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SUMMARY

Spatial structures often constrain the 3D movement
of cells or particles in vivo, yet this information
is obscured when microscopy data are analyzed
using standard approaches. Here, we present
methods, called unwrapping and Riemannian mani-
fold learning, for mapping particle-tracking data
along unseen and irregularly curved surfaces onto
appropriate 2D representations. This is conceptually
similar to the problem of reconstructing accurate
geography from conventional Mercator maps, but
our methods do not require prior knowledge of the
environments’ physical structure. Unwrapping and
Riemannian manifold learning accurately recover
the underlying 2D geometry from 3D imaging data
without the need for fiducial marks. They outperform
standard x-y projections, and unlike standard dimen-
sionality reduction techniques, they also success-
fully detect both bias and persistence in cell migra-
tion modes. We demonstrate these features on
simulated data and zebrafish and Drosophila in vivo
immune cell trajectory datasets. Software packages
that implement unwrapping and Riemannian mani-
fold learning are provided.

INTRODUCTION

The ability to image the often complex behavior of biological

systems is indispensable to much of modern biological

research. Developments such as fluorescence, high-resolution,

and live-imaging techniques are now firmly established technol-

ogies in cellular and molecular biology (Megason and Fraser,

2007). The major advances in imaging include the move from

2D to 3D data acquisition, the transition from static images to-

ward time-lapse movies and the ability to image objects in vivo

in living animals rather than ex vivo studies of smaller systems

(Arranz et al., 2014; Weigert et al., 2013). The study of cell

migration is one notable beneficiary of these methodological

developments. Together with new statistical and computational
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tools (Barbier de Reuille et al., 2015; Holmes et al., 2012; Jones

et al., 2015), recent studies have already provided useful in-

sights into many fundamental processes in immunology and

developmental biology (Masopust and Schenkel, 2013; Phoon,

2006).

Movements captured in 3D are, however, rarely unconstrained

3D motions. They often take place in 1D (along e.g., blood ves-

sels, microtubules, or actin filaments) or on 2D surfaces (e.g.,

curved cell walls or the interstitial medium in layered tissues

such as the epithelium). Ignoring these structures during analysis

can produce results that are skewed and erroneous. (Figure 1).

Even when acknowledged, these lower-dimensional spaces

can be highly curved and irregularly shaped. For example

when a cell ormoleculemoves along a curved surface (Figure 1E,

top), standard 2D projections, including e.g., principal compo-

nent analysis (PCA), can introduce curvature into its track where

there is none (Figure 1E, bottom left) or artificially smooth a track

(Figure 1E, bottom right).

It is therefore important to acknowledge underlying lower-

dimensional structures when analyzing random walks; how-

ever, these underlying structures are rarely an ideal curved

surface. These lower-dimensional spaces can be highly curved

and irregularly shaped. In such cases, the commonly used

linear dimensional reduction methods such as principal

component analysis (PCA) are no longer appropriate for either

data visualization or data analysis. Here, we present two

methods for identifying a 2D coordinate representation of a

given 3D point-cloud dataset that preserves the geometrical

information of its hidden embedded surfaces. Both methods

are non-linear generalizations of both linear projections onto

pre-defined 2D planes and PCA (Jolliffe, 2013). As shown

below for migrating cells on curved surfaces, the methods

are able to detect the bias and persistence modes of biological

random walks models. The first approach, which we refer to as

‘‘unwrapping,’’ is an intuitive two-step process that is particu-

larly applicable to scenarios where the underlying 2D surfaces

have relatively simple structures—specifically, convex sur-

faces with zero or small intrinsic curvatures (e.g., local patches

on cylindrical or ellipsoid-like manifolds). This prior knowledge

of the surface geometry allows the method to be effective

even when the data are relatively sparse. The second method,

‘‘Riemannian manifold learning,’’ is an adaptation of an

existing method in machine learning that, while somewhat
lished by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Directional Statistics of Cells Migrating on Curved Surfaces

(A) 3D representation of haemocyte cell tracks extracted from Drosophila embryo (blue) with the xy-, xz- and yz-projections (gray).

(B) 3D representation of neutrophil cell tracks extracted from laser wounded epidermis of the yolk syncytium of a zebrafish (blue) with the xy-, xz- and

yz-projections (gray). Both, the datasets shown in (A and B) have a curvature, which is strong enough to induce analysis artifacts, but the same time weak enough

to be analyzed using our proposed unwrapping method.

