
Cell Systems, Volume 3
Supplemental Information
Accurate Reconstruction of Cell

and Particle Tracks from 3D Live Imaging Data

Juliane Liepe, Aaron Sim, Helen Weavers, Laura Ward, Paul Martin, and Michael P.H.
Stumpf

	 1	

Accurate	reconstruction	of	cell	and	particle	tracks	from	3D	live	imaging	data	
	
Juliane	Liepe*1;2,	Aaron	Sim*1;2,	Helen	Weavers3,	Laura	Ward4,	Paul	Martin3;4;5,	Michael	PH	Stumpf1;2	
	
1Department	of	Life	Sciences,	Imperial	College	London,	London,	UK,	SW7	2AZ	
2Centre	for	Integrative	Systems	Biology	and	Bioinformatics,	Imperial	College	London,	UK,	SW72AZ	
3Department	of	Biochemistry,	Medical	Sciences,	University	of	Bristol,	Bristol,	UK,	BS8	1TD	
4School	of	Physiology	and	Pharmacology,	University	of	Bristol,	UK,	BS8	1TD	
5School	of	Medicine,	University	of	Cardiff,	UK,	BS8	1TD	
	
*	These	authors	equally	contributed	to	the	work.	
	
	
1.	Supplemental	Experimental	Procedures	
	
1.1.	Tutorial:	How	to	unwrap	cell	trajectory	data	using	Jupyter	
	
In	 this	 section	we	provide	 a	brief	 example	how	 to	unwrap	 trajectory	data	 that	 lie	 on	 a	 curved	 surface.	 The	
required	code	is	provided	in	Suppl.	Materials	as	an	html	file	as	well	as	a	Jupyter	notebook.	You	can	follow	step	
by	step	the	next	sections	in	parallel	with	the	Jupyter	notebook.	
	
Prerequisites.		
The	 code	 is	written	 in	R.	 To	 run	 the	 Jupyter	notebook	you	need:	 (i)	 an	 installation	of	 the	 Jupyter	notebook	
(http://Jupyter.org/),	 (ii)	 an	 installation	 of	 the	 R	 statistical	 environment	 (http://www.r-project.org/)	 and	 (iii)	
the	R	Kernel	for	the	Jupyter	notebook,	which	can	be	installed	from	https://github.com/IRkernel/IRkernel.	For	
the	 latter	 the	 instructions	 found	 at	 http://www.michaelpacer.com/maths/r-kernel-for-ipython-notebook	 are	
good	for	installing	this	under	OSX.	Visualizing	the	output	in	R	requires	the	rgl	package,	which	can	be	installed	
using	your	
R	environment.	Providing	that	these	packages	are	in	place	the	code	in	this	notebook	should	run	without	any	
further	problems.		
	
Installation.		
The	Jupyter	notebook	(previously	IPython	notebook)	requires	a	working	installation	of	Python	in	the	first	place;	
most	Python	distributions	aimed	at	scientific	computing	contain	the	relevant	files	and	packages.	The	Anaconda	
(https://www.continuum.io/downloads)	 is,	 in	our	experience,	particularly	straightforward	to	 install,	use,	and	
maintain.	 Installation	 can	 be	 done	 via	 the	 provided	 installers	 (for	 Windows,	 OSX	 and	 Linux),	 or	 from	 the	
command	 line	 (the	 website	 https://www.continuum.io/downloads	 contains	 instructions	 for	 the	 various	
versions).			
	
Maintaining	and	upgrading	the	distribution’s	packages	is	done	using	the	conda	package-manager.	To	upgrade	
the	jupyter	notebook,	for	example,	at	the	command	line	write	
	
> conda upgrade jupyter
	
This	installs	all	the	files	required	for	using	Jupyter	in	conjunction	with	Python.	Other	kernels	can	be	installed	as	
described	on	the	relevant	webpages,	which	are	linked	to	at	https://github.com/ipython/ipython/wiki/IPython-
kernels-for-other-languages.	For	the	R	kernel	the	conda	distribution	offers	a	convenient	way	of	 installing	the	
relevant	packages	(assuming	that	a	recent	R	installation	is	present),	
	
> conda install –c r r-essentials
	
(see	https://www.continuum.io/blog/developer/jupyter-and-conda-r	for	further	details).		
	
	
	
	

	 2	

How	to	execute	the	Jupyter	notebook.		
The	 Jupyter	notebooks	 are	 available	 in	 the	 folder	 Jupyter.	 A	 step-by-step	 guide	 is	 presented	as	 a	web	page	
called	UnwRapping	.html	(Data	S1).	To	execute	the	notebook,	at	the	command	line	enter	(in	the	Jupyter	folder	
Data	S1)	
	
> jupyter notebook

This	will	start	the	default	browser	with	and	the	loads	the	contents	of	the	directory,
	
	

	
	
	
Clicking	 on	 the	 relevant	 Jupyer	 notebook	 (the	 files	 with	 an	 extension	 “.ipynb”)	 will	 then	 start	 the	 relevant	
Jupyter	notebook.		
	
Running	Mannifold_learning.ipynb	will	 be	 straightforward	 with	 any	 recent	 Python	 installation;	 running	 the	
UnwRapping.ipynb	notebook	will	require	the	installation	of	the	R	kernel.	
	
	
Routines	 for	Unwrapping	Data.	We	first	define	a	set	of	necessary	routines.	getAngleBias()	 lets	us	define	the	
angle	to	the	wound	(target).	getAnglePersistence()	determines	the	angle	between	successive	steps	and	hence	
measures	the	persistence.	transformData()	and	unwrapData3D()	are	the	routines	that	transform	the	data	and	
unwrap	them	into	a	flat	space.	The	code	is	provided	in	the	Jupyter	notebook.		
	
Data	preparation.	We	provide	an	example	data	set	 in	Suppl.	Materials	(exampleDataBPRW.csv)	 in	the	folder	
SimulatedData.	This	data	set	describes	simulated	cell	trajectories	based	on	a	biased	persistent	random	walk	on	
an	ellipsoid	surface.	The	data	are	saved	as	csv	 format,	which	can	be	opened	 in	any	text	editor	or	Excel.	The	
data	file	has	to	be	provided	in	a	specific	layout:	It	should	contain	4	columns,	where	the	first	column	is	the	cell	
track	 ID	 (id),	 and	 the	 second,	 third	 and	 fourth	 columns	 are	 the	 x-,	 y-	 and	 z-coordinates	 of	 the	 cell	 tracks,	
respectively.	The	rows	are	then	the	individual	time	points	for	all	cell	tracks.	The	user	can	replace	this	data	file	
with	own	data	files.	We	use	the	same	data	format	for	all	methods	provided.	
	
The	target	of	the	biased	cells	(wound)	is	at	position	(-7;	0;	0),	which	needs	to	be	defined	in	the	first	step.	Next	
the	data	are	imported	and	reformatted	(point	6	in	the	notebook).	
	
	
Plot	Data	in	3D.	We	begin	by	plotting	the	trajectory	data	in	3D	(using	rgl).	This	allows	us	to	get	an	idea	of	the	
geometry	of	the	data	(see	notebook	point	6).	We	can	then	clearly	see	that	the	trajectory	data	lie	on	a	surface	
of	an	ellipsoid	with	radii	6;	6	and	18.		
	
	

	 3	

Analysis	of	random	walk	statistics	in	the	2D	projection.	Before	unwrapping	the	data	we	calculate	the	bias	and	
persistence	 of	 the	 random	 walk	 data	 in	 the	 conventional	 projection	 down	 to	 2D,	 i.e.	 using	 the	 x-	 and	 y-
coordinates	 only.	 We	 call	 the	 routines	 getAngleBias()	 and	 getAnglePersistence()	 by	 passing	 the	 relevant	
coordinates.	
	
