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Figure S3

Model 1: attractant is released from the wound area
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Figure S4

Predicted cell bias 
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Figure S6
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Supplemental Figure Legends 
 
Figure S1.  Related to Figure 1. Hemocytes are not required for pupal wound closure and 
hemocyte movement is not driven by bulk tissue flow 
(A-J) Wound closure in control samples (A-E) is accompanied by hemocyte recruitment (red, srp-Gal4 
driven mCherry-Moesin) but hemocyte ablation (srp-Gal4 driven expression of pro-apopotic gene 
reaper) does not impair wound closure (F-J). Wounded epithelium labelled using ubiquitously-
expressed GFP-tagged Moesin (green).  
(K-L) Nuclear tracking of hemocytes correlates well with the dynamic behaviour of the hemocyte 
leading edge during recruitment to the wound site.  Example nuclear tracks shown in red and 
corresponding leading edge tracks shown in blue.  Squares represent the start of the hemocyte track and 
circles represent the final tracked position.  
(M-R) Co-injection of inert fluorescent beads (red, arrowheads) into the extracellular space of pupal 
wings.  Hemocytes (arrows) labelled by srp-Gal4 driven expression of cytoplasmic GFP (green) and 
nuclear RFP (red).  Beads move rapidly and randomly in the extracellular space of unwounded wings 
(majenta, N) compared to the slower moving hemocytes (green, N). Following wounding, hemocytes 
migrate directionally towards the injury (green, Q and R) but extracellular beads are not biased towards 
the wound (majenta, Q).  Beads engulfed by hemocytes (cyan, Q) move towards the wound in a similar 
way to hemocytes without beads (green, Q).  There is minimal movement of the overlying epithelium 
towards the wound, shown by the negligible movement of beads that have been engulfed by epithelial 
cells (blue, R) compared to the hemocytes (green, R).     
 
Figure S2.  Related to Figure 2. Hemocytes do not change migration persistence upon wounding 
and do not undergo contact-inhibition of locomotion at wounds  
(A-B) The observed cell persistence, extracted from in vivo hemocyte trajectory data, is not changed 
upon wounding for either small (A) or large (B) wounds and remains at baseline levels observed in 
control unwounded samples.  Each boxplot represents a marginal posterior parameter distribution for 
the observed persistence estimated for each spatio-temporal cluster. 
(C-F)  The number of hemocytes found at varying distances from the wound site as observed in vivo 
(C) or predicted from in silico simulations (E) with hemocytes either undergoing contact inhibition of 
locomotion (red) or not (green).  Also plotted is the smallest distance found between hemocytes at 
different locations from the wound site as observed in vivo (D) or predicted from in silico simulations 
(F).  In silico simulations based on hemocytes migrating without contact inhibition (green, E and F) 
best fit the experimental data (C and D). 
 
Figure S3.  Related to Figure 3. Calibrating the model of the diffusion gradient to infer 
parameters of the attractant gradient.   
(A-D) Determining which model of the diffusion gradient best-fits the observed in vivo data.  The 
attractant is either released from the wound area i.e. the damaged necrotic tissue (A and B) or the 
attractant is released from cells around the wound margin (C and D). The observed cell bias from in 
vivo data (blue box plots) is compared with that of the expected bias according to the different models 
(red lines).  The model that fits the experimental data is determined to be the one in which the attractant 
emanates from the wound margin.  
(E-F) The inferred spatio-temporal diffusion gradient of the wound attractant, according to the model 
in which the attractant emanates from the wound edge, at different times and distances post-wounding 
for small (E) and large (F) wounds.  Red lines indicate the mean and pink lines indicate the 5%- and 
95%-tile of 1000 simulations from the inferred posterior distributions. 
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(G-I)  RNAi-mediated knockdown of the Drosophila ATP receptor AdoR specifically in hemocytes 
using the srp-Gal4 driver (G) does not impair the hemocyte response to wounding (cell bias in H and 
cell persistence in I).   
 