(C) From each cell trajectory the indicated bias and persistence angles are measured for each time step. The bias angle describes the angle between a motion

vector (a step of the cell) and the direction pointing toward the attractant. The persistence angle describes the angle between two consecutive motion vectors. All

the measured bias and persistence angles of each cell track built the bias and persistence distributions, from which the strength of bias and persistence can be

estimated.

(D) Four types of random walks are sketched as cartoons, visualizing bias and persistence. For these random walk the expected bias and persistence

distributions can be obtained mathematically and are here plotted as an example. The straightness index (D) is noted as a reference (see supplemental infor-

mation for the definition of the straightness index).

(E) Artifacts that appear when random walks happen on curved surfaces but are analyzed in the 2D projections.
more abstract, can be applied to surfaces that are irregularly

shaped, non-convex, or highly curved without prior knowledge

of underlying structures. We provide a set of example code for
both methods in supplemental information, including pure R

scripts as well as Jupyter notebooks coded in R and Python

(Data S1 and Data S2).
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RESULTS

We provide a brief description of the two methods and demon-

strate their application by extracting quantitative information

from a set of simulated and experimental data of cell migration

on complex surfaces.

Method 1: Unwrapping
In a standard xy projection, information about the cell’s position

(illustrated here along a convex, curved 2D surface) in the

z dimension is simply ignored. By contrast, our unwrapping

methodmaps the points on the curved 2D surface to appropriate

coordinates by fitting a set of ellipses to a succession of data sli-

ces (indicated in gray in Figure 2B), and then ‘‘unrolls’’ these 1D

strips onto straight lines. The resulting flattened representation

of the data can then be analyzed using conventional tools for

cell migration analysis. The method proceeds in two steps. First,

unwrapping projects data that lie on part of a convex surface

onto a cylindrical-like surface, i.e., flat in one direction (Figure 2B,

see also Supplemental Information). In the second step, the pro-

cess is repeated in the orthogonal dimension and the data are

mapped from the intrinsically flat cylindrical surface onto a flat

plane.

Method 2: Riemannian Manifold Learning
All 2D coordinate maps of a given curved surface will misrepre-

sent the latter’s geometry to some extent (consider, for example,

the inflated sizes of countries near the polar regions in the

Mercator projection of the world map). ‘‘Riemannian manifold

learning’’ (or equivalently, metric manifold learning) is a method

that allows one to quantify this misrepresentation for any given

2D coordinate map, and to then use this geometric information

in any subsequent analysis of the data (Figure 2C). The method

was first introduced as the LEARNMETRIC algorithm in Per-

raul-Joncas andMeila (2013) and is a straightforward adaptation

of the non-linear dimensional reduction techniques common in

the field of statistical machine learning.

The working principle behind this method is that the geometry

of any embedded 2D surface is entirely encoded in a position-

dependent 2 3 2 matrix known as the ‘‘metric tensor.’’ This

metric can be consistently inferred, without using prior knowl-

edge or making assumptions about the geometry, from the set

of 3D data points and its corresponding set of 2D coordinate

maps. In all the examples in this paper, we obtain the 2D coordi-

nates using the locally linear embedding method. Nevertheless,

as discussed in Perraul-Joncas and Meila (2013), the method is

applicable to any other smooth, invertible map such as ISOMAP,

Laplacian Eigenmaps, or even the unwrapping method intro-

duced above. We have included a brief introduction of the rele-

vant mathematical details in the supplemental information.

Given this 2D coordinate representation of the data, one then

incorporates the geometrical information from the metric when

calculating the usual statistics of interest that describe cell bio-

logical data, such as turning angles, step-lengths, and cell veloc-

ities.We note that despite being generally applicable to any open

surface, this method requires more detailed input by the user

than the unwrapping method. Specifically, this is the so-called

bandwidth parameter intrinsic to manifold-learning algorithms;

this is effectively the extent to which the neighborhood of a point
104 Cell Systems 3, 102–107, July 27, 2016
can be considered to be a flat surface (see Supplemental Infor-

mation for details).

Unwrapping Recovers Random Walk Characteristics
To test and characterize our approach, we validate the two

methods on a set of simulated (in silico) datasets, before

applying it to data obtained by fluorescent time-lapse micro-

scopy imaging.

