟨1 1| − |2 0⟩ ⟨2 0| − |0 2⟩ ⟨0 2|) |𝜓 ⟩ (3.47)

to discard any events with two detector clicks. The projection operator calculation
yields ℬ = ℬ′ ≡ 2√2, independent from parameter choice. We can understand
this if we consider 𝑔(1) and 𝑔(2) (as defined in eq.s 2.41 and 2.42). 𝑔(2) has to van-
ish: Any state that is produced after beamsplitter and loss will have its |1 1⟩ part
removed. Therefore, there are no coincidences and 𝑔(2) = 0. The first-order coher-
ence was shown to be fulfilled for beamsplitter-ouptputs of arbitrary parameters
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in sec. 3.2. Any state that results from the post-selection could also arise from an
input without postselection, thus |𝑔(1)(𝑢)| = 1 still holds.
The case of exactly on photon is contained in ‘at most one photon’ and thus
yields ℬ ≡ 2√2 for all inputs.
The post-selection calculations have confirmed that it makes a big difference if
we include all possible outcomes or discard events, especially two-photon events.
Discarding two-photon events makes it impossible to obtain any other value for
𝑔(2) than zero.
We did not look at general two-mode states in this post-selection calculation but
only at beamsplitter-outputs. This is justified because the first order-coherence
𝑔(1) can be unity both for single-photon states and for rather classical coherent
states (see sec. 2.5). Post-selecting a coherent state, such that only the single-
photon state remains, would not change 𝑔(1) but only 𝑔(2).

3.5 Discussion of a Different Proposal

Lee and Kim [LK00] have proposed a different way of demonstrating nonlocality
of a single photon. Due to its experimental simplicity, it has gained some atten-
tion in the field of x-ray quantum optics. References [PKE09] [LP14] and [Lau14]
have proposed to use it to verify an entanglement generation by nuclear forward
scattering. It was also investigated for implementation with Mössbauer nuclei in
thin-fim cavities [Zha16].
Lee and Kim derived a Bell inequality which can be tested using only a Mach-
Zehnder interferometer with independent phase shifts. We present the proposal
and show in the following why we focused on the work of Johansen Johansen
[Joh96] instead.
The setup according to Lee and Kim is the same as in figure 2.4, with a balanced
beamsplitter instead of a general source.
A single photon enters the interferometer at the first beamsplitter while its other
port remains empty. Alice and Bob are located spatially separate at the two inter-
ferometer arms, where they can introduce local phase shifts 𝜙𝑎 and 𝜙𝑏 by inserting
wave plates. Without wave plates, the total relative phase is such that all photons
exit the second, balanced, beamsplitter at port C and none at port D.
Lee and Kim consider four measurement settings of the local phases:

Setting Alice’s phase Bob’s phase
∅ 0 0
A 𝜙𝑎 0
B 0 𝜙𝑏
AB 𝜙𝑎 𝜙𝑏

The locality argument considers what type of local actions of Alice or Bob may
affect the photons to go to D instead of C.
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“[…] we assume that those photons that do not change their paths and still
arrive at DC, both when Alice, not Bob, uses her phase shifter, and when Bob, not
Alice, uses his phase shifter, will still not change their paths and still arrive at DC
when both Alice and Bob use their phase shifters.”
They do not give a more general formulation of locality but call this statement a
single-particle version of the locality assumption.
Let the set of photons that arrive at D for setting 𝑖 be 𝑆𝑖 , with 𝑖 ∈ {A, B, AB}. “The
photons that do not change their paths” are therefore the complementary sets
𝑆 ⧵ 𝑆𝑖 , where 𝑆 is the set of all photons. In set theoretic language, Lee and Kim’s
locality assumption then reads

(𝑆 ⧵ 𝑆A) ∩ (𝑆 ⧵ 𝑆B) ⊆ (𝑆 ⧵ 𝑆AB) . (3.48)

This implies for the cardinality | ⋅ |, or number of elements,

|(𝑆 ⧵ 𝑆A) ∩ (𝑆 ⧵ 𝑆B)| ≤ |(𝑆 ⧵ 𝑆AB)| . (3.49)

Let the total photon number be 𝑁 = |𝑆| and the photon number of the other sets
be |𝑆𝑖| = 𝑁𝑖 . Then, it follows for the left-hand side that

𝑁 − 𝑁A − 𝑁B ≤ |(𝑆 ⧵ 𝑆A) ∩ (𝑆 ⧵ 𝑆B)| . (3.50)

The cardinality of the right-hand side of (3.48) is 𝑁 − 𝑁AB and therefore

𝑁 − 𝑁A − 𝑁B ≤ 𝑁 − 𝑁AB
𝑁AB − 𝑁A − 𝑁B ≤ 0 . (3.51)

For convenience, let us formulate this in relative count rates and define the quan-
tity

ℒ ∶= 1
𝑁

(𝑁AB − 𝑁A − 𝑁B) ≤ 0. (3.52)

This inequality on the count rate at detector D is violated by quantum theory: The
count rate can be calculated with the tools presented in section3.2. For arbitrary
phases 𝜑𝑎, 𝜑𝑏 at Alice and Bob, one finds

⟨𝑑†𝑑⟩ = sin2 (
𝜑𝑎 − 𝜑𝑏

2
)𝑁 . (3.53)