Figure S4.  Related to Figure 4.  Modelling competing attractant gradient interactions in 
response to double wounds.  
(A-C)   For wounds close together, attractant gradients overlap and mimic a single very large wound, 
predicting less biased migration in the inter-wound region (red line, A). For wounds far apart, attractant 
gradients will not interact and hemocytes respond as for two single wounds (red line, C).  For wounds 
of intermediate distance apart, attractant gradients will strongly overlap, creating shallower gradients 
and reduced bias in the inter-wound region (red line, B). Grey boxes indicate wound positions. 
(D-F)  Modelling predicts the resultant cell bias following the spatial interaction of competing 
gradients from two adjacent wounds.  For two wounds that are positioned close together, the attractant 
gradients will rapidly merge, mimicking that of a single very large wound (A). For wounds that are far 
apart, the two wounds will behave separately and cells will respond similar as for two independent 
individual wounds (C).  For wounds at an intermediate distance apart, the attractant gradients will 
interact in the inter-wound region after 25min post-wounding, causing a drop in bias in this region (B).   
(G-I) The observed cell bias extracted from in vivo imaging data obtained for each of these three 
different scenarios is consistent with the in silico predictions and confirms the validity of the inferred 
attractant gradient parameters for the single wound. Each boxplot represents a marginal posterior 
parameter distribution for the observed bias estimated for each spatio-temporal cluster. 
 
Figure S5.  Related to Figure 5.  Photoconvertible fluorophore Kaede permits selective labelling 
and tracking of wound-recruited hemocytes.  
(A-D)  Photoconvertible fluorophore Kaede expressed specifically in hemocytes using the srp-Gal4 
driver (green, A).  Wounding (asterisk) induces the recruitment of hemocytes to the injury site (dotted 
circle, B) which are selectively labelled by UV-mediated photoconversion of Kaede in these cells 
(majenta, C; also see inset).  Photoconverted cells (Kaede*, majenta) can then be tracked as hemocytes 
resolve away from the wound (arrowheads, D; also see inset). 
 
Figure S6.  Related to Figure 6.  Non-healing chronic wounds do not assemble a stable 
actomyosin cable at the leading edge.  
(A-J)  Actomyosin dynamics during wound closure visualised using GFP-tagged sqh (the Drosophila 
regulatory light chain of non-muscle myosin).  Unlike normal healing wounds that assemble a stable 
contractile actomyosin cable at the leading edge (arrowheads, F-J) that facilitates wound closure, non-
healing ‘chronic’ wounds lose the actomyosin cable (arrowheads, D-E) that initially assembles 
(arrowheads, A-C).      
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Supplemental Experimental Procedures 
 
Image processing and cell tracking 
Imaging resulted in image stacks with dark background and red fluorescent cell nuclei. All image 
processing and cell tracking algorithms were implemented in R using the package EBImage [S1].  The 
information of the cell nuclei was extracted automatically from the images using an edge detection 
method. A manually set threshold of the light intensity was used per image stack. Each detected cell 
nucleus was described as an object with the coordinates of its geometrical center indicating the cell 
nucleus location and the time the cell was observed. The cell nuclei were tracked and reconstructed 
over the z-stack using a surface algorithm. The surface algorithm was then applied to track 
reconstructed cells over time, which is based on the shortest distance between cells from two 
consecutive images. We excluded all cell trajectories that included time points in which the cell was 
located at the edge of the image. For each image stack the extracted cell tracks were checked and 
curated manually. The images included cell tracks of the wing disc and other cell tracks, resulting from 
leukocytes migrating in other parts of the pupa. All cell tracks outside of the wing disc were discarded 
manually. Each cell track was stored as an R object, containing its 3D coordinates, its corresponding 
time points after wounding and the location of the wound(s). Cell tracks from image stacks taken under 
the same experimental conditions were merged into a single data set and stored as RData files for 
further analysis. 
!
Leukocyte migration model 
We apply a biased persistent random walk model [S2, S3] for our leukocyte migration model. The 
model consists of N non-interacting leukocytes (particles), represented as 2 dimensional coordinates in 
the wing disc. The direction of a cell's movement at any time step t is described by two random 
variables, which are a step length!st!and a turning angle!γt.!Since our statistical analysis is based purely 
on directional statistics (as opposed to distance measures such as mean-squared displacement), there is 
no restriction on the distribution of step lengths to be used in the model. Nevertheless for purely 
practical purposes, we model the step lengths according to!!!~ !"�!(0,1),! where! N+(0,( 1)! is a 
truncated standard normal distribution with support on the positive real axis, and dt = 0.001. The 
turning angle! γt! is defined without loss of generality as the angle between a motion vector and an 
arbitrary reference axis, which we take here to be the negative y-axis (see Fig. 1a), at time t.!γt!follows 
the wrapped normal distributions [S4] with the probability density function  
 

