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Many recent works on stabilization of nonlinear systems target the case of
locally stabilizing an unstable steady state solution against small perturba-
tions. In this work we explicitly address the goal of driving a system into
a nonattractive steady state starting from a well developed state for which
the linearization based local approaches will not work. Considering extended
linearizations or state-dependent coefficient representations of nonlinear sys-
tems, we develop sufficient conditions for stability of solution trajectories.
We find that if the coefficient matrix is uniformly stable in a sufficiently
large neighborhood of the current state, then the state will eventually decay.
Based on these analytical results we propose a scheme that is designed to
maintain the stabilization property of Riccati based feedback constant during
a certain period of the state evolution. We illustrate the general applicability
of the resulting algorithm for setpoint stabilization of nonlinear autonomous
systems and its numerical efficiency in two examples.

1 Introduction

We consider the general task to find an input w that drives the state ¢ of a nonlinear
autonomous input-affine system of type

¢(t) = f(C() + Bu(t), ¢(0)==z€R",

towards a steady state z*, i.e., a state z* for which f(z*) = 0. This problem is commonly
known as set point stabilization. It is equivalent to considering £ = ( — z* and the task
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to drive the difference state &, that satisfies

£(t) = J(&(t) + Bu,  £(0) = o, (1)

to zero, where fE() == f(E(t) + 2*) and xg = z — z*. If f is Lipshitz continuous and
since f(0) = 0, there exists [9] a matrix valued function A: R™ — R™" such that (1) can
be written as

£(t) = A(E()E() + Bult), £(0) = ao. (2)

Thus, extended linearizations or state dependent coefficient (SDC) systems like (2) are
a suitable starting point for general nonlinear set point stabilization problems. Then the
question is, how to define a feedback gain F'(£(t)) such that solutions of the closed loop
system

£(t) = [A(E(1)) — BF(E()))E(t),  £(0) = o, (3)

or, equivalently,

¢(t) = f(Ct) = BE(¢(t) = 2*)[C(t) = 2", ¢(0) ==,

decay asymptotically to zero or to z*, respectively. One approach is to define the feedback
gain as F(r) = R™1BT P(z) for a given state z = £(t), where P(z) is the solution to the
state dependent Riccati equation (SDRE)

P(x)A(z) + A(z)"P(z) — P(x)BR™'BTP(z) + Q = 0, (4)

for given weighting matrices R = 0 and @Q = 0'.

Known results [9, 2, 16] on the stabilization via SDRE feedback base on the assumption
that the initial state xg is close to zero such that the nonlinear terms can be considered as
a perturbation of a linear system. Precisely, one considers the SDRE (1) for the extended
linear system (2) and defines P(z) =: P(z9)+AP(x) and A(z) =: A(xo)+AA(x). Then,
if ~-BFy:=—BR'BTP(x0) is stabilizing for Ay := A(zo) and if the considered matrix
functions are Lipshitz continuous in x, then one can show that the solution to

§(t) = (Ao — BFo)&(t) + h(t), £(0) = o,

where h(t) := (AA(&(t)) — BRT'BTAP(E(1)))E(L), goes to zero as t — oo with an
exponential decay rate [2], provided that zg is sufficiently small.

Our goal, however, is to drive a system from a developed state towards the zero state,
which contradicts the smallness assumption on the initial value. Once the system’s state
is close to the origin, stabilization strategies that base on smallness of the deviation
from the zero state and that have been proven successful can be applied; see [3, 5, 7]
for numerical studies considering nonlinear PDEs and [17] for a theoretical analysis. For
completeness, we mention the earlier works on feedback synthesis for nonlinear systems
based on extended linearizations [1, 18], where families of feedback gains parametrized

For an overview of notations and definitions see Table 1 at the end of the introduction



by set points of the considered plants were considered. There again, the analysis of the
stabilizing properties bases on smallness of the deviations from the targeted operating
points.

The manuscript is organized as follows. In Section 2, we extend the results that were
reported in [13] on stability of linear time-varying systems like

£(t) = A(t)E(),

to give sufficient conditions for stability of SDC systems like system (2). The basic
idea is that for a given trajectory &, one can consider A(t) := A(£(t)). However, this
approach leads to sufficient conditions that are very restrictive and probably not easy to
confirm for most applications. In view of practical use, in Section 3, we provide localized
conditions taking advantage of the observation that with controlling the state &, one
also controls the coefficients. By means of an example, we show the practicability of the
derived estimates.