Unwrapping	 of	 the	 data	 onto	 a	 flat	 manifold.	 We	 next	 transform	 the	 data	 onto	 a	 flat	 space	 using	 the	
unwrapping	 method	 by	 calling	 the	 routine	 unwrapData().	 If	 a	 simple	 representation	 of	 the	 manifold	 is	
available	(such	as	a	cylinder	or	ellipsoid)	then	we	can	unwrap	the	data	by	mapping	the	correct	positions	on	the	
manifold	(akin	to	cartographic	projections)	in	a	way	that	maintains	the	angles	correctly.	The	routine	will	create	
a	3D	graphical	presentation	of	the	progress	of	the	unwrapping	procedure.	Firstly,	the	original	data	are	plotted	
in	3D	and	then	shifted	to	be	suitable	for	the	unwrapping	using	the	routine	transformData().	The	original	data	
are	then	clustered	along	the	x-axis	and	plotted	in	3D,	where	each	cluster	is	shown	in	a	different	color.	Next,	an	
ellipse	is	fitted	to	each	cluster.	The	data	are	then	unrolled	onto	a	new	space	based	on	the	characteristics	of	the	
fitted	 ellipse	 (for	 exact	 details	 see	 section	 4).	 This	 first	 step	 is	 an	 approximation	 to	 manifold	 learning	
techniques.	In	the	following	the	data	obtained	from	the	first	step	are	further	unrolled	by	fitting	an	ellipse	onto	
a	flat	space.	The	routine	will	plot	the	transformed	data	in	grey.	
	
Analysis	of	random	walk	statistics	in	the	manifold	projection.	We	can	now	calculate	the	bias	and	persistence	
of	the	random	walk	data	in	the	2D	manifold	projection.	Again,	this	is	done	via	the	routines	getAngleBias()	and	
getAnglePersistence()	by	passing	the	relevant	coordinates.		
	
Comparison	of	inferred	biased	and	persistence	behavior	in	the	2D	x-y	and	unwrapped	(manifold)	projection.	
Finally	we	 can	 compare	 the	 computed	 statistics	 for	 the	xy-projection	with	 the	 statistics	 computed	 from	 the	
unwrapped	data.	This	is	for	example	done	via	plotting	the	histograms	and	densities	for	the	bias	and	persistent	
distributions.	Doing	so,	we	observe	strong	artifacts	 in	 the	obtained	distributions	based	on	the	xy-projection.	
On	the	contrary,	unwrapping	manages	to	recover	the	expected	bias	and	persistence	distributions.	
	
	
1.2.	Tutorial:	How	to	unwrap	cell	trajectory	data	using	R	
	
Additionally	to	the	Jupyter	notebook	we	also	provide	the	plain	R	code	for	unwrapping	data	that	lie	on	a	curved	
surface.	The	equivalent	routine	 for	 the	above-described	example	of	a	biased-persistent	random	walk	can	be	
found	in	the	folder	exampleCode_Unwrapping_1_BPRW	(part	of	Data	S2).	Furthermore	we	provide	the	same	
routine	 for	 a	 purely	 persistent	 random	walk	 (without	 bias)	 in	 the	 folder	exampleCode_Unwrapping_2_PRW	
(part	 of	 Data	 S2)	 and	 for	 an	 in	 vivo	 data	 set	 extracted	 from	 a	 fly	 embryo	 in	 the	 folder	
exampleCode_Unwrapping_3_inVivo	(part	of	Data	S2).	In	the	latter	data	set	the	fly	was	wounded	with	a	laser.	
In	 this	 example	 we	 find	 that	 without	 unwrapping	 it	 is	 possible	 to	 detect	 a	 weak	 bias	 towards	 the	 wound.	
However,	after	unwrapping	the	data	it	becomes	apparent	that	the	cells	are	strongly	biased	towards	the	wound	
but	also	into	the	opposite	direction,	i.e.	away	from	the	wound.		
	
	
Installation	and	Prerequisites.	
You	 need	 to	 install	 the	 R	 statistical	 environment	 (http://www.r-project.org/).	 You	 can	 download	 the	
precompiled	binary	 file	 for	 installation	 for	most	 computer	platforms	 (http://cran.ma.imperial.ac.uk/).	 Simply	
download	 the	binary	 file	 suitable	 for	your	platform,	double	click	 it	 to	 start	 installation.	More	advanced	user	
might	chose	to	install	R	from	source	code.		
	
For	visualization	purpose	you	need	the	R	library	‘rgl’.	Again,	you	can	download	the	binary	file	for	 installation	
from	https://cran.r-project.org/web/packages/rgl/index.html.	Alternatively,	open	a	terminal,	start	R	by	typing		
R
followed	by	enter.	Then	type	
	
install.packages('rgl')
	
which	will	also	initiate	the	installation	of	the	library.	
	

	 4	

	
How	to	use	the	R	scripts.	
First	of	all	open	a	terminal.	On	most	Macs	you	can	find	the	terminal	in	the	folder	‘Applications/Utilities’.	When	
the	 terminal	 is	 started,	 it	 usually	 links	 to	 your	 home	 directory.	 Type	 ‘pwd’	 to	 know	 in	which	 directory	 you	
currently	are.	Change	the	directory	to	one	of	the	3	example	code	folders	by	typing	in	the	terminal	for	example:	
	
cd WorkFolder/exampleCode_Unwrapping/ exampleCode_Unwrapping_1_BPRW
	
If	you	are	new	to	terminal	and	the	related	commands,	please	refer	to	http://ss64.com/osx/	
	
Then	start	R	by	typing	in	the	terminal	
R
followed	by	enter.	
To	run	the	example	script	type	
source(“runAnalysis.r”)
	
The	script	will	 first	 read	 in	 the	data	 ‘exampleDataBPRW.csv’	 located	 in	 the	 folder	 	 ‘simulatedData’.	The	data	
are	saved	as	csv	format,	which	can	be	opened	in	any	text	editor	or	Excel.	The	data	file	has	to	be	provided	in	a	
specific	 layout:	 It	 should	contain	4	columns,	where	 the	 first	 column	 is	 the	cell	 track	 ID	 (id),	and	 the	second,	
third	and	fourth	columns	are	the	x-,	y-	and	z-coordinates	of	the	cell	tracks,	respectively.	The	rows	are	then	the	
individual	time	points	for	all	cell	tracks.	The	user	can	replace	this	data	file	with	own	data	files.		
	
After	reading	the	data,	a	window	pops-up,	which	shows	the	data	plotted	in	3D.		The	data	are	then	transformed	
via	unwrapping.	In	the	same	pop-up	window	the	procedure	of	the	algorithm	can	be	followed,	i.e.	the	data	are	
shifted,	 grouped,	 unwrapped	 in	 the	 first	 dimension	 (rainbow	 colored,	 still	 curved	 surface),	 followed	 by	
unwrapping	in	the	second	dimension	resulting	in	transformed	data	points	that	lie	in	on	a	flat	2D	surface	(grey	
plotted	points).		
	
After	the	data	transformation	took	place,	the	R	script	analyses	the	initial	data	transformed	via	xy-projection	as	
well	as	the	data	transformed	via	unwrapping.	For	both	data	sets	the	bias	and	persistence	angles	are	computed	
and	plotted	as	histograms,	overlaid	with	the	estimated	density	of	the	resulting	distributions	(red	lines).		
	