!! !! !,! = !
! !! exp!(− (!!!!!!!")!

!!! )�
!!!� .!!

!
The mean! µ! and variance! σ! depend on whether the random walker follows a biased or persistent 
motion. For the biased motion we define!µ(=(β!(the direction of bias, i.e. the vector that points from the 
cell center towards the center of the wound) and for the persistent distribution we have!µ(=(γt,1,!which is 
the direction in the previous time step. The variances!σ!for the biased and persistent motion are denoted 
as!σp( =( ,2log(p)! and!σb( =( ,2log(b),( respectively, with the persistence and bias parameters, p and b 
taking values between 0 and 1. They affect the variance of the distributions such that the closer to 1 
they are, the smaller their respective variances will be, and the more likely the particle will be to 
sample an angle in the direction of the bias or the persistence, meaning a cell has a stronger level of 
bias or persistence. If p or b is equal to 0, then the corresponding variance will tend to infinity and thus 
the distribution is a wrapped uniform distribution, meaning the cell will not exhibit any bias or 
persistence. 
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The decision whether the cell follows biased or persistent motion is based on a further random variable, 
which follows a Bernoulli distribution with success probability w, so that w describes the probability of 
a biased motion and 1-w describes the probability of a persistent motion. At each time point,!γt!and!st!
are!determined and, accordingly, the cell moves a distance of st in the direction defined by! γt.!This 
constitutes one step in the cell’s trajectory, described by the 3 parameters (p, b and w). 
!
Inference of observed bias and persistence 
From our observed leukocyte trajectory data, we infer the parameters of the bias persistent random 
walk model in the framework of Bayesian statistics. The likelihood L(b, p, w) function can be derived 
exactly [S2] and we sampled the joint posterior distribution of the three parameters using a standard 
Markov Chain Monte Carlo sampler. The computation was implemented in R and was run over 5000 
MCMC steps with the first 3000 discarded as burn-in. We used an adaptive log-Gaussian kernel for 
each parameter separately with the variance equal to half the variance of all previously sampled 
parameter values. The posterior parameter distributions for b, p and w are summarized into the 
observed bias (=w*b) and the observed persistence (=(1-w)*p). The inference scheme was applied to 
each spatio-temporal cluster separately and the summarized marginal posteriors are shown in the 
figures in this paper as boxplots. 
!
Attractant diffusion model 
 In absence of any a priori information about the attractant characteristics we make use of the simplest 
diffusion model, i.e. the standard diffusion equation in two dimensions. Attractant a is produced with 
strength A from time t = 0 till t( =( τ,! with the source at position x = x0. To obtain the attractant 
concentration we then have 
!

!! !, ! = ! !
!!(!!!)! exp!(−

(!!!!)!
!!(!!!))

!"#!(!,!)
! !",!