The general result is that one can achieve an exponential decay of the solutions if, at
a fixed state x, the local transient behavior is well balanced with the decay rate of the
current coefficient A(z) and if this balance holds true uniformly in a sufficiently large
neighborhood. In Section 4, we will introduce conditions and an algorithm for a feedback
gain F' that ensures uniform bounds on the transitive behavior and a constant decay rate
in a neighborhood of the current state via continuously updating an initial feedback.
The resulting algorithm is theoretically well founded and generally applicable for set
point control of any nonlinear autonomous system that can be written in SDC form. In
Section 5, we investigate the proposed update scheme for two numerical examples and
show its feasibility and efficiency in comparison to the SDRE feedback. We conclude
with summarizing remarks and an outlook.

Symbol Definition/Explanation
R.q,R>0 Set of real numbers that are greater (or equal) than zero
-, Nl e A generic norm, the Frobenius norm
R>0,Q >0 | The matrices R and @ are symmetric and positive
(semi)definite

S(k,L.Mw;x) | Set of matrix valued functions that are uniformly stable,
bounded, Lipshitz continuous on a set X, cf. Definition 2.8
S(K,L.Mpw;Xp) | Set of matrix valued functions that are uniformly stable,
bounded, Lipshitz continuous on a set X7, cf. Definition 3.1
SKw Set of stable matrices with decay rate w and transients
bounded by K, cf. Definition 4.1

Table 1: Symbols and notations used in this paper.



2 Stability of State-dependent Coefficient Systems

To describe exponential stability for the considered type of SDC systems

E(t) = A(E()E(), (5)
we adjust the definition for time varying systems as given in [19, Def. 6.5].

Definition 2.1. System () is called uniformly exponentially stable if there exist positive
constants K and w such that for any z € R, a solution & of (5) with {(0) = z¢ satisfies

Il < Ke™* x|, for t > 0. (6)

It is called uniformly exponentially stable on X, if, for some X C R"™, relation (6) holds
for any zg C X.

Note that the definition in [19] is for linear systems but (6) solely bases on solution
trajectories and, thus, applies also for nonlinear systems.

Assumption 2.2. Regarding equation (5), we suppose that
(1) the map A: R™ — R™" is Lipshitz-continuous,

(2) there is a bounded nonempty set X C R™ such that £(t) € X, fort >0, where £ is
a solution to (5), with £(0) = z¢ € X.

Remark 2.3 (Concerning Lipshitz-continuity of A). In the context of extended lineariza-
tions of a general nonlinear system £ = f(£) with f(0) = 0, c¢f. (1) and (2), the SDC
matrix of A can be constructed [9] via

A© = [ Dfse) as )

where D f denotes the Jacobian of f, provided that f is at least absolute continuous. If
constructed through formula (7), the function A has the same regularity as the Jacobian
of f. Moreover, in general, Lipshitz continuity of f does not imply Lipshitz continuity of
A as can be seen from the example of f: R>o - Ryo: 2 — e %23/2 that has the unique
SDC factorization f(z) = A(x) -z := e *\/z -z, where f is Lipshitz continuous but A is
not.

Remark 2.4 (Concerning the existence of X). From the one hand side, the existence
of a system invariant set X is a necessary assumption for uniform stability of a set
Xop C X, since, by autonomy of the system, for a stable trajectory ¢ starting in xg, the
set {£(t) : t > 0} fulfills the conditions of Assumption 2.2. On the other hand, this
assumption is difficult to establish in the general case unless the existence of physical
bounds, attractors like in the Chafee Infante equation (cf. Section 5), or limit cycles
like in Predator-Prey models is known. In Section 3 we will replace this assumption by
a localized and computable version.



The following lemma states that in order to state exponential stability for trajectories
that start in X, the existence of a global unique solution is a necessary prerequisite.

Lemma 2.5. Consider equation (5) and let Assumption 2.2 hold. Then, for any z¢ € X,
there is a unique solution &: [0,00) — R™ to (5) with £(0) = xo.