Replacing the phases for 𝑁A,𝑁B, and 𝑁AB accordingly, one arrives from (3.52) at

ℒQT = sin2 (
𝜙𝑎 − 𝜙𝑏

2
) − sin2 (

𝜙𝑎
2
) − sin2 (

𝜙𝑏
2
)

?
≤ 0 . (3.54)

This inequality is violated for e.g. 𝜙𝑎 = −𝜙𝑏 = 𝜙 and a small-angle-approximation
sin 𝑥 ≈ 𝑥 , yielding 𝜙 ≥ √2𝜙.
Maximal violation is achieved with 𝜙𝑎 = −𝜙𝑏 = π ∕ 3 with

ℒQT = 1
4 ≥ 0 . (3.55)
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Criticism

The following criticism of Lee and Kim’s proposal is twofold. Firstly, we argue
that the inequality’s prerequisites constrain the inequality’s applicability to a very
small set of states, so that it cannot serve as an entanglement criterion. Secondly,
we argue that the presented locality principle is not convincing.

The prerequisites

The first prerequisite is to start with a single photon as the input for the exper-
iment. Other imput states are not allowed. Usually, a Bell inequality is defined
usingmeasurements that can be obtained regardless of the present state. For some
state, the measurements will yield violation (thus follows that these states were
entangled) and for others, the measurements yield no violation, which is compat-
ible with local hidden variables.
Any sensible notion of a single photon, not only in quantum theory, would predict
that this single photon can only be detected once in a photon-counter. Thus, the
coincidence measurement, as depicted in figure 2.5, would yield no coincidences
and therefore, in QT language, 𝑔(2) = 0.
The second prerequisite is that no photons exit the output port D of the second
beamsplitter in setting “∅”, i.e. if neither Alice nor Bob uses their phase shifter. Let
us consider the interference visibility at detector D (see sec. 2.4.3): It quantifies
the contrast of maxima and minima of an interference pattern in the range [0, 1]
[WM94, p. 34]:

VIS =
𝐼max − 𝐼min
𝐼max + 𝐼min

. (3.56)

Since detector D detects no photons in the setting “∅”, 𝐼min = 0 and thus VIS = 1.
The visibility can be related to the first-order coherence function 𝑔(1), as demon-
strated in sec. 2.4.3:

VIS = |𝑔(1)|
2√𝐼A𝐼A
𝐼A + 𝐼B

, (3.57)

where 𝐼A/B are the intensities of the two beams inside the interferometer and 𝑔(1)

is defined as in (2.41). It follows that

VIS ≤ |𝑔(1)| , (3.58)

such that the full visibility VIS = 1 implies |𝑔(1)| = 1.
The prerequisites thus restrict the criterion’s applicability to the ideal case of a
single photon with full coherence, i.e. the single-photon entangled state |SPE⟩
(2.53) Applying the criterion to different states is not allowed because these can-
not satisfy the prerequisites. If one wants to detect entanglement, this proposal
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is therefore unsuitable.
One might argue that the prerequisites may be relaxed. Let us relax the require-
ment of a single photon in a natural way: If the input is only required to have
one photon on average, i.e. ⟨𝑁 ⟩ = 1, rather than exactly one single photon, 𝑔(2)

would not need to vanish. But the coherent state |𝛼⟩ with ⟨𝑁 ⟩ = |𝛼|2 = 1 would
then also be admissable. It yields the same results for the count rates (3.53) as
the single photon and therefore violates inequality (3.54). The state after the first
beamsplitter is, however, separable (2.2), i.e. of the form |𝜓 ⟩𝑎 |𝜙⟩𝑏 , and therefore
not entangled:

|𝛼⟩𝑢 = e−|𝛼|2/2 e𝛼𝑢
†

|vac⟩

= e−|𝛼|2/2 e𝛼(𝑎
†+i𝑏†)∕√2 |vac⟩

= e−(|𝛼|/√2)2∕2 e𝛼𝑎
†∕√2 e−(|𝛼|/√2)2∕2 ei𝛼𝑏

†∕√2 |vac⟩

= | 𝛼 ∕ √2⟩𝑎 | i𝛼 ∕ √2⟩𝑏
, (3.59)

As Lee and Kim’s inequality would therefore be violated by a separable state, we
may not relax the requirement of a single-photon input in that natural way. It
seems difficult to find a sensible relaxation that does not include the coherent
state and still lifts the restriction to the ideal single-photon case.
The second prerequisite, that all photons go to C when neither Alice nor Bob use
their phase shifter, may not be relaxed. The reasoning of ‘photons that change
their paths’ is based on this prerequisite since any photon that arrives at D only
does so because of Alice’s or Bob’s actions.

Locality Assumption

Finally, their locality assumption is questionable. It is neither derived from amore
general locality principle, nor is it convincing on its own. Since any operation of
Alice or Bob has a natural, causal effect on the physical state after the recombi-
nation, locality should not restrict the measurements at the detectors behind the
beamsplitter.
Asher Peres defines locality in ref. [Per02], [p. 160]: “[the principle of local causes
…] asserts that events occurring in a given spacetime region are independent of
external parameters that may be controlled, at the same moment, by agents lo-
cated in distant spacetime regions.” In a usual Bell test, like the one described
in section 2.2, the events are the measurements of two separated physical sub-
systems without the possibility of communication. In Lee and Kim’s proposal,
the distant events are the actions of Alice and Bob that alter two separated phys-
ical sub-systems that are combined later. Only on this combined system, mea-
surements are performed. This is not merely a ‘loophole’, which is common in
imperfect Bell experiments, but necessary: without recombining the beams, the
interference cannot be measured, and the inequality cannot be obtained.
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To summarize, the presented inequality cannot act as an entanglement criterion
due to the strict prerequisites. Additionally, its validity is questionable due to the
specific locality assumption that is used.