!
where D is the diffusion coefficient. Two models for the attractant source were investigated. Model 1: 
All epithelial cells that are part of the wound area produce the attractant. Each of these cells will act as 
a source, uniformly distributed on the wound area. Model 2: Only the epithelial cells that are located at 
the wound margin produce the attractant. Each of these cells will act as a source, uniformly distributed 
on the wound margin. In both models the radius of epithelial cell was set to! 5!µm.!The number of 
epithelial cells was proportional to the wound area (model 1) and wound circumference (model 2). The 
diffusion equation was solved for each emitting cell, and the total attractant concentration was 
determined. 
 
Solving the attractant diffusion models (using numeric integration) we can then compute the local 
attractant diffusion gradient for each point x in the wing disc and at each time t of interest. We set the 
average radius of a leukocyte to r = 15µm.!A leukocyte is sensing the local attractant concentration at 
its front (site that is closest to the wound) and at its rear (site furthest away from the wound). 
Therefore, for a leukocyte at position xt we need to determine the attractant concentration af = xt - r and 
ar = xt + r. We apply standard receptor-ligand binding kinetics for attractant sensing, assuming that the 
steady state for the receptor-attractant complex is on a much faster time scale than the resulting 
movement of the leukocyte. The signal a leukocyte is sensing is then proportional to the concentration 
of receptor-attractant–complex at its front [Raf] and rear [Rar]: 
!
!!! = !

! !! + !! + !! − !
! (!! + !! + !!)! − !!!!!!

and!
!
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!!! = !
! !! + !! + !! − !

! (!! + !! + !!)! − !!!! !,!
 
where R0 is the total local receptor concentration and Kd is the dissociation constant. Since we do not 
observe any changes in the observed persistence upon wounding, we assume that only the leukocyte’s 
observed bias depends on the attractant gradient. We do not have any information about the nature of 
the attractant and the resulting intracellular signaling cascades that are triggered by the attractant and 
that result into translation of the signal to actual leukocyte movement, we propose that the cells 
movement (strength of observed bias) depends on the difference of sensed attractant in a linear 
relationship: 
!
ob(=(m([Raf],([Rar])+b0,!
!
where ob is the observed bias, m is a scaling constant and b0 is the baseline observed bias, which was 
extracted from leukocytes in unwounded wing discs.  
!
Inference of attractant dynamics 
The model parameters of the attractant diffusion model!(D,!A,!τ,!m,(R0(and(Kd)!were estimated using the 
determined marginal posterior distributions for the observed biased of each spatio-temporal cluster 
simultaneously for small and large wounds. All parameters were assumed to be the same for small and 
large wounds, except!τ,!which was estimated as ts and  tl for small and large wounds, respectively. We 
apply the same inference scheme as above. The likelihood for the parameter set! θ! is then simply 
defined as: 
 
! ! = !(!!!,!|!!

!!! )!
!!! ,!

!
where T is the number of temporal clusters, S is the number of spatial clusters and!!(!!!|!)!is the 
probability density estimated from the marginal posterior distribution of the observed bias for each 
spatio-temporal cluster, respectively. 
 
The MCMC scheme was run over 106 particles, with 500,000 particles discarded as burn-in. All 
remaining algorithm parameters were set as above. We apply the same scheme to both attractant 
gradient models, resulting in reasonable model fits only for model 2 (attractant is released from the 
wound margin). We repeated the inference scheme for both models 10 times with random starting 
values to (i) ensure as much as possible that the algorithm converges to the same posterior distributions 
(ii) to avoid the estimation of local minima. 
!
In silico predictions and attractant diffusion model accounting for wing geometry 
All simulations were done 100 times with parameters sampled from the posterior distributions obtained 
from single wound data. Shown throughout this paper are the mean of the simulation results (in heat 
maps) or the mean and the 95 and 5 percentiles of the simulation results (as trajectories). 
 
To simulate the diffusion of attractant under the consideration of the wing disc geometry, we solved 
numerically the standard diffusion equation in 2D [S5] for a rectangular area of 1000µm x 200µm, 
representing the wing disc. The scheme was implemented in R. 
 