If	 you	 run	 the	 in	 vivo	 example	 in	 the	 folder	 ‘exampleCode_Unwrapping_3_inVivo’	 an	 additional	 pop-up	
window	will	open,	where	the	trajectories	are	plotted	in	the	xy-projection	and	after	unwrapping	for	comparison.	
In	 this	 example	 the	 analysis	 output	 of	 bias	 and	 persistence	 distribution	 differs	 slightly.	 Here,	 we	 plot	
additionally	to	the	bias	and	persistence	distributions,	the	transformed	bias	distributions.	As	explained	further	
below,	the	bias	angles	can	take	values	between	–pi	and	pi.	In	principle,	this	distribution	should	be	plotted	on	a	
circle,	 because	 angles	 generate	 circular	 distributions.	 We	 refrain	 from	 doing	 so,	 since	 the	 circular	
representation	is	harder	to	read.	However,	one	should	keep	in	mind	that	–pi	 is	equivalent	to	+pi.	We	aim	to	
highlight	 this	 by	 shifting	 our	 obtained	 bias	 distribution	 by	 –pi.	 In	 this	 way	 it	 becomes	 clear	 that	 the	 bias	
distribution	obtained	from	the	unwrapped	data	indicates	two	maxima	(one	at	0	and	one	at	–pi),	which	shows	
that	cells	are	biased	towards	the	wound	(0),	but	also	in	the	opposite	direction,	i.e.	away	from	the	wound	(-pi).	
	
Finally,	we	provide	for	comparison	the	Jupyter	notebook	for	the	presented	manifold	learning	technique	on	the	
example	 of	 the	 persistent	 random	 walk	 based	 on	 the	 same	 data	 set	 as	 the	 R	 routine	 for	 unwrapping	
exampleCode_Unwrapping_2_PRW	(see	previous	section).		
	
	
	
	
	
	
	
	
	
	

	 5	

1.3.	Tutorial:	How	to	do	manifold	learning	with	Jupyter	
	
Installation	and	Prerequisites.	
	
The	method	is	implemented	in	Python	and	makes	use	of	the	following	packages:	NumPy,	Pandas,	scikit-learn,	
Matplotlib	and	Seaborn	
	
The	 Jupyter	notebook	can	be	 installed	 following	 the	 instructions	 in	 the	unwrapping	examples	above,	except	
there	is	no	need	for	the	R	kernels	here.	Note	that	the	code	can	be	executed	in	both	Python	2.7	and	3.x.	
	
The	 Jupyter	 notebook	 document	 is	 titled	Manifold_learning.ipnb	 (part	 of	 Data	 S1)	 and	 can	 be	 found	 in	 the	
folder	Jupyter	(Data	S1).	A	detailed	step-by-step	installation	guide	is	included	within.	For	reference,	an	HTML	
version	 of	 the	 document	Manifold_learning.html,	 which	 can	 be	 accessed	 using	 any	 web	 browser,	 is	 also	
provided	in	the	same	folder.	
	
	
1.4.	Timing	
	
All	provided	methods	are	able	to	handle	 large	data	sets.	The	provided	examples	run	 in	a	couple	of	seconds.	
The	Unwrapping	was	tested	on	a	dataset	with	3000	data	points.	This	takes	depending	on	the	computer	used	
(here:	Mac	OS	10.8,	2.7	Ghz	Intel	Core	i7,	16	GB	Memory)	several	seconds.	The	manifold	learning	methods	are	
slightly	 slower,	 again	 depending	 on	 data	 set	 size	 and	 computer	 used.	 The	 provided	 example	 in	 the	 Jupyter	
notebook	analyses	a	dataset	with	a	broadly	realistic	size	of	3000	data	points.	The	example	can	be	run	under	a	
minute	on	a	standard	workstation.	The	manifold	learning	computation	is	dominated	by	the	calculation	of	the	
similarity	matrix,	which	in	turn	scales	as	O(N2)	where	N	is	the	number	of	data	points.	Therefore	a	dataset	with	
20-25K	data	points	could	be	analyzed	within	approximately	one	hour.	 In	practice,	the	limitations	are	defined	
by	the	computer	equipment	(e.g.	processor,	memory,	disk	space).	
	
	
	
	
1.5.	Methods	in	Brief	
	
1.5.1.	Random	walks	in	Biology	
	
There	are	different	types	of	random	walks	that	are	commonly	described	in	Biology.	We	can	classify	them	into	
random	 walks	 that	 describe	 the	 step	 length	 distribution	 and	 random	 walks	 that	 describe	 the	 angular	
distributions.	The	definition	of	random	walks	via	step	length	distribution	is	somewhat	more	frequently	used.	
However,	 to	 investigate	 if	 a	 cell	 or	 a	 molecule	 is	 targeted	 in	 its	 movement,	 it	 is	 easier	 to	 look	 at	 angular	
distributions.	
	
The	most	prominent	random	walk	is	Brownian	motion.	The	angular	distribution	is	 isotropic,	meaning	that	at	
each	step	a	cell	or	molecule	has	equal	probability	to	move	in	any	direction.	If	we	measure	the	angles	between	
a	motion	vector	(cell	step)	and	a	reference	direction,	we	will	find	that	the	resulting	angular	distribution	is	flat	
(uniformly	 distributed).	 If,	 on	 the	 contrary,	 a	 cell	 has	 a	 specific	 target	 direction,	 then	 the	 cell	 has	 higher	
probability	to	move	towards	that	target	direction	compared	to	all	remaining	directions.	In	this	case	we	speak	
about	 a	biased	 random	walk.	 The	expected	angular	distribution	will	 have	 a	peak	 at	 the	 angle	which	points	
towards	the	target	direction.	The	remaining	characteristics	of	the	angular	distribution	of	such	biased	random	
walk	 depend	 on	 the	 details	 of	 the	 exhibited	walk,	which	 are	 usually	 unknown.	However,	 a	 commonly	 used	
description	of	the	angular	distribution	is	a	wrapped	normal	distribution	(a	normal	distribution	wrapped	around	
a	circle	to	describe	circular	variables	such	as	angles).	The	mean	of	the	wrapped	normal	distribution	indicates	
the	bias	direction	and	the	variance	indicates	the	strength	of	the	bias.	The	lower	the	variance,	the	narrower	is	
the	 distribution	 and	 the	 stronger	 is	 the	 exhibited	 bias.	 A	 further	 type	 of	 random	 walk	 frequently	 used	 to	
describe	animal	movement	and	cell	migration	is	a	persistent	random	walk.	A	cell	exhibiting	this	type	of	walk	
has	 higher	 probability	 of	 moving	 in	 the	 same	 direction	 as	 in	 the	 previous	 step	 compared	 to	 changing	 its	

	 6	

direction.	 If	 we	 measure	 the	 angles	 between	 consecutive	 motion	 vectors	 (consecutive	 cell	 steps)	 we	 will	
observe	a	peak	at	0,	 i.e.	no	change	of	direction.	As	for	the	biased	random	walk,	the	persistent	random	walk	
can	also	be	described	using	a	wrapped	normal	distribution	with	0	mean	and	a	 variance	which	 indicates	 the	
strength	of	the	persistence	(the	lower	the	variance	the	stronger	the	persistence).		
	
All	 three	types	of	walks	have	been	described	for	migration	of	 immune	and	other	cells,	migration	of	animals,	
and	movement	of	molecules	inside	the	cell.	Often	a	mix	of	these	three	types	is	observed.		
		
	
1.5.2.	Analyzing	cell	migration	data	
	
Cell	 migration	 trajectories	 are	 often	 extracted	 from	 confocal	 time-lapse	 microscopy	 imaging	 data.	 Recent	
advances	 allow	 researchers	 to	 collect	 such	 data	 even	 in	 vivo	 in	 living	 animals.	 Examples	 include	 imaging	 of	
macrophage,	neutrophils	 and	 cancer	 cell	migration	 in	 zebrafish	 tail	 fin,	 flanks,	 gills	 or	 yolk;	 imaging	of	 stem	
cells	and	hematopoietic	cells	in	mouse	bone	marrow;	imaging	of	haemocytes	in	various	stages	and	organs	of	
drosophila;	imaging	of	migrating	neutrophils	on	the	surface	of	the	heart	and	many	more.		
	