Proof. By Lipshitz-continuity of A, it follows that z — A(x)x is locally Lipshitz con-
tinuous. Accordingly, by the Picard-Lindeldf theorem, there exists a unique solution &
locally in time. Since, by assumption, £ stays in the bounded set X, it can be extended
to a global solution. O

We introduce a class of SDC matrices similar to the class of time-dependent coefficient
matrices used in [13] via the following assumption.

Assumption 2.6. For a given bounded set X C R", the function A: X — R™" is
Lipshitz continuous, i.e. there exists a constant L € Ry such that

[A(x1) — A(z2)|| < L||x1 — x2||, for all x1,x9 € X, (8)
and uniformly stable on X, i.e. there exist constants w, K € Ry such that
|eA®s|| < Ke™*,  for allz € X and for s > 0. (9)

Lemma 2.7. Consider equation (5) and let Assumption 2.2 and Assumption 2.6 hold.
Then
M := sup||A(z)z| < oo
zeX

and any solution to (5) that starts in X is Lipshitz continuous with Lipshitz constant
M.

Proof. Since A is Lipshitz continuous and X is bounded, ||A(x)|| and, thus, ||A(x)z]| is
bounded away from oo for all x € X. By assumption, a solution & to (5) that starts in
X stays in X so that we can estimate

Je(e2) = &)l = I €6s) asl = | [ Ale(s)els) ds] < Mlea =1, (10)

for t1, to > 0. O

By virtue of Lemma 2.7, the following definition, which we use for later reference, is
well posed.

Definition 2.8. The matrix-valued function A: X C R™ — R™" is an element of the
class Sk, mw;x) for some constants K, L, M, w and a bounded set X, if A and
K, L, and w are such that Assumption 2.2 and Assumption 2.6 hold on X and if
sup,e x[|A(z)z| < M.



Remark 2.9 (Outer approximations to X). As laid out in Remark 2.4, the existence of
such a system invariant set X is a necessary condition for stability but strong and hardly
checkable. For concrete systems, it might be possible to check for an outer approximation
X D X and estimate the constants of Definition 2.8 replacing X by X. Since this will
only give a more conservative estimate of the constants K, L, M, and w the following
results, that provide sufficient stability conditions based on sharper estimates, still apply.

We can now provide an estimate on the exponential growth of solutions of the SDC
system (5).

Theorem 2.10. Consider Equation (5) and let Assumption 2.2 and Assumption 2.0
hold. Then, for any xo € X, the unique solution &: [0,00) — R™ to (5) with £(0) = xo
satisfies

1€(1)]] < Ket (VEEMINZ=w)) 0011 for all t > 0, (11)
where M = sup,c x| A(x)z]|.
Corollary 2.11. Under the assumptions of Theorem 2.10, if
KLMIn2 < w?, (12)

then system (5) is uniformly exponentially stable on X as defined in Definition 2.1.

Proof of Theorem 2.10. We extend the arguments used in [13] to prove this result for
linear time-varying systems to extended linearizations. The basic idea is that for a given
trajectory x, the state-dependent coefficient A can be considered as a time-dependent
coefficient A(t) := A(x(t)).

With A € Sk, 1m0 x), for any ¢, p > 0, every solution § of (5) with §(0) € X satisfies

t
ls@)ll < Ke™]i€(0)] + KLM/O |5 = ple™ = )é(s)]] ds, (13)

cf. [13, Lem. 5.2]]. In fact, for a given solution & and ¢, p > 0, we define 4, := A({(p))
and rewrite (5) as

§(t) = Ap(t) + (AE(1)) — Ap)E(t)

to get the following representation of &:

£(0) = eM1E(0) + [ MO (A(e(s) — Ap)els) ds.