In silico contact inhibition model 
We adapted our leukocyte migration model to account for contact inhibition. We applied the 
mathematical description for contact inhibition as described in [S6]. 300 leukocyte trajectories in 
response to a single wound were simulated on the drosophila wing disc (approximated by a rectangular 
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area of 1000µm x 200µm). To compare the simulation results with the in silico leukocyte migration 
model in absence of contact inhibition and to the trajectory data extracted from our imaging data sets, 
we computed how many cells are located at a given distance from wound as well as the smallest 
distance between cells. The in silico simulations of the leukocyte migration model in absence of 
contact inhibition are in agreement with the experimental data. 
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Methodological Primer 
Mathematical and computational concepts behind the modelling approaches 

 
Background 
 
Mathematical and computational modelling has become an important tool in modern biology.  In 
particular, it enables us to capture relationships and processes that are not necessarily directly 
accessible by current experimental techniques; in this sense mathematical modelling complements and 
extends the scope of experimental approaches.   
 
An integrated experimental-modelling approach can therefore elucidate even complex molecular 
processes. But like their experimental counterparts, the mathematical tools need to be tailored to the 
problem at hand, and a variety of approaches have been developed that can be used to model different 
biological systems.  Importantly, at the outset both modeller and biologist have to state their 
assumptions concisely and unambiguously.   
 
The basic procedure to integrate modelling and experiment follows a generic pattern. In order to 
combine experimental analysis with modelling we require tools to: 

(i) calibrate (or “fit”) models to data;  
(ii) test whether the fit is satisfactory;  
(iii) formally select between different competing models or hypotheses;  
(iv) extract testable and non-trivial predictions from the analysis of the calibrated model(s); 
(v) extend and further develop the model used to describe the biological system in an 

iterative (back and forth) manner.  
 
Steps (iv) and (v), more than any of the others, require considerable amounts of expertise to guide the 
development and further refining of mathematical models (see schematic below). In the following we 
will briefly outline the mathematical and computational concepts applied in this study for each of the 
above-mentioned points. 
 
Model calibration 
 
The majority of mathematical or computational models that describe dynamical systems contain 
parameters. These parameters can be reaction rate constants (e.g. the rate constant of protein 
degradation), physical parameters such as the volume of a cell or the rate of cell division, or maybe 
more abstract parameters that do not have a direct obvious relationship to the biophysical processes 
going on in the biological system but provide useful descriptions of parts of these systems that would 
otherwise be hard to model in detail. Although model parameters are often unknown, they are needed 
in order to learn about the model characteristics and to make useful model predictions.  
 
Some parameters can be obtained experimentally, but for many parameters, especially for in vivo 
studies, this may not be feasible. One possibility is to ‘borrow’ parameters from the literature. 
However, this approach is often not suitable, because literature parameter values may have been 
obtained under experimental conditions that differ to the experiments of interest. The aim of model 
calibration is to link the mathematical model with observed experimental data in order to determine the 
model parameters. 
 
In our study we calibrate two models: (i) a model of hemocyte migration and (ii) a model of gradient 
dynamics. For simplicity we will focus here on the first model (i). This model contains three 
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parameters, describing a cell’s bias, the cell’s persistence and a ‘weighting parameter’ (weighting here 
refers to the balance between bias and persistence). We need to determine these three parameters for 
every spatio-temporal cluster and for each treatment group (unwounded controls, small/large/extra-
large single wounds and double wounds, made at the same or different times). 
 