To start, we simulated cell tracks based on a Brownian motion

type (non-biased and non-persistent, as described in Figures 1C

and 1D) random walk model on several surfaces of varying

curvatures, ranging from a thinly-stretched ellipsoid to a sphere

(details of the random walk models are described in the Supple-

mental Experimental Procedures). This type of random walk

necessarily produces flat angular distribution (Figure 2D, ‘‘true

distribution’’), which we compare to the computed angular distri-

butions based on the simple the xy-projection, the unwrapping

method, and the manifold learning method (with and without

incorporating geometrical information) (Figure 2D). We observe

the largest deviation from the true angular distribution for the

oft-employed xy-projection, highlighting the need for data trans-

formation methods, especially for estimates of the bias distribu-

tion on more highly curved surfaces. Both the unwrapping and

the metric manifold learning methods manage to recover the

true distribution with only small deviations. The more commonly

employed manifold learning approach that omits the metric (i.e.,

‘‘Euclidian’’ manifold learning) performs significantly worse than

the metric manifold learning method, especially on very narrow

ellipsoids.

To demonstrate that unwrapping and metric manifold learning

methods are generalizable, we tested them on in total six

different geometries and simulated data obtained from three

different random walk models (Figures S1A–S1C, related to

Figure 2). The unwrapping method recovers all bias angle distri-

butions and shows improvements for the persistence angle

distributions compared to conventional xy-projections. The per-

formance of themetric manifold learningmethod is slightly better

still than the unwrappingmethod. To quantify the performance of

the different methods, we computed the deviation distance of

the angle distributions obtained through each of the methods

from the true angle distributions (Figure S2, related to Figure 2).

The unwrapping method and the metric manifold learning

method perform better than the simple xy-projection on all

tested surfaces. This analysis demonstrates that, in principle,

both the unwrapping and the metric manifold learning algorithm

are well-suited methods for the analysis of cell migration on

curved surfaces. Given suitable high-resolution data they can

also be applied to study intra-cellular movement of e.g., proteins

on cellular structures such as the endoplasmic reticulum or the

mitochondria.

Unwrapping Detects Biased-Persistent Immune Cell
Migration
Next, we analyzed bias and persistence in themigratory behavior

of immune cells in vivo. Specifically, we observed haemocyte

migration in the embryo of the fruit fly Drosophila and neutrophil

migration in the epidermis overlying the yolk syncytium of a

zebrafish in response to wounding. We extracted the data from

3D time-lapse fluorescent movies and track the cells over time



Figure 2. Methods for Manifold Learning and Applications

(A–C) Shown are example trajectories on a hemi-sphere and their transformation via one of the discussed methods. The 3D cell tracks are simply projected onto

the xy-plane (A). The 3D cell tracks are transformed via unwrapping (B) or via well-known manifold learning methods (e.g., LTSA) (C).

(D) Random walk trajectories (in absence of any bias or persistence) are simulated on the displayed curved surfaces and then transformed with xy-projection,

unwrapping, Euclidian manifold learning and Riemannian, or metric, manifold learning, respectively. The resulting bias and persistence distributions are

compared with the respective true distribution (black), which are uniform for this randomwalk model. For the ellipsoid with the most extreme aspect ratio (i.e., the

‘‘thinnest’’ shape), the manifold learning approach was unsuccessful as it incorrectly interpreted the data as belonging to a 1D line. In this case, there was

insufficient data to correctly reveal the spatial extent of one dimension.

(legend continued on next page)
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(for details see Supplemental Information). The haemocytes

migrated in a constrained, pseudo-2D regionbeneath the surface

of the embryo and did not enter deeper tissue layers at this devel-

opmental stage (Figure 1A, Movie S1, and Movie S3). This is

consistent with previous observations, which report that haemo-

cytes havenospatial bias towardanyparticular point andmove in

non-biased, non-persistent manner (Davis et al., 2012). Accord-

ingly, we observe a non-uniform persistence distribution when

haemocyte motion is analyzed with the unwrapping or metric

manifold learning methods (Figure 2E). Analysis of the xy-projec-

tion results in artifacts, which indicates a bias toward an arbitrary

point and overestimates the strength of the persistence. Addi-

tional transformations of the data highlight the deviations be-

tween the unwrapping method, the metric manifold learning

method, and the xy-projection (Figure S3, related to Figure 2).