While	 these	 data	 contain	 potentially	 a	 huge	 amount	 of	 new	 information	 about	 the	 underlying	 biological	
processes	in	vivo,	their	correct	analysis	buries	a	vast	range	of	challenges	and	one	of	them	we	highlighted	in	this	
study:	the	movement	of	cells	on	curved	surfaces.		
	
In	order	to	extract	information	about	bias	and	persistence	from	observed	cell	trajectories,	we	have	to	compute	
two	types	of	angles:	(i)	the	angle	α	between	a	fixed	reference	direction	and	the	cell	motion	vector	and	(ii)	the	
angle	β	 between	 two	 consecutive	motion	 vectors.	While	 the	 first	 angle	α	 	 helps	us	 to	detect	potential	 bias	
direction,	 the	 later	 angle	 β	 helps	 us	 to	 measure	 the	 strength	 of	 persistence	 (as	 described	 in	 the	 previous	
section).	If	the	movement	of	the	cell	is	restricted	to	a	curved	surface,	then	directly	measuring	the	angles	α	and	
β	based	on	the	original	(untransformed)	data	will	provide	us	with	artifacts,	which	in	some	cases	could	mimic	a	
target	bias	where	in	reality	there	is	none.	In	order	to	still	be	able	to	extract	bias	and	persistence	information	
from	such	data,	we	need	to	either	transform	the	trajectory	data	in	such	way	that	they	lie	on	a	flat	surface	(and	
then	 apply	 the	 standard	 analysis	 tools),	 or	 use	 some	 methods	 to	 learn	 the	 exact	 surface	 (manifold)	 and	
compute	 the	 angles	 on	 such	manifold.	 Either	 way,	 the	 aim	 is	 to	 remove	 any	 artifacts	 that	 appear	 through	
curved	surfaces	from	the	analysis.	The	first	solution	can	be	obtained	via	unwrapping;	the	second	brings	us	to	
the	field	of	manifold	learning.	
	
	
1.5.3.	Unwrapping	trajectory	data	
	
As	 mentioned	 in	 the	 previous	 section,	 unwrapping	 trajectory	 data	 aims	 to	 transform	 data	 from	 a	 curved	
surface	so	that	they	lie	on	a	flat	surface.		
	
More	specifically,	the	Unwrapping	method	is	fitting	several	ellipses	to	the	observed	data	points.	These	ellipses	
can	 then	 be	 unrolled	 onto	 a	 2D	 surface.	 The	 basic	 idea	 behind	 this	method	 is	 rather	 simple	 and	 intuitive:	
Imagine	our	cells	are	migrating	on	the	peel	of	an	orange,	which	is	clearly	a	curved	surface	describing	a	sphere	
or	an	ellipsoid.	The	aim	is	now	to	peel	the	orange	in	such	way	that	we	can	lay	the	peel	on	the	flat	table	and	still	
conserve	 the	 characteristics	 of	 the	 cell	 trajectories.	 We	 are	 here	 interested	 to	 conserve	 directional	
characteristics,	more	than	distances.	The	resulting	transformed	cell	trajectories	can	now	be	analyzed	with	the	
commonly	used	tools.	
	
Unwrapping	is	best	suited	for	3D	objects	that	have	a	rather	small	 intrinsic	and	convex	curvature.	This	means	
before	this	method	is	applied,	we	already	have	an	idea	of	the	true	geometry.	
	
	
	
	
	

	 7	

1.5.4.	Manifold	learning	
	
Manifold	learning	refers	to	a	diverse	suite	of	methods	that	aim	to	generalize	well-known	linear	dimensionality	
reduction	 methods	 –	 Principal	 Component	 Analysis	 (PCA),	 Independent	 Component	 Analysis	 (ICA),	 Linear	
Discriminant	Analysis	(LDA)	–	to	account	for	non-linear	features	in	the	data.		
	
The	 key	 assumption	 underlying	 dimensional	 reduction	methods	 –	 linear	 and	 non-linear	 –	 is	 that	 the	 ‘true’	
number	of	degrees	of	freedom	is	lower	than	the	apparent	dimensionality	of	the	data.	The	problem	addressed	
in	this	paper	gives	the	simplest	and	perhaps	the	most	explicit	 illustration:	we	have	point-cloud	data	 in	three	
dimensions	constrained	to	lie	on	two-dimensional	surfaces,	which	may	or	may	not	be	flat.	
	
The	 study	 of	 smooth	 curved	 spaces	 belongs	 to	 the	mathematical	 field	 of	differential	 geometry.	 There	 is	 an	
intuitive	idea	underlying	this	field:	at	small	enough	scales,	every	local	patch	of	a	surface	can	be	approximated	
by	a	flat	surface;	a	curved	manifold	is	then	simply	an	overlapping	patchwork	of	(small)	flat	spaces.	This	is	the	
approach	 adopted	 by	 most	 manifold	 learning	 algorithms	 –	 that	 is,	 to	 identify	 local	 neighborhoods	 of	 data	
points,	treat	these	as	linear	spaces,	and	then	find	some	‘optimal’	method	of	joining	these	together	into	a	flat	
global	representation.	A	necessary	requirement	for	these	methods	to	work	well,	therefore,	is	that	the	density	
of	the	data	points	is	high	enough	to	allow	one	to	consider	small	linear	patches.		
	
If	 one	 starts	 to	 consider	 distances	 between	 points	 and	 angles	 between	 vectors,	 then	 we	 augment	 this	
description	of	 the	manifold	with	a	metric,	which	 is	 a	mathematical	object	 that,	 loosely	 speaking,	provides	a	
local	specification	of	 lengths	and	angles.	A	manifold	with	a	metric	 is	known	as	a	Riemannian	manifold	and	is	
the	object	of	study	in	Riemannian	geometry.	
	
Manifold	 learning	 algorithms	 do	 not	 explicitly	 preserve	 the	metric	 information.	 However	 one	 can	 augment	
these	methods	by	extracting	the	metric	at	each	of	the	data	points.	This	turns	outs	to	be	essential	for	obtaining	
accurate	directional	statistics,	as	we	show	in	this	paper.	
	
	
	
1.6.	Image	processing	and	cell	tracking.	
	
Imaging	resulted	in	image	stacks	with	dark	background	and	fluorescent	cells.	The	image	processing	was	done	
in	R	using	the	package	EBImage	[1].	The	information	of	the	cells	was	extracted	automatically	from	the	images	
using	 an	 edge	 detection	method.	A	manually	 set	 threshold	 of	 the	 light	 intensity	was	 used	per	 image	 stack.	
Each	detected	cell	was	described	as	an	object	with	the	coordinates	of	its	geometrical	center	indicating	the	cell	
location	and	the	time	the	cell	was	observed.	The	cells	were	tracked	and	reconstructed	over	the	z-stack	using	a	
surface	 algorithm.	 The	 surface	 algorithm	was	 then	 applied	 to	 track	 reconstructed	 cells	 over	 time,	 which	 is	
based	on	the	shortest	distance	between	cells	 from	two	consecutive	 images.	We	excluded	all	cell	 trajectories	
that	 included	 time	points	 in	which	 the	cell	was	 located	at	 the	edge	of	 the	 image.	Extracted	cell	 tracks	were	
reoriented,	so	that	the	center	of	the	imaged	object	(embryo	or	yolk	syncytium)	was	positioned	in	the	center	of	
the	coordinate	system	(x	=	y	=	z	=	0)	for	further	processing.	
	