Then, taking the norm and using the estimates (8), (9), and (10), namely the Lipshitz
continuity of A, the stability of A,, and the Lipshitz continuity of £, we estimate that

el < [+ + [ eI A — Al ds
< Ke )] + [ Ke=1]e(s) - (a)les)] as

t
< Ke )]+ KL | e =IM]s = pllg(s)] ds (14)



and arrive at inequality (13). Next, we scale the solution £ and the time ¢ to obtain the
function

t
C:Ryg = Ryg, () = ewt/aw, where o := VKLM. (15)

As in [13, (5.18)], we define the functions
v(t) == e"VI2 and  r(t) := max{0,t — VIn2},
which by [13, Lem. 5.8] satisfy the integral comparison
t
o(t) = 1+ [ s = r0I¢(s) ds
0
and, thus, by [13, Lem. 5.5], give an upper bound:

ot VEIM IEE/VELM)|| - 1. viws
KON~ ’

at any time t > 0. Accordingly, having undone the scalings (15), we arrive at

C(t) <w(t) or

le@)] < Kt VEEMIRZ= g(0)),

for all ¢t > 0. O

Remark 2.12. For K < 2, the factor In2 in (11) and (12) can be replaced by In K, see
[13, Thm. 2.1].

3 Local Conditions for Exponential Stability

Relation (12) illustrates the nature of the stability results. For the parametrization
A(t) := A(£(t)), the constant LM is the Lipshitz constant of ¢ — A(t). Accordingly,
the requirement that LM must not exceed some value defined by the decay rate w and
the bound K means that the changes in A, that may trigger new transient phases faster
than the overall decay fades them out, should be limited.

In the linear time varying case, if one considers global constants w and K, one also
needs a global bound on LM, since the overall decay of the solution can be violated by
a sudden change in A at any time. Also, in the linear time varying case, the function
t — A(t) is known for all time so that a global bound can be found. Improvements of
the results may be obtained by relating K, w, and LM locally in time. However, due
to the arbitrariness of the mapping ¢ — A(t), such localizations would be very problem
dependent.

Things are different for the extended linearizations. The mapping t — A(£(t)) is less
arbitrary, since A(£(t)) will be stabilized together with the solution &. If the function z —
A(z) is smooth, then, for £(¢) — 0, the coefficient A(£(t)) approaches a constant value.



In fact, when having reached or when starting from a state close to zero, exponential
decay can be established by the results on local exponential stability [7] or on almost
linear systems, cf. the proof for the SDRE stabilization properties in [2]. On the other
hand, for an arbitrary starting value, a global bound on M (z) = ||A(x)z| might not
be available or might be too conservative. Thus, the results provided only apply to
particular classes of problems for which the existence (or an outer approximation; cf.
Remark 2.9) of an system invariant set X is known or to particular given trajectories.

The following results address sufficient conditions for exponential decay of solution
trajectories at discrete time instances that can be locally estimated by means of bounds
on the growth of the solution in a certain time interval. This decay at discrete instances
will eventually drive the system into a state close to zero from where the linear theory
will provide exponential decay. The piecewise in time character of the results that follow
can also be used to define feedback laws that act locally.

We drop the global assumption on the existence of a system invariant set X C R", cf.
Assumption 2.2(2), and consider a set of initial values and a set that contains all states
that evolve from these initial values within a finite time horizon.

Definition 3.1. Let Xy C R™ be a connected closed set that contains the origin and let
T >0.

a.) By Ejo,7] we denote the set of all solution trajectories that start in Xo:

Ejo,) = 1€: [0, 7] — R™ : § solves (5) and £(0) € Xo}.

b.) By X7 we denote the set that contains all final values of the trajectories
Xr:={&T): £ €Zp )

c.) By X (0,7] we denote the set that contains all values that are achieved by the solution
trajectories within the time interval [0, T':

Xy ={8(t) : § € Eory, 0 <t < T}

If any solution to (5) that starts in Xy has a finite escape time ty < T', we set Xp :=
X[O,T} = R™.

The definition of Sk 1, arw;x), cf. Definition 2.8, readily extends to S 1, pm w;xp)s if
one assumes that for an element A: X C R®™ — R™™ and T > 0, there exist constants
K, L, My, w such that Assumption 2.2 and Assumption 2.6 hold and such that My :=
SUDze x|, 1y | A(x)x|| < oo is valid on the set X[g 7. Note that in the case of solutions with
finite escape time less than T, the set X[y 7 is not bounded and the latter assumption
Mp < oo does not hold, cf. Definition 3.1.

Remark 3.2. We will assume that the pointwise stability constants w and K and the
Lipshitz constant L are independent of the state. The uniformity of the stability con-
stants will be used to state global convergence and is going to be a design target of a
feedback stabilization. The uniformity of the Lipshitz constant is given for the case that
A is affine linear in 2. Also, a state dependent L can be treated with the same approach
illustrated below.