42



Chapter 4

Applications in Hard X-Ray
Regime

This chapter summarizes the previously obtained requirements to generate and
detect states that violate the Bell inequality introduced in chapter 2. Recent pro-
posals and experimental techniques in the hard x-ray regime are then discussed in
view of these requirements. We investigate Mössbauer nuclei in thin-film cavities
in more detail, deriving a scheme to extract the coherence of first order from its
Fano spectrum.

4.1 Summary of Requirements

When searching for realizations of entanglement generation and detection in the
hard x-ray regime, the following requirements can be inferred from the consider-
ations in chapters 2 and 3:

Requirements for the Source

For a two-mode source, the equal-time coherences of first (2.41) and second order
(2.42) have to be measured in an interferometer and a coincidence setup. If the
following inequality holds true:

ℬ′ = 2√2
|𝑔(1)|

1 + √𝑔
(2)

> 2 , (4.1)

then an entangled state is present. The measurements of 𝑔(1) and 𝑔(2) may be
performed with losses in the two modes without impairing the validity. The vio-
lation implies that the proper Bell experiment would refute local hidden variable
theories for the same state. The necessary, but nor sufficient requirements on 𝑔(1)
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and 𝑔(2) are

|𝑔(1)| > 1
√2

≈ 0.707 , and (4.2)

𝑔(2) < (√2 − 1)2 ≈ 0.172 . (4.3)

If either one of these are not satisfied, the criterion cannot be fulfilled and no
entanglement can be detected by this method.

Single-Mode Source + Beamsplitter

If using a beamsplitter to generate two spatial modes from a single mode 𝑢, the
coherence of first order is equal to unity in theory (sec. 3.2), leaving only the
second order coherence 𝑔(2)(𝑢) (3.17). The remaining requirement for the single
input mode is

ℬ′ = 2√2 1

1 + √𝑔
(2)(𝑢)

> 2 , or equivalently

𝑔(2)(𝑢) < (√2 − 1)2 ≈ 0.172 .

Then, the input produces an entangled state detectable by the Johansen criterion
after impinging on the beamsplitter.
The beamsplitter has to achieve a reasonable spatial separation of the output
beams, but may induce significant losses and does not need to be balanced.

Requirements for Detection Instruments

The interferometer for the measurement of |𝑔(1)| has to be capable of sufficiently
high interference visibility. For a usual interferometer, such as a Mach-Zehnder
interferometer, VIS ≤ |𝑔(1)| (see sec. 2.4.3), therefore the minimum requirement
for the interferometer is

VIS > 1 ∕ √2 ≈ 0.707 . (4.4)
The higher the interferometer’s visibility, the more sensitive is the detection ap-
paratus. In particular, if the source emits modes of unequal intensity, the interfer-
ometer has to compensate this with appropriate beamsplitter coefficients in order
to produce a sufficiently high interference visibility.

A coincidence counting experiment does not require high detector efficiencies
due to the criterions tolerance toward loss. But usually the count rates for such
an experiment are low, thus the background rate has to be very small in order to
measure 𝑔(2) ≪ 1.
When using a beamsplitter source, it is useful to test the 𝑔(1)-part, even though
it has been theoretically shown that |𝑔(1)| = 1 in this case: To derive this result,
we used the standard quantum theory description of a beamsplitter. However,
an experimental beamsplitter could in principle behave differently. An extreme
example: if the beamsplitter produced classical mixtures of incoming single pho-
tons, 𝑔(1) would vanish and render interferometry impossible.
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4.2 Possible Experimental Realizations

In the context of this work, proposals for hard x-ray entanglement fall in 4 cate-
gories: two-mode sources of entanglement, beamsplitters, single-photon sources,
and interferometers. The available instrumentation for beamsplitters and inter-
ferometers is quite adequate to our requirements.

Two-Mode Sources

X-Ray Parametric Down-Conversion

Parametric down-conversion (PDC) is the process of one pump photon into two
photons (signal and idler ) inside a crystal. It is the most important source for po-
larization entangled photon pairs in the optical regime. In the hard x-ray regime,
PDC has also been realized; a nice overview can be found in [Ada03]. Recent
progress has been made in the generation of polarization-entangled photon pairs
[SH11]. As [THW90] have shown, the ouput of a parametric down-converter
with low conversion gain violates the full Bell inequality ℬ ≤ 2, which corre-
sponds to the ⟨𝑎𝑏⟩-part ofℬ. It does not, however, violateℬ′ ≤ 2 as discussed in
2.5, which is required for our scheme. PDC is also a source for ‘heralded’ single
photons: Triggered by the presence of the idler photon, the actual experiment is
performed with the signal photon (see below).