We also analyzed the response of neutrophils to a wound (Fig-

ure S2F, related to Figure 2). From previous studies (Holmes

et al., 2012; Taylor et al., 2013), we know that neutrophils consti-

tute the first line of defense and directly migrate persistently to-

ward wounds, i.e., they show biased persistent motion. The cells

in this example migrate on a curved surface constrained by the

epidermis overlying the yolk syncytium (Figure 1B, Movie S2,

and Movie S4). Unwrapping the data and analyzing the resulting

distributions shows a clear bias of the neutrophils toward

the wound with some level of persistence, both of which are

confirmed by the metric manifold learning method. By contrast,

analysis of the xy-projection results in strong artifacts for bias

and persistence, missing the bias entirely, which is not biologi-

cally reasonable given the neutrophils’ function. Further, when

we use PCA to reduce the dimensionality, as is common in

many applications where one would like to visualize a 2D repre-

sentation of a higher-dimensional dataset, the resulting angular

distributions show even more pronounced artifacts than the

simple xy-projection (Figures S1F and S1G). These results high-

light the need for manifold learning techniques that go beyond

simple linear projections; but they also show that our rather

intuitive and data-driven unwrapping approach can provide an

adequate representation of the experimental data.

DISCUSSION

It is well-known that image processing techniques can introduce

artifacts into cell migration analysis (Beltman et al., 2009).

The problem highlighted and tackled here is more closely related

to finding the right representation of data (and has obvious paral-

lels with cartographic projections). In the two examples of in vivo

data analysis, we have shown that an appropriatemetricmanifold

learning method is required to detect a well-established biolog-

ical behavior: the bias of the zebrafish neutrophils toward a

wound. Without these methods, we would have wrongly con-

cluded that Drosophila haemocytes migrate with a bias in

absence of an obvious attractant source based only on the
(E) Application of the unwrapping method and manifold learning methods to hae

parison to the xy-projection. Shown is a schematic of the embryo and a snapshot

nucleus (red).

(F) Application of the unwrapping method and manifold learning methods to neutr

zebrafish and their comparison to the xy-projection. The epidermis waswoundedw

the imaged area and a snapshot from the video microscopy imaging with the ne
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xy-projection. Erroneous or incorrect analysis has implications

beyond wrong conclusions (Sim et al., 2015): for example, poor

analysis can render valuable patient and animal data useless.

Given the importance of constrained cellular and molecular

movement throughout cellular and developmental biology and

medicine, unwrapping and metric manifold learning methods

will be broadly applicable. The development of quasi-conformal

mapping methods (Appleboim et al., 2006) has been driven

largely by the needs of the medical imaging community for 2D

image representations of human organs with minimal geometric

distortion (Schwartz and Merker, 1986). These methods, how-

ever, presume the ability to either capture a high-resolution im-

age of the surface or to construct a triangulated mesh covering.

In many contemporary biological applications these surfaces are

rarely imaged directly with their existence only inferred indirectly

from the migration tracks of the imaged objects. Obtaining an

image of the surface would often require additional in vivo stain-

ing or generation of suitable tissuemarkers, both of which carries

the risk of interfering with the image acquisition of the actual

target cells. Both unwrapping and metric manifold learning

relieve this need, as they require no fiducial marks or character-

ized in situ spatial constraints.

EXPERIMENTAL PROCEDURES

Data Acquisition

Drosophila were maintained on cornmeal agar fly food, supplemented with

dried yeast, and handled according to standard protocols (Greenspan,

2004). Stage 15 embryos were collected from overnight apple juice plates at

25�C (ubi-EcadherinGFP, serpent-Gal4 > UAS-GFP;UAS-redstinger), carefully

dechorionated in 50% bleach, washed thoroughly with distilled water and

mounted on a glass slide in a drop of 10S voltalef oil (VWR). Movies were

collected at 30 s/frame on a PerkinElmer UltraView spinning disc microscope

using a 340 oil immersion lens.

5-days-post-fertilization Tg(Lyz:dsRed)nz zebrafish larvae (Hall et al., 2007)

were mounted laterally in 1.5% low-melting agarose (Sigma) in a glass-

bottomed petri dish containing Danieau’s solution and 0.01 mg/ml MS-222

(Sigma). The epidermis overlying the yolk syncytium was wounded using a

UV-nitrogen laser (Coumarin 440 nm dye cell) coupled to a Zeiss Axioplan 2

microscope (Micropoint Laser System, Photonic Instruments) with a 403

water immersion objective. Movies were collected at 1min/frame using a Leica

SP5-II AOBS confocal laser scanning microscope attached to a Leica DM

I6000 inverted microscope with a 320 glycerol lens.

Further methods and any associated references are available in the Supple-

mental Information.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

three figures, four movies, and two data sets and can be found with this article

online at http://dx.doi.org/10.1016/j.cels.2016.06.002.
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