In the following theorem, we provide a local condition for exponential decay at discrete
time instances of trajectories that start in Xg. The basic reasoning is that if for a time
t* all trajectories are in a set that is contained in the considered set of initial values
X then, because of the autonomy of the system, the system states will be contained in
X0, thereafter. Accordingly, if one can establish exponential decay for the short time
horizon, then the decay will hold on for the whole time axis. Having stated the basic
result, we refine it by providing a dynamic bound which can replace the static constant
LMy, which is sharper, and which can be evaluated numerically.

Theorem 3.3. For given T' > 0 and Xo as in Definition 5.1, let A € Sk 1 My w;Xr)
and for 0 <t < T, let My := sup,¢y,||A(x)z|. If for a t*, with 0 <t* < T,

—wpr ==V KLMp1n2 —w (16)
and
_ InK
- —
are negative, then the snapshots £(t) of any solution & to (5) with £(0) = xo € Xo taken
on the discrete grid T* :={t: t =N -t*, N =0,1,...} decay exponentially in the sense
that

* .

— W (17)

— W

1E@)] < ||SCoH6_w*t, forallt € T*.

Proof. The assumptions made include that Mpr < oo so that for every zg € Xy the
associated solution £ to (5) that starts in xg exists on [0,7]. Noting that by definition
the bound M; = sup,cy,||A(x)z|| grows with ¢ and noting that Theorem 2.10 is also
valid on a finite time horizon, any such solution ¢ fulfills

@) < Ke“|zo|| = 7 <0z, for 0 <t <T,

with wy := VK LM;In2—w. Thus, if there exists a t* such that —w;+ and —w™* as defined
in (16) and (17) are negative, then at ¢* any such solution ¢ fulfills

I < [lwolle™",

with e™@"*" < 1. Accordingly, the current value £(¢*) is in a ball X C Xo. Repeating
the previous arguments with Xy replaced by X§ and z¢ by x(t*) and noting that the
new constants K, L, and M; will be smaller than the previous, we can directly state the
estimate

le@E)| < M€ )lle™™ < Jlarole2",
which, by induction, holds for any multiple of ¢*. O

Next, we replace the static constant LM; by a dynamic estimate that bases on differ-
ential and integral mean values.



Lemma 3.4. For a given T' > 0, let A € S, 1, My w;xyp) be smoothly differentiable. If
also the chosen norm ||-|| is smoothly differentiable, then the constant LM, in Theorem
3.3 can be replaced by

e U AE(s)) — AP IIEE)I ds
my := inf su 0° ' *
PER>0 §€~E)t fD e wlt=s |S n p|||§(8)” ds ( )

Proof. Under the given assumptions, for § € Z ) and p € Rxg, the function s
|A(E(s)) — A(£(p))]| is differentiable so that, by the Mean-Value Theorem, the value

is well defined through a continuous function on (0,7") and in particular at s = p. Thus,
we can rewrite the estimate (14) as

t
@) < Ke™*[l€(0)]| + K/O eI M (s)]s = plIE(s)]] ds.

Since the function s — e~“(t=)|s — p|||£(s)|| is continuous and positive there exists a
constant m such that

[ eI 6)ls = plles)l ds=m [ e Ils = plles)] ds. (20

If £(s) = 0 for all s, we set m = 0. For all other cases, by virtue of (20) and (19), the
constant m is given as

Jo eI I(AE(s) — A1) ds
Jo e =2)s — pllI€(s)|| ds

Thus, using relation (19) and (20) for the estimate (13), one can replace the constant
LM, in Theorem 3.3 by my, which is the worst case estimate of /m with respect to all
trajectories § € Zg 4 for a given p € (0,t) that possibly has been optimized in order to
make the estimate as small as possible. ]

m:

The conditions formulated in Theorem 3.3 as well as the improved bounds introduced
in Lemma 3.4 can be checked numerically as we illustrate it by the following example.
Note that Lemma 3.4 is valid also if m; is approximated by

o eI AS) — A ds
O T e sl ds

for a delibarate choice of p > 0. Clearly, such a suboptimal estimate is easier to compute
but less sharp.
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Example 3.5. Consider the following parametrized SDC system
al [ 1 —a+e)
&2 1+¢&7 o