Nuclear Forward Scattering

Pálffy, Keitel, and Evers [PKE09] have proposed to generate entangled single-
photon states by coherently controlling a nuclear forward scattering sample via
magnetic field rotations [Shv+96]. Liao and Pálffy [LP14] propose a similar scheme
for entanglement generation of counter-propagatingmodes, [Lau14] is a variation
thereof. The decay width of the 57Fe nuclei is of the order of nanoelectronvolts;
which is very narrow compared to the synchrotron’s spectral intensity. Thus, at
most one resonant photon per pulse is present and a single, collective excitation
describes the state to a very good approximation. The schemes utilize two dif-
ferent decay channels, either at different times [PKE09] or in different directions
[LP14] [Lau14]. A single-photon entangled state is said to be generated. The
proposals treat the synchrotron pulse as a classical electromagnetic field and the
resonant nuclei as a multi-level system. The calculated scattered radiation is a
classical field as well.
In chapter 3, it was shown that a beamsplitter with a coherent input cannot pro-
duce an entangled state. This raises the question whether this is different for
nuclear excitations and a classical pulse. While more than one excitation is in-
frequent in NFS experiments with synchrotrons, higher excitation numbers are
not ruled out. Definite answers to this may not be derived from the results of
this thesis, and further calculations using a quantized treatment of the radiation
would certainly be of interest for these systems.
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Beamsplitters

There are several beamsplitter types available for hard x-rays, covering a wide
energy range. Recently, [Osa+13] have reported the fabrication of a silicon Bragg
beamsplitter for hard x-rays up to 18.88 keV that preserves the synchrotron or
XFEL wavefront. Tuning the incidence angle and thickness to the wavelength
of the impinging beam, its reflectivity is on the order of 50 % with 40 % trans-
mittivity, with losses below 10%. The reflected and transmitted (refracted) beams
are spatially well separated. [Kun+97] have reported the measurement of 𝑔(2) of
monochromatized 14.4 keV synchrotron radiation pulses with a silicon beamsplit-
ter in (2 2 0) Laue geometry. This energy range is interesting for applications in
nuclear quantum optics since it is the transition energy for the prototype Möss-
bauer isotope 57Fe [HT99].

Single-Mode Sources

Usual sources of x-rays do no exhibit low values of 𝑔(2)(𝑢). While weakening a
signal leads to low coincidence rates, its overall count rate is decreased as well,
leaving the normalized quantity 𝑔(2)(𝑢) (eq. 3.17) unchanged. A synchrotron
produces light with 𝑔(2)(𝑢) ≳ 1, corresponding to Poissonian or slightly super-
Poissonian statistics, as can be seen e.g. in Ref. [Kun+97]. In nuclear quantum
optics experiments at synchrotron light sources, on average less than one reso-
nant photon per pulse is present due to the narrow nuclear line widths. Therefore,
the resulting effects are often called ‘single-photon effects’. This is, however, dif-
ferent from our sense of a single photon, which would require 𝑔(2)(𝑢) to vanish.
Radioactive decay is a similar case: With a low angular acceptance of the isotropic
emission and / or a reasonably small probe activity, very few clicks per unit time
may persuade to calling the process ‘single photon’. But radioactive decay ex-
hibits Poissonian statistics, therefore 𝑔(2)(𝑢) = 1.

X-Ray Parametric Down-Conversion

As discussed, PDC produces photon pairs |1⟩signal |1⟩idler. This can be used to con-
struct a ‘heralded’ single-photon source, triggering on the idler photon to perform
the experiment with the signal photon. Liao, Keitel, and Pálffy [LKP16] proposed
such a heralded single photon for the x-ray regime. Since the idler photon is only
used as a herald, it doesn’t need to be an x-ray photon. Consequently, [LKP16]
suggested an the PDC of an x-ray photon into one x-ray photon and one extreme
ultraviolet photon, as reported in [TI07] and [Tam+11]. Since the energy of the
idler photon is not critical, a higher conversion rate compared to x-ray → x-ray
+ x-ray may be achieved by exploiting more degrees of freedom.
An interesting proposal to circumvent the problem of low count rates is the ‘par-
asitic mode’ [Ada03]: An xPDC crystal is installed permanently in a synchrotron
beamline. Due to the low conversion rate, almost all of the incoming photons
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propagate through the crystal and can be used for other experiments. The down-
converted photons, which change their transverse momentum, can be used in
parallel.

Interferometers

The challange for interferometers in the hard x-ray regime is positioning and sta-
bilizing multiple mirrors and beamsplitters with an accuracy of a few ångström.

Single-Crystal Interferometer

This has been overcome for example by cutting all the optical components from a
single crystal, leaving them connected by a base and thus keeping them aligned.
Using a perfect silicon single-crystal, Bonse and Hart have built such a ‘mono-
lithic’ interferometer using the ( 2 2 0 ) Laue reflection for both the beamsplitter,
the analyzer beamsplitter and the two mirrors [BH65]. This is now known as the
Triple-Laue (LLL) configuration [BG77]. Since every component is based on crys-
tal diffraction in the same crystal plane, the ‘mirrors’ are also beamsplitters and
direct half of the intensity away from the analyzer beamsplitter. The other half is
recombined on the analyzer beamsplitter. The first report of a LLL interferome-
ter [BH65] already achieved an interference visibility of ≈ 91%, using copper Kα
radiation and an acrylic glass wedge of micrometer thickness as a variable phase
shifter.
This kind of interferometer could provide an apt way of measuring both 𝑔(1) and
𝑔(2) at the same time: half the photons enter the interferometer and thus form
an interference pattern, which can be used to measure |𝑔(1)|. The other half ex-
its the system at the ‘mirrors’ and can thus be used to measure the coincidence
and thus 𝑔(2). As discussed in chp. 3, these significant losses in the individual ex-
periments have no effect on |𝑔(1)| and 𝑔(2). Interferometer technology has since
evolved and stable multi-crystal interferometers with large spatial separation are
available. Tamasaku, Yabashi, and Ishikawa [TYI02] report a interferometer with
∼ 50 cm separation of the beams for 18.8 keV photons.
A different type of interferometer is investigated inmore detail in the next section.