	
1.7.	Dimensional	reduction:	from	linear	methods	to	Riemannian	manifold	learning.	
	
In	 this	 section	we	provide	 the	 theoretical	background	 to	 the	methods	employed	 in	 the	paper,	 including	 the	
unwrapping	 method	 outlined	 in	 Section	 1.	 The	 challenge	 of	 describing	 and	 visualizing	 the	 geometry	 of	
embedded	curved	surfaces	is	commonly	encountered	in	physics	[2],	computer	vision,	and	machine	learning	[3]	
tasks.	The	techniques	used	are	those	from	differential	geometry	or,	more	specifically,	Riemannian	geometry.	
For	 the	 sake	 of	 completeness	 and	 consistency,	 we	 adopt	 this	 more	 formal	 mathematical	 description.	 We	
provide	a	brief	 introduction	 to	 the	essential	 topics;	 for	more	details,	we	 refer	 the	 reader	 to	 [2].	 Let	ℳ	be	a	
smooth	𝑚-dimensional	manifold	and	𝑔	the	Riemannian	metric	defined	 for	every	point	𝑝 ∈ ℳ.	 For	a	 smooth	
manifold	𝒩	with	dim	(𝒩) ≡ 𝑛 ≥ 𝑚,	let	𝑓:ℳ → 𝒩	be	an	isometric	embedding,	i.e.	for	all	𝑝 ∈ ℳ	and	tangent	
vectors	𝑢, 𝑣 ∈ 𝑇7ℳ		

	 8	

	
𝑢, 𝑣 89 = 𝑑𝑓7 𝑢 , 𝑑𝑓7 𝑣 <=(9),	
	
here	 	, 89 	is	 the	 inner	 product	 on	 the	 tangent	 space	𝑇7ℳ,	𝑔7 ≡ 𝑔(𝑝)	,	 and	ℎ	the	metric	 defined	 for	 every	
point	𝑞 ∈ 𝒩. 𝑑𝑓7: 𝑇7ℳ → 𝑇A(7)𝒩		is	the	Jacobian	of	𝑓	at	𝑝.	
	
For	a	dataset	𝐷 = 𝑞C, … , 𝑞E 	of	points	in	𝒩,	dimensional	reduction	is	the	task	of	 inferring	the	inverse	map	
𝑓FC:𝒩 → ℳ	.	For	many	purposes	it	is	often	sufficient	to	infer	the	corresponding	images	 𝑥 𝑝C , … , 𝑥(𝑝E) 	for	
𝑞H = 𝑓(𝑝H)	and	 in	 some	 coordinate	 chart	𝑥:ℳ → ℝJ.	 Throughout	 this	 paper,	we	 restrict	 ourselves	 to	𝒩 ⊂
ℝL	(i.e.	 3D	 imaging	 data).	 If	ℳ ⊂ ℝC,M	then	 we	 can	 use	 linear	 dimensional	 reduction	 methods.	 Here	 we	
consider	two	linear	and	three	non-linear	methods.	
	
Projection	into	the	XY	–plane.	A	trivial	and	linear	dimensional	reduction	method	is	the	simple	projection	onto	
some	pre-defined	 set	 of	 coordinate	 axes.	We	 assume,	without	 loss	 of	 generality,	 that	 these	 are	 the	 first	m	
coordinates;	in	two	dimensions,	these	are	the	X-	and	Y-axes,	hence	the	name.	Then	for	𝑖 = 1, … , 𝑁,	we	simply	
have	
	
𝑥(𝑝H) Q = 𝑞H Q,					𝑎 = 1, … ,𝑚,	
	
where	the	𝑎	subscript	is	the	coordinate	index.	
	
	
Principal	component	analysis.	Instead	of	pre-specifying	the	axes,	we	can	perform	linear	dimensional	reduction	
via	principal	component	analysis	 (PCA).	Let	𝐶 = C

EFC
(𝑞H − 𝑞)(𝑞H − 𝑞)UE

HVC 	be	 the	sample	covariance	matrix,	

with	 the	mean	𝑞 = C
E

𝑞HE
HVC .	 Then	 for	 the	 rotation	matrix	𝑅 = 𝑒C 𝑒M 𝑒L 	𝜖	𝑂 𝑁 , 𝑒C, 𝑒M, 𝑒L	the	 eigenvectors	

of	𝐶	in	decreasing	order	of	their	respective	eigenvalues,	we	have	
	
𝑥(𝑝H) Q = 𝑅𝑞H Q,					𝑎 = 1, … ,𝑚.	
	
	
Unwrapping.	We	introduce	a	method	to	map	data	points	on	a	2D	convex	surface	onto	a	subspace	of	𝔼M,	the	
2D	 Euclidean	 space,	 which	 we	 call	 the	 Unwrapping	 method.	 This	 method	 is	 a	 particularly	 effective	
approximation	 for	 surfaces	 of	 small	 intrinsic	 curvature	 (e.g.	 a	 thin	 cigar-shaped	 surface,	 a	 small	 patch	 on	 a	
large	curved	surface,	etc).	The	unwrapping	happens	in	two	steps,	both	of	which	involves	fitting	a	series	of	1D	
ellipses	 to	 the	data.	 The	 first	 step	 is	 a	 transformation,	which	 removes	 the	 intrinsic	 curvature	of	 the	 surface	
while	 seeking	 to	maintain	 the	geometrical	 relationships	between	 the	points	 (i.e.	distances,	 angles,	 etc).	 The	
second	step	simply	unwraps	the	transformed	surface	onto	a	flat	2D	surface.	
	
Let	(𝑥H, 𝑦H, 𝑧H)	represent	the	3D	coordinates	of	the	data	point	𝑞H.	If	we	approximate	the	dataset	as	points	on	a	
subspace	of	an	ellipsoid,	we	choose	to	align	our	coordinate	system	such	that	the	largest	radius	of	the	ellipsoid	
is	described	by	the	x-axis	and	the	second	largest	radius	is	the	y-axis.	Next	the	data	points	are	clustered	into	n	
equal-sized	bins	along	the	x-axis.	For	each	cluster	c	we	fit	an	ellipse	𝐸_ 	as	the	locus	of	the	equation	
	
`a

bca
+ (eFJf)a

bfa
= 1,	

	
for	 radii	𝑟 , 𝑟e 	and	 the	 z-coordinate	𝑚e 	of	 the	 midpoint	 𝑥_, 0,𝑚e ,	with	𝑥_ 	the	 mean	 x-coordinate	 of	 the	
cluster	c.	The	ellipse	 is	 then	unrolled	onto	a	straight	 line	parallel	 to	the	y-axis	with	𝑥 = 𝑥_ 	and	𝑧 = 𝑧_JQi	the	
maximum	z-coordinate	value	of	the	points	in	cluster	c.	This	then	guides	the	first	transformation	of	the	points	
(𝑥H, 𝑦H, 𝑧H) → (𝑥Hj, 𝑦Hj, 𝑧Hj)	as	 follows.	 We	 keep	 the	 x-coordinate	 fixed,	 i.e.	𝑥Hj = 𝑥H.	 As	 for	 the	 z-coordinate,	
because,	in	general,	the	data	points	do	not	lie	on	the	ellipse	(i.e.	∉ 𝐸_),	we	let	𝑧Hj	be	equal	to	the	difference	in	
distances	 to	 the	 center	 of	𝐸_ 	from	𝑞H 	and	 the	 point	 on	𝐸_ 	along	 the	 line	 joining	𝑞H 	and	 the	 centre.	 It	 can	 be	
shown	that	
	

	 9	

𝑧Hj = |𝑞H − 𝑞Hm| ≡ 𝑑H,	
	
where	𝑞Hm 	is	a	point	with	components	
	
[𝑞Hm]C = 𝑥H 	

[𝑞Hm]M =
𝑦H𝑟eM

2 𝑧H − 𝑚e 𝑟M
−

𝑦HM𝑟eq

4(𝑧H − 𝑚e)M𝑟q
+

𝑦H𝑟eM

𝑧H − 𝑚e
	

[𝑞Hm]L =
𝑟M𝑟eq − 𝑟eM([𝑞Hm]M)M

𝑟M
	

	
	

To	determine	𝑦Hj,	we	define	a	point-specific	ellipse	𝐸H 	with	the	same	centre	 𝑥_, 0,𝑚e 	as	𝐸_ 	but	with	radii		
𝑟e,H = 𝑟e + 𝑑H 	and	𝑟 ,H = 𝑟e,H

bc
bf
.	Then	if	𝑞H,e	is	the	intersection	of	the	𝐸H 	with	the	

xy-plane,	𝑦Hj	is	 then	 the	 arc	 length	 of	𝐸H 	between	𝑞H,e	and	𝑞H.	 Repeating	 this	 transformation	 for	 all	n	 clusters	
results	in	the	first	unwrapping	of	the	data	points.	
	