-
with a system matrix A(z) that for any x = [51 52} € R? and for a € [~1,1] has the

&2

ﬂ . £(0) = z0 € Xo, (21)

two eigenvalues A1, A2 with real parts R(A1) = R(A2) = 3(—1+ ). Moreover, since the
imaginary parts of A1, Ao are distinct, the matrix is diagonalizable. Accordingly, the
exponential growth rate is given as —w = %(—1 + «) and, for given &, we can compute

K(£(t)), such that |[|e€E)| < K(¢(t))e™* for s > 0,

as the condition number of the matrix formed by the eigenvectors of A({(t)). The
value K ({(t)) gives the local bound on the transient behavior at a fixed state x = £(t)
and, for given Xg and T, the global constant K used in Theorem 3.3 is obtained as
K = maxees, , K(£(1)).

Finally, given the set of initial values Xy, one can estimate my, cf. (18), through
examining the solution trajectories to (21) that start on a discrete grid in X(y. Thus, one
can numerically check the existence of a t*, such, that for given a and Xy it holds that

In K
St = +vVEKmpIn2 —w (22)

t*

is negative, which is a sufficient condition for the stability of the considered system in
the considered range of initial values.

For the presented example on how the above estimates can detect stability, we set
a = 0.4, which results in w = 0.3, and we set Xy C R? to be the closed ball around
the origin of radius r» = 0.25. The grid for X uses 12 equally distributed points on the
circle with radius r» = 0.25, another 8 points on the circle with » = 0.17, and 4 points at
r = 0.08.

From the computed trajectories we compute K (£(t)) (Fig. 1(a)), m; (Fig. 1(b)) with
the manually optimized p := 0.55¢ and evaluate —w* as in (22) (Fig. 1(c)). Since
for t* & 6.0, the value of —w™ becomes negative, the sufficient conditions for stability
as described in Theorem 3.3 and Lemma 3.4 are fulfilled. Obviously, the computed
trajectories approach zero as t — oo (Fig. 1(d)).

Note that the estimates depend strongly on the chosen set of initial values. In fact,
if one extends the set of initial values Xy, the set of trajectories may include some that
are not stable and also —w* does not become negative, see Fig. 2.

4 Stabilization by Updating Riccati Based Feedback

As can be inferred from the sufficient conditions in Theorem 2.10 and 3.3 for exponential
decay of solutions, a feedback designed for stabilization should be such that the closed
loop matrix A(x)— BF(x), cf. (3), is uniformly stable with respect to the state x. In this

11
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Figure 1: Computed bounds K ({(t)) for the transient behavior (a), the estimate m; (b)
and the resulting decay rates w* (c), and the norm of the trajectories over time
and for various initial data in Xo (d).
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Figure 2: Estimate of w* and the trajectories for a set of initial values that are not
uniformly stable.
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section we show how one can continuously update an SDRE feedback so that the bounds
on the transient behavior and the decay for the closed loop matrix stay constant in a
neighborhood. More precisely, if for a given state x, an SDRE based feedback renders
the system stable with certain stability constants K and w, the introduced approach can
maintain these constants for small changes in x in the course of the time evolution of
the system.

For further reference, we define an abbreviation for the class of considered matrices.

Definition 4.1. We say that A € R™" is in the class Sk, for given constants K and
w, if
HeATH < Ke—wT’

for 7 > 0.

Assume that at the current state x, we have A(x) — BF(x) € Sk, where F(z) =
R™'BTP and where P = P(z) solves the Riccati equation (4) for given B € R™P,
R>=0€RPP and Q > 0 € R™"™. Then, we have that

A(z) —BR7'BT||I| |I
l-@ —A@)T | |p| T || Z (23)
where Z =A—- BR'B"Pe S K- The following theorem proposes an update of F' to

account for changes in the system matrix A(z +xa) =: A(z) + Aa induced by a change
zA in the current state x.