4.3 Interference Visibility in Thin-Film Cavities

In [Hee+15b], Heeg et al. reported the observation of and explained Fano spectra
in the reflectance of thin-film cavities containing a layer of Mössbauer 57Fe nuclei.
The cavity is irradiated by monochromatized 14.4 keV synchrotron pulses under
a grazing incidence angle, close to a deep reflectance minimum of the cavity for
light off-resonant to the nuclei. The Fano line shapes arise from the interference
of two quantum paths: The empty cavity path 𝑟cave

i𝜙cav , and the path with inter-
action with the nuclei, 𝑟nuc e

i𝜙nuc . Both channels contain multiple reflections in
the cavity. Thus, the system acts as an interferometer with two arms, raising the
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question whether it could be used to test the 𝑔(1) part of the Johansen criterion.
Provided it is capable of a high interferometer visibility, implying high coherence,
a single-photon input would generate an entangled state inside the cavity, entan-
gling the mode that interacts with the nuclei and the mode of the empty cavity.
Let us assume that the cavity is constructed such that a deep reflective minimum
is achievable for some incidence angle 𝛿min and that the collective effects speed
up the decay to high superradiance [Rö+10]. Then, the reflectance of the cavity
can be written as [Hee14]

|𝑅𝑞(𝜖)|
2
=𝑎0|𝑟cav e

i𝜙cav + 𝑟nuc e
i𝜙nuc|

2
(4.5)

=|
1

𝑞 − i
+ 1
𝜖 + i |

2
. (4.6)

Here, 𝑞 ∝ 𝛥𝜃−1 is the Fano parameter, experimentally controlled by the incidence
angle 𝛥𝜃 . The dimensionless energy detuning 𝜖 is shifted by 𝛥𝜃 but this shift is
constant at constant 𝑞. The constant porportionality factor 𝑎0 depends on cavity
structure and will be taken to be unity for simplicity.
Due to the phases 𝜙cav and 𝜙nuc, the system exhibits interference phenomena, re-
sulting in Fano line shapes. The Fano reflectance for 𝑞 = 1 is plotted in Fig. 4.1 in
the blue, solid line. Destructive interference occurs at 𝜖 = −𝑞, corresponding to
a relative phase of 𝛥𝜙 = π (red dashed line in the plot) and thus a relative minus
sign for the amplitudes 𝑟nuc and 𝑟cav. However, the Fano maximum is not at con-
structive interference with vanishing relative phase but arises from a combination
of interference and decaying amplitude 𝑟nuc ∼ 1 ∕ 𝜖2. The relative phase does not
change constantly like in a Mach-Zehnder interferometer and total constructive
interference is not possible for any choice of 𝑞.
Thus, we can not directly obtain the coherence |𝑔(1)| from the interference visi-
bility as in section 2.4.3. We will now present a scheme to extract the coherence
in a different manner.

Extracting the Coherence

To obtain a quantity similar to the standard visibility (sec. 2.4.3)

VIS
𝐼max − 𝐼min
𝐼max + 𝐼min

, (4.7)

we will choose certain values of 𝑞 and 𝜖 to evaluate 𝐼min and 𝐼max. Let us choose
𝑞 = 1 and consider the two points 𝜖 = −1 and 𝜖 = +1 in the resulting Fano
spectrum, plotted in Fig. 4.1. The cavity amplitude 𝑟cav is equal for both points
due to constant 𝑞. The nuclear amplitude 𝑟nuc is equal for both points because
of the dependence on 𝜖2. Thus, we can define a visibility that is only dependent
on varying phases, i.e. interference, and not varying amplitudes. We are in the
minimumat 𝜖 = −1 = −𝑞, which benefits the visibility. Because of the choice 𝑞 = 1,
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Figure 4.1: Fano line shape of the reflectance |𝑅𝑞(𝜖)|2 (4.6) of the nuclear cavity
system (blue) and the relative phase of the interfering channels (red dashed) in
units of π for Fano parameter 𝑞 = 1 and proportionality 𝑎0 = 1. The horizontal
axis is the energy detuning 𝜖. For 𝜖 = −𝑞, total destructive interference occurs
for a Fano line with real 𝑞. Then, the relative phase is 𝛥𝜙 = π (red line) for a
relative minus sign between the amplitudes 𝑟cav and 𝑟nuc. The Fano maximum is
at 𝜖 = 1 ∕ 𝑞, here 𝜖 = −1, and does not correspond to a relative phase of zero but
a finite phase; for this choice of 𝑞 = 1, 𝛥𝜙 = π ∕ 2. The maximum of the spectrum
occurs due to the 1 ∕ 𝜖2 decay of the cavity amplitude 𝑟cav in combination with
the interference. The two points +𝜖𝑎𝑛𝑑 − 𝜖 have equal amplitudes 𝑟𝑛𝑢𝑐 and can
thus be used to obtain an interference visibility (𝑟cav is constant for constant 𝑞).
The choice 𝑞 = 1 allows to choose 𝜖 = ±1 and thus maximum and minimum,
yielding maximal interference visibility.
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𝜖 = +1 is the maximum, yielding the optimal visibility. This Fanop maximum has
a relative phase of𝛥𝜙 = π∕2 instead of a pure interference maximumwith𝛥𝜙 = 0,
so the standard textbook relation between |𝑔(1)| and the visibility does not hold.
We define the analog visibility VIS(π∕2) for our case where the minimum is at
𝛥𝜙 = π and the maximum is at 𝛥𝜙 = π ∕ 2:

VIS(π∕2) =
𝐼 (π∕2)max − 𝐼min

𝐼 (π∕2)max + 𝐼min

(4.8)

with

𝐼 (π∕2)max = 𝐼A + 𝐼B and (4.9)

𝐼min = 𝐼A + 𝐼B − 2|⟨𝑎†𝑏⟩| , (4.10)

where 𝐼A and 𝐼B are the intensities of the interfering arms, correspondig to 𝑟2nuc
and 𝑟2cav. The visibility can be calculated, using the definition of 𝑔(1) (2.41), to the
following relation:

VIS(π∕2) = 1
2

𝜒 |𝑔(1)| − 1
(4.11)

with

𝜒 =
2√𝐼A𝐼B
𝐼A + 𝐼B

≤ 1 , (4.12)

where as before, 𝜒 = 1 for 𝐼A = 𝐼B. For our choice of 𝜖 = ±1, 𝑞 = 1 the amplitudes
are equal and thus 𝜒 = 1. Then,

|𝑔(1)| = 2
1 + 1

VIS(π∕2)
(4.13)

≥VIS(π∕2) (4.14)

so we can calculate |𝑔(1)| from the interference visibility of the Fano line at 𝑞 = 1
and 𝜖 = ±1. This visibility is always greater than |𝑔(1)| for |𝑔(1)| ∈ (0, 1). For
example, a visibility of 1 ∕ 2 yields |𝑔(1)| = 2 ∕ 3.
Equivalently to the choice 𝑞 = 1 and 𝜖 = ±1, one can choose 𝑞 = −1 and 𝜖 = ∓1.

Experimental Scheme

Experimentally, small deviations from |𝑞| = 1 cannot be ruled out. Therefore, we
propose the following procedure:
Record spectra and fit Fano curves to the experimental data to come as close to
𝑞 = 1 as possible. Then extract 𝐼min at 𝜖 = −𝑞 and 𝐼max

(π∕2) at 𝜖 = 𝑞 to ensure
𝜒 = 1. It can be easily verified that this procedure can only underestimate the
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visibility, since 𝑅(𝜖 = −𝑞) is not the maximum for 𝑞 ≠ 1.
The relation (4.11) only holds for 𝛥𝜙 = π ∕ 2 at the maximum. For a deviation,
𝛥𝜙 = π ∕ 2 − 𝛿 , we get

𝐼 (π∕2−𝛿)max = 𝐼A + 𝐼B + 2𝛥|⟨𝑎†𝑏⟩| , (4.15)

with 𝛥 = cos(π ∕ 2 − 𝛿). We can accordingly calculate the visibility

VIS(π∕2−𝛿) = 1 + 𝛥
2

𝜒 |𝑔(1)| − (1 − 𝛥)
, (4.16)

which holds for all 𝛥, not just small values1.While 𝜒 is still unity, 𝛥 can be calcu-
lated from the fitted value of 𝑞, since for 𝜖 = 𝑞, the relative phase is

𝛥𝜙 = π ∕ 2 − 𝛿 = 2 arctan (1
𝑞
) . (4.17)

By this method, the exact value of |𝑔(1)| can be obtained.

Evaluating Experimental Data

This procedure has been applied to Fano curve fits of experimental data of Ref. [Hee+15b],
kindly provided by K. P. Heeg. The assumption of strong superradiance is satisfied
in this data, while the deep-reflectivity-minimum is only approximately satisfied
in these experiments. The Fano line shape for an incidence angle of 𝛥𝜃 = 29 μrad
from the cavity minimum can be seen in Ref. [Hee+15b], Fig. 2, lower left panel.
This corresponds to 𝑞 = −0.94. The modified interference visibility, obtained
from the procedure explained above, is VIS = 0.50. Using (4.16), one obtains
|𝑔(1)| = 0.68, very close to the minimum requirement |𝑔(1)| ≥ 0.707.
A different cavity sample, reported in [Hee14] (cavity 1 in Fig. 4.2 (a), p. 42), shows
better values: For 𝛥𝜃 = 30 μrad, which corresponds to 𝑞 = −0.918, the visibility
is determined to VIS = 0.531, yielding |𝑔(1)| = 0.712 > 0.707 and thus a slightly
larger value than minimally required for the Johansen criterion. Since not all
assumptions are well satisfied for these two cavities, |𝑔(1)| is not significantly
greater than 0.707.
As discussed, higher values of |𝑔(1)| are desirable. The limiting factor for the visi-
bility is the baseline, which raises 𝐼min to finite values. This baseline can be much
lower for different cavity parameters. It is governed by two main factors: the
depth of the empty cavity’s reflectance minimum in the ‘rocking curve’, and by
photons that do not scatter off the analyzer foil and are not excluded by the time-
gating 2.