For	the	second	unwrapping	the	same	procedure	is	repeated	on	the	transformed	data	set	giving	𝑞Hj → 𝑞Hjj,	but	
with	the	variable	swap	𝑥 ↔ 𝑦.	Note,	 if	all	data	points	{𝑞H}HVCE 	lie	strictly	on	an	ellipsoidal	surface	then	𝑧Hjj = 0	
for	all	𝑖 = 1, … , 𝑁.	An	example	tutorial	is	provided	in	suppl.	material.	
	
	
Manifold	learning.	Manifold	learning	refers	to	a	class	of	non-linear	dimensional	reduction	methods	that	seek	
to	 recover	 the	 geom	 etry	 of	 the	 low-dimensional	 manifold.	 These	 include	 ISOMAP	 [4],	 Locally	 Linear	
Embedding	(LLE)	[5],	and	Laplacian	Eigenmaps	[6],	amongst	several	others.	In	every	case,	the	metric	on	M	is	a	
global	Euclidean	metric,	i.e.	𝑔Qv = 𝛿Qv,	where	δ	the	kronecker	delta	or	identity	matrix	and	a,	b	the	coordinate	
indices.	We	refer	to	these	approaches	as	Euclidean	manifold	learning.		
	
In	this	paper	we	have	employed	LLE	in	our	simulation	and	analysis	of	real	data.	LLE	is	based	on	the	expectation	
that	given	a	sufficiently	large	data	set,	each	data	point	and	its	closest	neighbors	lie	on	a	locally	linear	patch	of	
the	 surface.	 The	 algorithm	 has	 two	 steps:	 1.	 Expressing	 each	 higher	 dimensional	 data	 point	 as	 a	 linear	
combination	of	its	neighbors,	and	2.	Obtaining	a	set	of	lower	dimensional	coordinates	given	relations	above.	In	
both	 steps,	 we	 proceed	 by	 minimizing	 the	 mean	 square	 errors	 of	 the	 data	 points	 from	 their	 linear	
reconstructions.	
	
Our	motivation	 for	adopting	 LLE	 comes	 from	both	 its	 intuitive	approach	 to	dimensionality	 reduction	 (locally	
linear	 patches)	 and	 also	 its	 effectiveness	 in	 providing	 an	 isometric	 reduction	 for	 surfaces	 with	 no	 intrinsic	
curvature,	e.g.	the	surface	of	a	cylinder	or	data	points	on	a	cylindrical	‘swiss-roll’.	Furthermore	it	is	also	widely	
used	in	the	machine	learning	community.	In	this	paper	we	have	used	the	implementation	of	LLE	in	the	Scikit-
learn	Python	machine	learning	package.	
	
Riemannian	 manifold	 learning.	 Riemannian	 manifold	 learning	 aims	 to	 augment	 the	 set	 of	 coordinates	
𝑥 𝑝H HVC

E 	with	the	corresponding	set	of	local	metric	values,	i.e.	
	
(𝑥 𝑝H), 𝛿Qv HVC

E → (𝑥 𝑝H , [𝑔 𝑝H]Qv) HVC
E ,	

	
where	𝑎, 𝑏 = 1, … ,𝑚	label	the	metric	components.	By	definition,	𝑔	is	symmetric	and	positive	semidefinite.	In	
this	setup,	one	can	recover	the	precise	geometrical	information	of	the	embedded	manifold.	In	this	paper,	we	
have	adapted	the	LEARNMETRIC5	[3]	algorithm	to	recover	the	2D	coordinates	and	the	corresponding	metric	
components	from	3D	data	points.	
	
For	certain	applications,	such	as	computing	the	geodesics	(see	below),	there	is	a	need	to	derive	metric	values	
for	 out-of-sample	 points	 on	ℳ.	 The	metric	𝑔(𝑥)	for	𝑥 ∉ {𝑥(𝑝H)}HVCE 	are	 approximated	 in	 two	 steps.	 First	we	
perform	 a	 regression	 for	 each	 of	 the	𝑚(𝑚 + 1)/2	unique	 components	 of	𝑔.	 In	 this	 paper	 we	 used	 the	

	 10	

implementation	of	Gaussian	Processes	in	the	Scikitlearn	Python	machine	learning	package.	Second	we	satisfy	
the	positive	semidefinite	constraint	by	replacing	the	matrix	𝑔(𝑥)	with	the	nearest	positive	semidefinite	matrix	
as	measured	by	the	Frobenius	Norm.	We	implement	this	using	the	approximation	method	of	Higham	(2002)	
[7].	
	
1.8.	Extraction	of	geometrical	information	
	
All	the	relevant	geometrical	information	of	interest	can	be	extracted	from	the	metric.	The	angle	between	the	
two	vectors	𝑢, 𝑣	is	given	by		
	

𝜃 = 𝑐𝑜𝑠FC ~,� �9

~,~ �9 �,� �9
.	

	
The	geodesic	𝛾: ℝ → ℳ,	is	the	path	of	extremal	length	and	is	the	solution	to	the	set	of	Hamiltonian	equations.	
With	slight	abuse	of	notation	writing	𝑥(𝛾 𝑡) ≡ 𝑥(𝑡),	these	equations	are		
	
𝑥Q = ��

�b�
= 𝑔Qv𝑟v,	

𝑟Q = − C
M
�8��

�i�
𝑟v𝑟_,	

	
where	𝑟Q	is	the	conjugate	momenta	to	𝑥Q, 𝑔Qv	the	components	of	the	inverse	metric,	𝑥 ≡ 𝑑𝑥/𝑑𝑡,	
and	the	Hamiltonian	
	

𝐻 =
1
2
𝑔Qv𝑟v	

	
The	bias	direction	from	cell	at	a	given	time	to	a	point	source	of	attraction	is	given	by	the	tangent	vector	𝑢j	to	
the	 geodesic	 connecting	 the	 two	 points.	 Therefore	 we	 solve	 the	 geodesic	 equations	 (9)	 for	𝑥(𝑡)	under	 the	
constraints		
	
𝑥 𝑡 = 0 = 𝑥 𝑝C ,			𝑥 𝑡 = 1 = 𝑥(𝑝M).	
	
One	approach	is	to	simulate	these	geodesics	from	𝑝C	via,	say,	the	simple	Euler	method	[8]	and	find	the	initial	
vector	 that	generates	 the	points	on	 the	geodesic	 that	 intersects	𝑝M.	However	 this	 seemingly	straightforward	
process	 is	highly	 sensitive	 to	errors	 in	 the	out-of-sample	metric	approximations	–	 the	errors	 compound	and	
one	often	ends	up	with	unstable	trajectories.	In	this	paper,	we	implement	a	more	stable	and	efficient	discrete	
approximation	as	follows.		
	
We	first	overlay	a	grid	over	the	learned	manifold.	Here	we	fix	the	grid	dimensions	to	200	x	200.	Next,	using	the	
Gaussian	Process	 regression	method	described	above,	we	obtain	 the	metric	 values	at	 every	 grid	 vertex	and	
consequently	the	lengths	of	the	sides	of	the	cells	across	the	grid.	Then	we	approximate	our	geodesics	between	
the	 point	 of	 interest	 and	 the	 bias	 point	 by	 the	 grid	 path	 that	minimizes	 the	 total	 length.	We	usd	Dijkstra’s	
algorithm	 to	 accomplish	 this	 step.	 Finally,	 we	 approximate	 the	 initial	 vector	 by	 performing	 a	 simple	 linear	
regression	on	the	first	few	vertices	in	our	discretized	geodesic	path.		
	