Theorem 4.2. Consider relation (23) with Z € Sk ,. If for an A € R™", there exist
Qa € RM RA, and E € R™" such that

I+E
2z (24)

A(x)+ Axn —B[R'+RA|BT| [T+ E|
—Q-Qa AT - A} P

and if |[E|| < 1, then (I + E) is invertible and with Px := P(I + E)~! it holds that
A(z) + Ap — B[R_l + RA]BTPA S S[(’w,

Ly e 1B
with K = 1—HE||K'

Proof. Using the Neumann series [11, Exa. 1.4.5], one can infer from ||E|| < 1 that
(I +E) is invertible and that ||(I +E)~!|| < ﬁ By multiplying the first block line in
(24) by (I + E)~! from the left, taking the norm on both sides, recalling that Z € Sk,
and estimating ||/ + E|| <1+ || E||, we prove the theorem. O

As a consequence of Theorem 4.2, as long as for given Aa, one can find Qa, Ra, and
E, with ||E|| < € < 1 small enough, one can stabilize A(x) + A through the feedback
gain

F.=(R'+RA)B"PUI+E)!
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in a neighborhood of A(z) with a constant decay rate w and a constant bound on the
transient behavior.

We will use the result of Theorem 4.2 to define updates for a given feedback. For
further reference, we formulate the situation as a problem.

Problem 4.3. Consider the SDC system (2) at time t > 0 and {(t) =: x. Let R > 0
and Q = 0 be given and P satisfy the SDRE (4) so that

A(x) —BR'BT||I| |I
l—Q —A@)T | |P| T || ? (25)
holds for a Z € Sk, and let 0 < € < 1. For a given Ax € R™", find Qa, Ra, and a

corresponding E so that
A(x) + A —B[R™' + Ra|BT
-Q-Qa  —A(x)T - A}
In what follows, we will address sufficient conditions for the existence of such updates
FE and how they can be computed.

I+ FE
P

I+ FE
P

Z, and |E| <e. (26)

Lemma 4.4. Consider Problem /.5. Any solution (Qa, Ra, E) satisfies
(A(z) + Ap)E — EZ = —Ap + BRAB'P. (27)

and
—QE - Qa(I+E)— A P =0. (28)

Conversely, for given 0 < € < 1, if there exist Ra and E with | E|| < € that fulfill (27),
then (28) can be solved for Qa and (Qa, Ra, E) satisfy (206).

Proof. With P solving (23), the updated system (24) is equivalent to (27) and (28).
Conversely, if there is a solution E to (27), then the first block line in (26) is satisfied. If
also ||E|| < 1, then I + E is invertible and there is a unique Q@ so that (28) and, thus,
the second block line of (26) are fulfilled. O

According to Lemma 4.4, a desired solution F to (24), namely an E with [|F| < 1,
is always solely defined by (27). Thus, solvability of (27) is the key for applying the
approach of updating the initial Riccati based feedback.

Equation (27) is a Sylvester equation [12, Ch. 16] that can be written as

P(A(x) + Ap, —Z) vec(E) = vec(—Ap + BRABTP), (29)

where P(A1, As) := A1 ® I — I ® Ay and vec is the operator that stacks the columns of
a matrix into a long vector. For given Ay and As, the Sylvester operator P is invertible,
if and only if A; and A do not have a common eigenvalue.

In the considered case, there is no guarantee that the spectra of A(z) + Ax and —Z
are disjoint. Thus, we can not state unique existence of solutions. If A(z)+ Ax and —Z
share an eigenvalue, then the associated P is rank-deficient. Then Equation (27) has
a solution, or better infinitely many solutions, only if the inhomogeneity is consistent.
Based on these considerations, we propose two practical approaches to obtain such a
solution F.

14



1. Solve (27) with Ra = 0. If this fails, then the linear operator P is not invertible
and A is not in the range of P. One can try whether for a small second summand,
—Ap+BRABT P is consistent. However, since B typically has only a few columns,
this is only a low-rank update which is unlikely to fix the inconsistency in general.

2. If (27) is not solvable, one may solve the perturbed system
(A(z) + Ax — BR'BTP)E+ EZ = —Ax + BRAB'P, (30)

which is hopefully a slight perturbation, if E is small. If Ax is small, then Equation
(30) has a unique solution since BR™'BT P was stabilizing A and also Z has only
eigenvalues with negative real part.

Another issue is the smallness of the update E — a second crucial ingredient of the
approach. If we assume that in (29) the operator P is invertible, then the norm of the
update is readily estimated by

1ElF < P~ 0 ]IF, (31)

where we have used the abbreviation Y := —Aax + BRABT P. Relation (31) is also what
the general perturbation estimates given in [12, Eq. (16.23), (16.25)] reduce to in the
considered case.