1For 𝛿 = π ∕ 2, i.e. 𝛥 = 1, the usual VIS = |𝑔(1)| 𝜒 is obtained.
2A detailed description of the experimental technique can be found in [Hee+15c], the supple-

mental material to [Hee+15b]
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In [Rö+10], the empty cavity minimum (Fig. 1 B, ibid.) is very deep, satisfying our
assumption, and the baseline is much smaller than the resonance line peak (Fig. 3
ibid., sample 1). R. Röhlsberger kindly provided the raw data for Fig. 3. A small
baseline was subtracted in these spectra but even in the raw data, the contrast is
very high due to the structural quality of the cavity [Rö17]. An interferometric
visibility of >0.75 should be possible with such a cavity, and thus |𝑔(1)| > 0.85,
well above the minimum requirement |𝑔(1)| > 0.707 for the Johansen criterion.

Discussion

We have solved here the problem of extracting the coherence 𝑔(1) for Fano in-
terference. Theoretically, the formalism yields |𝑔(1)| = 1 because we get total
destructive interference at 𝜖 = −𝑞 and thus VIS = 1. We addressed the experi-
mental reality of a baseline by choosing optimal parameters, utilizing the maxi-
mum for 𝑞 = 1. The practical difficulty of obtaining a Fano spectrum with 𝑞 = 1
was solved by the experimental scheme that allowed arbitrary values of 𝑞. In-
vestigating experimental data, we have shown that the thin-film cavity system
is in principle capable of sufficiently high coherence. However, the peculiarities
of the system require further careful analysis. Current experiments use broad-
band synchrotron pulses (compared to the nuclear resonance) and therefore have
to exclude this prompt pulse from data analysis. One would need to examine
whether the current experiments’ results can be transferred to experiments with
a single-photon source. Furthermore, the two interfering pathways both comprise
multiple reflections in the cavity. One should carefully examine whether this has
implications for the entanglement criterion, which is derived from a two-partite
Bell test.
Experimentally, present cavities already provide good interferometric visibility.
Further improvements are still desirable, because higher values of |𝑔(1)| imply
more robustness toward non-ideal values of 𝑔(2) for the Johansen criterion.

Experimental Outlook

While beamsplitters and interferometers are available for at least some portions
of the hard x-ray spectrum, the biggest experimental challenge is to generate en-
tangled states with a sufficient rate. Since parametric down-conversion is an es-
tablished experimental technique in the visible spectrum, x-ray PDC is the most
conservative approach to generate single-photon states that can subsequently be
directed onto a beamsplitter for generating an entangled single-photon state. The
discussed thin-film cavity system is at a disadvantage here, because it requires
x-rays close to the neV-narrow nuclear resonance while beamsplitters are avail-
able for more photon energies. The availability of xPDC is therefore less likely
for a nuclear system. It seems that the most likely realization of the full Johansen
criterion is to use xPDC and a single-crystal interferometer, both of which have
been used in x-ray experiments for years.
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Furthermore, the crystal interferometer provides a means to test less established
proposals such as the single-photon entanglement by coherent control of nuclear
forward scattering [PKE09] [LP14]. Even testing only one of either 𝑔(1) or 𝑔(2)

could provide meaningful insights on the physics involved.
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Chapter 5

Summary & Outlook

In this thesis, an entanglement criterion for two spatial modes of light was inves-
tigated for its applicability in the hard x-ray regime. The criterion, put forward by
Johansen [Joh96], is derived from a Bell inequality and can be tested bymeasuring
the coherences 𝑔(1) by interferometry and 𝑔(2) in a coincidence experiment. The
archetypal entanglement that can be detected by this criterion is the single-photon
entangled state, which arises from a single photon impinging on a beamsplitter.

Employing a beamsplitter loss model in chapter 3, we investigated the effect of
independent, finite losses in the two modes. We found that one obtains the same
result for the criterion in both the lossless and the lossy case, making the criterion
robust against losses in an experimental implementation.
We investigated a general beamsplitter, illuminated by a single mode, as a possible
source for entanglement and showed that the criterion is also independent of the
beamsplitter reflectance. We presented the resulting criterion for the single-mode
input and showed that the beamsplitter reduces the criterion to a coincidence cri-
terion. Furthermore, the remaining criterion can be formulated in the intuitive
quantities of photon statistics; mean photon number and variance in photon num-
ber. Meeting the criterion implies sub-Poissonian statistics of the input state. The
single-mode criterion is perfectly met for any mixture of the single-photon state
and the vacuum. Furthermore, a single-photon input state with arbitrary admix-
tures, if sufficiently small, were shown to meet the criterion as well. Thus, the
criterion does not need an idealized single-photon input, making it practical for
experimental implementation.