	
1.9.	Directional	Statistics.	
	
The	straightness	 index,	𝐷,	 is	 commonly	used	 to	 investigate	cell	migration	strategies	and	 it	 is	defined	as	𝐷 =
|i�,i�|

�
,	where	𝑥�	is	 the	position	of	 the	cell	at	 time	0,	𝑥U 	is	 the	position	of	 the	cell	at	 time	T,	|𝑥�, 𝑥U|	indicates	

the	shortest	distance	between	𝑥�	and	𝑥U 	and	𝑙	is	the	actual	length	of	the	path	the	cell	took	from	𝑥�	to	𝑥U 	.	For	
most	applications	the	shortest	path	between	start	and	end	point	is	simply	the	Euclidean	distance,	however,	for	
curved	surfaces	the	metric	needs	to	be	learned.	
	
Another	way	of	describing	cell	migration	tracks	is	by	determining	their	bias	towards	a	specific	target	(source	of	

	 11	

attractant,	 like	wounds	or	other	cell	 types)	and	 their	persistence.	We	define	 the	persistence	of	a	cell	as	 the	
probability	of	the	cell	moving	at	time	t	in	the	same	direction	as	at	time	𝑡 − 1.	Therefore,	we	need	to	compute	
the	 angles	 (𝛽�)	 between	 two	motion	 vectors,	which	will	 result	 in	 a	 characteristic	 distribution.	 The	wrapped	
normal	 distribution	 has	 been	 successfully	 used	 to	 describe	 persistent	 movement	 of	 cells.	 The	 probability	
density	function	is	defined	as		
	

𝑁� 𝛽� 𝜇, 𝜎 = C
� M�

exp	(− (��F��M��)a

M�a
)�

�VF� ,	
	
where	 	𝜇	is	 the	mean	and	𝜎	is	 the	 standard	deviation.	 In	 the	case	of	persistence	we	have	𝜇 = 𝛽�FC.	We	can	
then	define	the	strength	of	the	persistence	𝑝	as	𝜎 = −2log	(𝑝).	A	cell	that	is	highly	persistent	has	a	𝑝	close	to	
1,	while	a	cell	that	is	not	persistent	at	all	has	a	𝑝	of	0,	in	which	case	the	wrapped	normal	distribution	becomes	
a	 wrapped	 uniform	 distribution.	 The	 bias	 of	 a	 cell	 is	 also	 described	 by	 an	 angular	 distribution.	 Here,	 we	
compute	the	angle	(𝛼)	between	a	motion	vector	of	a	cell	and	the	vector	that	points	from	the	cell	towards	the	
target.	Again,	we	apply	 the	wrapped	normal	distribution	with	 the	bias	parameter	𝑏	(instead	of	𝑝)	describing	
the	strength	of	the	bias	and	𝜇 = 0.	
	
	
1.10.	Simulation	of	random	walks	on	ellipsoids	
	
The	ellipsoid	is	defined	as	the	set	of	points	satisfying	
	
ia

Qa
+ `a

va
+ ea

_a
= 1,	

	
with	𝑥, 𝑦, 𝑧	the	3D	cartesian	coordinates,	and	𝑎, 𝑏, 𝑐	the	three	shape	parameters.	We	consider	several	different	
ellipsoid	shapes	with	𝑎/𝑐	ratios	from	the	set	{1,	0.66,	0.5,	0.4,	0.33,	0.1}	where	𝑎 = 𝑏	throughout.	We	use	the	
2D	parameterization	
	
𝑥 = 𝑎	cos𝜇	sin𝜈,	
𝑦 = 𝑏	sin𝜇	sin𝜈,	
𝑧 = 𝑐	cos𝜈,	

	
with	metric	components	
	
𝑔�� = sinM𝜈 𝑎MsinM𝜇 + 𝑏McosM𝜇 ,	
𝑔�¦ = 𝑔¦� = sin𝜇	cos𝜇	sin𝜈	cos𝜈,	
𝑔¦¦ = cosM𝜈 𝑎McosM𝜇 + 𝑏MsinM𝜇 + 𝑐MsinM𝜈.	

	
	
We	simulate	400	random	walks	on	each	of	the	ellipsoids	as	follows:	starting	from	the	 initial	point	 𝜇�, 𝜈� =
𝜋, �

M
,	we	randomly	select	an	initial	angle	of	motion	𝜃�~𝐵(𝜃, 𝜃�j),	where	𝐵	is	the	bias	angle	distribution	with	

𝜃�j 	the	direction	to	the	bias	source	at	time-step	index	t;	𝜃�j 	is	determined	following	the	minimization	procedure	
described	 above	 and,	 in	 turn,	 defines	 an	 initial	 tangent	 vector.	 The	 particle	 moves	 along	 the	 geodesic	
generated	by	this	vector	with	random	step	length	taken	from	a	𝜒M-distribution	with	mean𝑘 = 2;	the	absolute	
lengths	are	scaled	with	a	constant	 factor	 in	 the	range	0.015	–	0.25	to	ensure	that	 the	trajectories	cover	 the	
ellipsoid.	At	each	subsequent	time	step	𝑡 > 1,	the	particle	changes	direction	and	takes	an	angle	according	to	a	
weighted	distribution		
	
𝜃� = 𝑤𝐵 𝜃, 𝜃�FCj + 1 − 𝑤 𝑃(𝜃 − 𝜃�¯�°),	
	
where	𝑃	is	 the	persistence	angle	distribution	and	𝜃�¯�° is	angle	of	motion	prior	 to	changing	directions	at	 time	
step	t.	Both	𝑃	and	𝐵	are	either	uniform	distributions	in	the	range	(0,2𝜋]	or	wrapped	normal	distributions	with	
parameter	𝜎 = 1.2,	depending	on	the	 type	of	 random	walk	being	simulated.	For	 the	bias	persistent	 random	
walk,	we	fix	the	weight	parameter	to	be	𝑤 = 0.5.	We	repeat	each	path	for	20	time	steps,	giving	21	trajectory	
points	per	path.	

	 12	

2.	Supplemental	figure,	movie	and	data	legends	
	
	
Figure	 S1.	 Related	 to	 Figure	 2.	 Performance	 comparison	 of	 xy-projection,	 the	 unwrapping	 method	 and	
manifold	learning	methods.	Shown	are	the	exact	distributions	(black)	that	describe	bias	and	persistence	for	3	
types	 of	 random	walks:	 (A)	 Brownian	motion,	 (B)	 biased	 random	walk	 and	 (C)	 persistent	 random	walk.	 Cell	
trajectories	were	simulated	on	the	surface	of	ellipsoids	with	different	ratios	of	 its	radii	 (a/c	ratio	=	0.1,	0.25,	
0.33,	 0.5,	 0.66	 and	 1.0).	 For	 each	 scenario	 we	 compute	 the	 distributions	 based	 on	 the	 xy-projection,	 the	
unwrapping	method	and	the	two	manifold	learning	methods.	The	two	manifold	learning	methods	are	not	able	
to	 deal	 with	 the	 two	 lowest	 a/c	 ratios	 and	 where	 left	 out.	 The	 reason	 is	 that	 these	 ellipsoids	 were	 too	
elongated,	so	that	the	manifold	learning	methods	treated	the	data	as	if	they	were	located	in	a	slim	plane.	(E)	
Shown	are	the	exact	persistence	angle	distribution	(black),	the	persistence	angle	distribution	computed	from	
the	3D	vectors	(green)	and	the	persistence	angle	distribution	resulting	from	unwrapping	the	data	into	a	non-
curved	 surface	 (red).	 The	underlying	 data	 are	 persistent	 random	walk	 trajectories	 simulated	on	 an	 ellipsoid	
with	 radii	 ratio	 a/c	 =	 0.33.	 (F-G)	 Application	 of	 the	 unwrapping	 method	 (orange)	 to	 neutrophil	 cell	 tracks	
extracted	 from	 the	 epidermis	 overlying	 the	 yolk	 syncytium	 of	 a	 zebrafish	 and	 its	 comparison	 to	 the	 xy-
projection	 (blue)	and	principle	component	analysis	 (green).	The	epidermis	was	wounded	with	a	 laser	before	
image	acquisition.	(Corresponds	to	Figure	2F)		
	