Model calibration can be done in several ways. Here, we employ a Bayesian statistical framework to 
infer the model parameters from experimental data. The overall idea is to combine our prior knowledge 
of the behaviour of the cells with the likelihood function, which defines the probability of observing 
the experimental data from the model with a specific set of parameters. The parameter set with the 
greatest statistical confidence (technically the maximum a posteriori probability (MAP) estimate) is 
then considered the true parameter set. In informal terms: we take our mathematical model, plug in 
thousands of potential parameter combinations and determine which model output fits best to our 
experimental data and prior knowledge. The result is a ‘posterior parameter distribution’ which 
describes not only each parameter separately, but also contains the relationship between the estimated 
parameters. The ‘marginal posterior parameter distributions’ provide a subset of the entire posterior 
distribution, but ignores the relationships to the remaining parameters. One thing to note: This 
approach does not provide a single parameter set; instead it provides a distribution over all possible 
parameter sets, which provides the best possible confidence estimates for each parameter. Crucially, 
this framework focuses on achieving practical significance of results; which experience shows, is a 
more useful (but harder to achieve) objective than merely statistical significance. 
 
Coming back to our cell migration model: We estimate all three parameters for each spatio-temporal 
cluster. The resulting (posterior) parameter distribution, which consists of the three parameters, can 
then be summarised into two parameters (observed bias and observed persistence) with appropriate 
weighting. We then look at the distributions of the summarised parameters, which we represent across 
the manuscript as boxplots. This means that every boxplot shown represents the estimated distribution 
of a model parameter based on the experimental imaging data.  
 
Model selection 
 
Researchers often find themselves in situations, where they can define a whole set of models, rather 
than a single one, that all describe the same biological process. This brings us to the field of model 
selection.  
 
To illustrate this, assume we have two potential mathematical models, model A and model B, aiming to 
describe the same biological process, e.g. migration pattern of hemocytes. We want to understand, 
which model has the higher probability to represent our data best. Again, we can use the Bayesian 
inference framework to distinguish between the two models. Before doing so, we must consider an 
important issue: The two candidates, model A and model B, both contain a set of parameters, but their 
complexity may be very different. Model A might summarise all processes related to the intracellular 
signalling and resulting migration of cells into a single equation, while model B describes the details of 
receptor signalling, intracellular signalling processes, biophysical changes of the cytoskeleton and the 
resulting hemocyte migration. Both models might be useful depending on the question we aim to 
answer and depending on available experimental data. However, the more important point in the model 
selection framework is that model A will have far fewer model parameters than model B. One can 
almost always improve a model’s fit to experimental data by including more parameters in a model, but 
this does not imply that the model is a better representation of the physical system. Any statistical 
framework for model selection should take this into account, i.e. it should ‘penalise more complex 
models compared to less complex models. 
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In this study we present two model selection problems: (i) the attractant is emitted by the wound area 
vs. the attractant is emitted by the wound margin; and (ii) there is a single wave of attractant vs. there 
are two waves of attractant. We will now discuss both scenarios, because they highlight two different 
aspects of model selection. 
 
1. The attractant is emitted by the wound area (model 1) vs. the attractant source is emitted by the 
wound margin (model 2). 
We first try to obtain model fits for both models. In this case, we were not able to obtain any 
reasonable fits to the data for model 1, while the fits for model 2 were satisfactory. In this simple 
scenario we can reject model 1 and consider model 2 as the better model to explain the data. 
 
2. There is a single wave of attractant (model 1) vs. there are two waves of attractant (model 2). 
Again, we first try to obtain model fits for both models. In this case both models fit the data well, but 
model 2 fits the data slightly better. Note, model 1 is less complex than model 2, because model 2 
contains additional parameters describing the second wave of attractant (resulting in nearly twice as 
many model parameters compared to model 1). We then had to investigate, if the slightly better fit of 
model 2 justifies the larger number of parameters; this is a classic example of model selection, where 
we have to balance the complexity of a model with its ability to reflect the data. There are several ways 
to do so and here we were able to use one of the simplest, the so-called likelihood ratio statistical test. 
This test computes how much more likely model 2 explains the data than model 1. Applying this test 
we found that we can not reject the null hypothesis (model 2 and model 1 one can equally well explain 
the data). How should this be interpreted in the biological context? We find that a single attractant 
wave can best explain our experimental data and conclude that there is no evidence that there is a 
second wave of attractant that recruits hemocytes to the wound site. 
 