In order to grasp the criterion’s power and its limitations, we investigated a wide
range of states for the beamsplitter input in section 3.3. States close to the single-
photon were shown to generate an entangled state. We investigated different
states that meet a more general criterion: the full Bell inequality from which the
Johansen criterion is derived. We illustrated that there are forms of entanglement
that cannot be detected by the Johansen criterion but by the full Bell criterion,
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such as the squeezed vacuum state. This state is considerably different from the
single-photon state as it may produce one photon in each arm after impinging on
the beamsplitter.
We investigated a coherent state input in order to illustrate the difference be-
tween weak classical states and a single-photon state. While a coherent state of
arbitrary parameter 𝛼 will always produce a separable, i.e. non-entangled state,
an at–most–one–photon input will form entanglement. Thus, approximating a
weak coherent state with at most to one photon distorts the result of the criterion
drastically. This discussion is not new in quantum theory, but appears to receive
too little attention in the field of nuclear x-ray optics. It has important implica-
tions for both the generation and the verification of single-photon entanglement
under the usual condition of very low count rates [Ada03] [HT99].
While the previous discussion was based on the input states, we implemented
a post-selection calculation in section 3.4 to investigate the effect of discarding
events after the experiments. It shows that discarding certain events changes the
obtained results drastically. We showed that post-selecting events with at most
one photon detection always yields ‘entanglement criterion met’ for arbitrary in-
put states, even the coherent state. Post-selecting events with at least one photon
detection changes the coherent state’s result to ‘entanglement criterion met’ for
a wide range of parameters.
The approximation of a weak coherent state with at most two photons (truncat-
ing) was shown not to change the result of the entanglement test. It is therefore
crucial for both experiment and theory not to neglect two-photon events in the
context of this criterion, no matter how infrequent their occurrence.

Because of experimental limitations, an easier criterion would be of great interest.
We reviewed Lee and Kim’s proposal for a single-photon Bell inequality that uses
only a Mach-Zehnder interferometer in section 3.5. We showed that the prerequi-
sites of the inequality demand an ideal, entangled state. This makes it impossible
to use it for entanglement detection. We argued further that the underlying rea-
soning is unconvincing due to its questionable notion of locality in an interference
setup.

The encouraging theoretical results about the robustness of Johansen’s criterion
motivated a look into currently available x-ray technology in chapter4. The ro-
bustness towards losses circumventsmany experimental problems. We found that
the beamsplitter and interferometer technology is well advanced and should be
capable of implementing the criterion. Constructing an entanglement source re-
mains a challenge because of the low production rate of x-ray parametric down-
conversion in this energy regime. We suggested using a monolithic crystal in-
terferometer to measure both the interference and coincidence at once, using the
low xPDC rate efficiently.
Proposals for single-photon entanglement generation with nuclear forward scat-
teringwere discussed. While the results of this thesis do not allow to draw conclu-
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sions about these systems, the discussed difference between weak classical states
and single-photon states motivates further theoretical and experimental investi-
gation of these proposals.
In section 4.3, Mössbauer nuclei in thin-film cavities were investigated in more
detail. Using the interpretation of the system as a two-arm interferometer, we
demonstrated that the Fano interference differs fromMach-Zehnder interference:
Due to simultaneously varying phase and amplitude of the interfering channels
and a limited range of the relative phase, maxima of Fano curves do not cor-
respond to maximal interference. We derived a relation between interference
visibility and 𝑔(1), special for the Fano interference case. Choosing the optimal
Fano parameter, we showed that the system is in theory capable of full coherence
|𝑔(1)| = 1.
In order to investigate the coherence in experiment, we put forward an procedure
to extract |𝑔(1)| from Fano lines of arbitrary Fano parameter 𝑞. Analyzing exper-
imental data, we showed that the cavity is capable of sufficiently high values of
|𝑔(1)| for the entanglement criterion.

The presented derivation of the Johansen criterion and its practicability shows
that it can be worth it to take a step back from current experimental limitations:
The starting point of the discussed criterion is a Bell experiment using local os-
cillators, which is clearly beyond today’s x-ray technology. However, the final
criterion can be checked with only beamsplitters and detectors, well within reach
for current experiments.

Outlook

Deriving an entanglement criterion from a Bell inequality is not limited to this
specific Bell inequality. Applying the method to a different Bell inequality might
yield a new and useful criterion. It could be sensitive to different entangled states,
increasing the total range of detectable entangled states. For example, [Che+02]
showed how to transfer the Bell–CHSH inequality from discrete to continuous
variable measurements in a general way. A number of parameters can be chosen
freely in this scheme, so one may be able to derive a different entanglement cri-
terion by an analogue calculation. The Bell inequality itself does not need to be
experimentally simple in order to derive a practical criterion.

Our investigation of nuclei in thin-film cavities may guide the construction of
cavities optimized for high coherence. Aside from the entanglement criterion, a
cavity of high coherence may enhance the system’s sensitivity for the multitude
of envisaged precision metrology applications [Hee+15b].
On the theory side of the cavity systems, an examination of the process with a
single photon is an interesting research direction. While the Johansen criterion
would be fulfilled for a single-photon input, it is interesting to investigate what
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type of entanglement would be produced in the system and whether it could be
used to exploit other quantum effects.

While the Johansen criterion is derived from, but not equivalent to a proper Bell
test, it is a useful first step. It allows to solve the problem of reliable entangle-
ment production at x-ray energies independent from the problem of performing
Bell measurements with local oscillators. However, the rapid improvements in
x-ray technology and especially x-ray quantum optics will enable more elaborate
experiments in the future. One of the biggest such endeavours is the design and
construction of a x-ray free electron laser oscillator (XFELO) [KSR08] that would
yet again push the limits of coherence properties of x-ray light sources. AnXFELO
may enable the x-ray quantum optics community to perform a local oscillator Bell
experiment, testing nature’s fundamental principles in this new energy regime.
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