Figure	 S2.	 Related	 to	 Figure	 2.	 Performance	 measurements	 of	 the	 different	 methods.	 We	 computed	 the	
Kolmogorov-Smirnov	distance	(ks-distance)	between	the	true	angular	distributions	and	the	extracted	angular	
distributions	using	 xy-projection,	 unwrapping,	 Euclidian	manifold	 learning	 and	metric	manifold	 learning.	We	
considered	the	same	data	generated	for	the	random	walk	models	described	in	Supplemental	Figure	1A-C.	The	
smaller	the	ks-distance	is,	the	better	is	the	performance	of	the	methods.		
	
Figure	S3.	Related	to	Figure	2.	Shown	are	the	2D	projections	of	cell	tracks	extracted	from	Drosophila	embryos	
(colored	tracks)	after	applying	(A)	xy-projection,	(B)	unwrapping	and	(C)	manifold	learning.	The	green,	orange,	
dark	blue	and	red	tracks	are	highlighted	for	easy	comparison	between	the	methods.	The	grey	lines	in	(B)	and	
(C)	are	for	comparison	with	the	xy-projection	as	they	are	the	same	tracks	using	the	xy-projection.	
	
Figure	S4.	Related	to	Figure	2.	Manifold	learning	with	more	complex	data.	(A)	We	simulated	random	walk	cell	
trajectory	data	on	a	complex	surface.	Shown	is	the	3D	representation	of	these	data	(blue)	with	the	xy-,	xz-	and	
yz-projections	(grey).	This	example	is	too	complex	to	be	successfully	transformed	via	unwrapping,	but	can	be	
dealt	with	manifold	learning	techniques.	The	trajectories	display	a	Brownian	motion	type	random	walk,	where	
the	bias	and	persistence	distributions	are	expected	to	be	flat.	(B)	We	analyze	the	data	in	the	xy-projection	and	
compare	this	to	the	Euclidian	manifold	learning	algorithm	and	the	metric	manifold	learning	algorithm.	As	can	
be	 seen	 in	 supplemental	 figure	 4B,	 the	 xy-projection	 induces	 extreme	artifacts.	 The	bias	 distribution	 is	well	
extracted	from	both	manifold	learning	methods,	while	the	persistence	distribution	is	only	correctly	extracted	
using	the	metric	manifold	learning	algorithm,	highlighting	the	need	to	accurately	learn	the	metric	of	the	data	
	
Movie	S1.	Related	 to	Figures	1	and	2.	Shown	are	example	raw	data	for	the	unwounded	Drosophila	embryo	
data	set	analyzed	in	figures	1A,	2E	and	Supplemental	Figure	1.	Time-lapse	movie	of	the	dynamic	behavior	of	
Drosophila	 immune	cells	(heamocytes)	in	unwounded	tissue.	Epithelial	cells	are	labeled	using	E-cadherin-GFP	
(green	cell	outlines),	immune	cell	nuclei	are	labeled	using	nuclear	Red-Stinger	(red)	and	immune	cell	cytoplasm	
using	cytoplasmic	GFP	(green)	both	driven	by	srp-Gal4.	
	
Movie	 S2.	Related	 to	 Figures	 1	 and	 2.	 Shown	 are	 example	 raw	 data	 for	 the	 wounded	 zebrafish	 data	 set	
analyzed	 in	 figures	 1B	 and	 2F.	 Time-lapse	 movie	 of	 the	 dynamic	 behavior	 of	 zebrafish	 immune	 cells	
(neutrophils)	in	laser-induced	wounded	tissue.	Immune	cells	are	labeled	using	cytoplasmic	dsRed	(red)	driven	
by	the	lysozyme	C	(lyz)	promoter.	
	
Movie	 S3.	 Related	 to	 Figures	 1	 and	 2.	 	 Shown	 are	 the	 haemocyte	 cell	 tracks	 extracted	 from	 Drosophila	
embryos	in	3D.	The	different	rotation	angles	show	the	curvature	of	the	space	the	haemocytes	are	migrating	in.	
	
Movie	S4.	Related	to	Figures	1	and	2.		Shown	are	the	neutrophil	cell	tracks	extracted	from	zebrafish	embryo.	

	 13	

The	epidermis	overlying	 the	yolk	 syncytium	was	wounded.	The	 location	of	 the	wound	 is	 indicated	by	a	 light	
blue	dot.	
	
Data	S1.	Related	to	Experimental	Procedures.	This	folder	contains	the	two	Jupyter	notebooks	for	Unwrapping	
and	Manifold	learning.	Furthermore	it	includes	the	two	websites	for	both	methods.	Example	data	are	stored	in	
the	folder	‘SimulationData’.	
	

Data	S2.	Related	to	Experimental	Procedures.	This	folder	contains	all	described	R	scripts	and	the	provided	
example	data	in	order	to	perform	Unwrapping	on	simulated	and	in	vivo	data.	

	

	
3.	Supplemental	figures.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 14	

	
Figure	S1.	Related	to	Figure	2.	

	

	

	 15	

	
	
	
Figure	S2.	Related	to	Figure	2.	
	

	
	
	
	
Figure	S3.	Related	to	Figure	2.	
	

	

	
	
Figure	S4.	Related	to	Figure	2.	
	
	

	
	

	 16	

	
	
	
4.	Supplemental	References.	
	
1. Pau,	G.,	Fuchs,	F.,	Sklyar,	O.,	Boutros,	M.	&	Huber,	W.	Ebimage	 -	an	r	package	 for	 image	processing	with	

applications	to	cellular	phenotypes.	Bioinformatics	26,	979–81	(2010).	
2. Nakahara,	M.	Geometry,	Topology	and	Physics,	Second	Edition	(CRC	Press,	2003).	
3. Perraul-Joncas,	D.	&	Meila,	M.	Non-linear	dimensionality	reduction:	Riemannian	metric	estimation	and	the	

problem	of	geometric	discovery.	arXiv.org	(2013).	1305.7255v1.	
4. Tenenbaum,	J.	B.,	de	Silva,	V.	&	Langford,	J.	C.	A	global	geometric	framework	for	nonlinear	dimensionality	

reduction.	Science	(New	York,	N.Y.)	290,	2319–+	(2000).	
5. Roweis,	 S.	 T.	&	 Saul,	 L.	 K.	Nonlinear	 dimensionality	 reduction	 by	 locally	 linear	 embedding.	 Science	 (New	

York,	N.Y.)	290,	2323–+	(2000).	
6. Belkin,	M.	&	Niyogi,	P.	Laplacian	eigenmaps	for	dimensionality	reduction	and	data	representation.	Neural	

Computation	15,	1373–1396	(2003).	
7. Higham,	N.	J.	Computing	the	nearest	correlation	matrix	-	a	problem	from	finance.	IMA	Journal	of	Numerical	

Analysis	22,	329–343	(2002).	
8. Leimkuhler,	B.	&	Reich,	S.	Simulating	Hamiltonian	Dynamics	(Cambridge	University	Press,	2004).	