In silico predictions 
 
Once a model is constructed and calibrated it can be used for in silico predictions and simulations. 
Such predictions can serve several purposes, including model validation and actual predictions of the 
outcomes of experiments that might or might not be doable in practice. Model validation is an 
important part of model development and should be done whenever possible. In our study, the 
mathematical model is used to predict the outcome of a new experiment, which can then be performed 
in practice. If the model is useful, its prediction should match with the newly performed experiment. 
We note, that simulations from the model, and the comparison of the simulation results with the data 
(including the original data used to calibrate the model(s)) should be a crucial first step in any 
assessment of the model’s relevance or validity.  
 
In our study, we predicted the response of the hemocytes in response to two wounds occurring at the 
same time but at a distance apart, which we then experimentally verify (Figure 4); this served as 
important validation of our model. We also aimed to predict the response of hemocytes to a second 
wound that was induced a certain time after a first wound. In this latter case, our model fails to predict 
the correct hemocyte behaviour but instead uncovered an interesting biological phenomenon (Figure 
5).  The model is still valid for the majority of the aspects investigated in this study, but we have 
identified the limits of the model. More specifically, the model only includes basic aspects of hemocyte 
migration; it cannot include behaviours that we do not yet know.  For example, we did not include the 
phenomenon of desensitisation of hemocytes which is why our simulation did not mirror the actual 
biology, and it was this difference that revealed the new phenomenon and encouraged us to investigate 
further i.e. to determine how long the hemocytes remain desensitised to a second wound.  
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An important aspect of in silico predictions is uncertainty. As described above, we need to use our 
estimated model parameters to obtain in silico predictions. But how reliable are the predictions? What 
are the confidence intervals? In our model calibration framework we obtain parameter distributions, 
rather than single parameter values. We now have a semi-realistic generative model where these 
distributions can be used to simulate the physical system to generate in silico predictions. Rather than 
simulating the model with a single parameter value, we perform multiple simulations, approximately 
1000 iterations, each time with a different parameter set drawn from our estimated parameter 
distribution. We now have 1000 model predictions, from which we can compute the mean, i.e. the most 
likely behaviour and the accompanying confidence intervals. 
 
Schematic of the model development pipeline. In vitro experiments and literature can be used to 
generate initial hypotheses, which are then analysed and tested with computational methods. Once 
good agreement between the mathematical model and the experimental data is found, the model is 
validated on further experiments. The final model can be used for in silico predictions and 
experimental design.  
 



!

!

Supplemental References 
 

S1. Pau, G., Fuchs, F., Sklyar, O., Boutros, M., and Huber, W. (2010). EBImage--an R package for 
image processing with applications to cellular phenotypes. Bioinformatics 26, 979–981.  

S2. Jones, P. J. M., Sim, A., Taylor, H. B., Bugeon, L., Dallman, M. J., Pereira, B., Stumpf, M. P. 
H., and Liepe, J. (2015). Inference of random walk models to describe leukocyte migration. 
Phys. Biol. 12, 066001.  

S3. Liepe, J., Taylor, H., Barnes, C. P., Huvet, M., Bugeon, L., Thorne, T., Lamb, J. R., Dallman, 
M. J., and Stumpf, M. P. H. (2012). Calibrating spatio-temporal models of leukocyte dynamics 
against in vivo live-imaging data using approximate Bayesian computation. Integr. Biol. 
(Camb). 4, 335–45.  

S4. Breitenberger, E. (1963). Analogues of the Normal Distribution on the Circle and the Sphere. 
Biometrika 50, 81.  

S5. Rossant, C. (2014). IPython Interactive Computing and Visualization Cookbook (Packt 
Publishing Ltd)  

S6. Davis, J. R., Huang, C.-Y., Zanet, J., Harrison, S., Rosten, E., Cox, S., Soong, D. Y., Dunn, G. 
a, and Stramer, B. M. (2012). Emergence of embryonic pattern through contact inhibition of 
locomotion. Development 139, 4555–60.  

 