At a first glance, the smallness of Y = —Ax + BRABTP induces a small E. The
freedom in the choice of Ra can be used to further optimize the solution. Either through
minimizing the norm of Y, which is probably not optimal in terms of a minimal norm
E but which comes with the a-priori estimate (31), or through minimizing the solution
in an optimization setup. The latter optimization approach may also be employed if P
is not invertible, provided that one can guarantee a consistent right hand side for all
considered choices of parameters.

Estimates for [|[P~!||2 may be obtained as follows. The direct approach would be to
compute the largest singular value of P~! that defines the considered spectral norm of
P~1 e.g., via the power method [10]. Alternative ways are given by virtue of the equality
of the smallest singular value of P(A;, A2) to the so called separation of A; and Aj:

. AL X — X Ao
sep(Aj, A2) = min ,
X 1 Xl
cf. [20], e.g., via an algorithm reported in [3] that bases on Schur decompositions and

that has been implemented, e.g., in the SB04OD subroutine of SLICOT [0].

5 Numerical Examples

We consider the 5D example that was considered in [2, Ch. 3.4] and which writes as an
SDC system & = A¢ + Bu like

15



& 0 100 0][a] [0 0
& 0 0 1 0 0] |& 00
El=10 00 & 0] |&|+|1 0|y £©0) =z eR5. (32a)
€4 —& 0 0 & 0] |& 0 0
s 0 0 0 0 0] & 01
We add the observation nn = C¢, defined as
31
&2
1 0 00O
€a
&

Note that with the chosen input and output operators, the system — considered as a
linear system pointwise at any staty £(¢f) — is controllable and observable so that, in
particular, at every state x there exists a feedback that stabilizes the matrix A(z). We
compute stabilizing feedbacks by means of the SDRE (4) and the update scheme that
was defined through Theorem 4.2.

In the first approach, that we will denote by sdre, we only use the SDRE based
feedback which requires the solution of a Riccati equation at every step of the numerical
integration. In the second approach, referred to as p-update, we update the initial
SDRE feedback according to Theorem 4.2. If the norm of the current update F exceeds
a threshold € < 1, we reset the base feedback P with the solution of the SDRE at the
current state x.

The parameters for the definition of the SDRE feedback and the updates are set to

R=10"3Irxs, Q=CTC, and Ra =0.

We use SciPy’s built-in integrator odeint with the absolute and relative accuracy tol-
erances set to 1076 to integrate the closed loop system on (0, 3], starting from the initial
value

.
xoz[—l.?) 14 —11 —-20 0.3] .

This initial value is different from the one used in [2] for which the initial solution of the
SDRE applied as a static feedback already stabilizes the trajectory.

As illustrated in Figure 3(b), without stabilization, the system blows up in a short
time, while with stabilization, the trajectories approach zero. This successful stabiliza-
tion was achieved for the sdre case as well as for the p-update case for varying update
thresholds €. In the p-update approach, during the time integration, Sylvester equations
are solved in order to update the feedback to bound the variation in K, cf. Theorem 4.2
and Lemma 4.4, and to keep the decay rate piecewise constant, cf. Figure 3(a). Note
that € = 0 corresponds to the sdre scenario and that the jumps occur where || E|| exceeds
€ and where the p-update scheme is reinitiated with the current SDRE solution.
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Figure 3: (a): The decay rate —w of the closed loop matrix over time ¢ for varying e and
(b): the trajectories £ of the stabilized (solid lines) and of the uncontrolled
(dashed lines) system (32).

Scheme ‘ €  F#fb-switches #f-eva comp-time
sdre 0 — 245 0.054s
p-update | 0.1 32 1287 0.271s
p-update | 0.5 7 521 0.110s
p-update | 0.9 2 374 0.078s

Table 2: Influence of € on the number of switches #fb-switches in the feedback definition,
on the number of function evaluations #f-eva in the time integrator, and on the
overall computation time comp-time for the simulation of the 5D example (32).

Apart from allowing for application of the theoretical results of Section 2, the p-
update approach comes with the advantage over sdre that mainly Sylvester equations
are solved instead of Riccati equations. In the considered five dimensional setup, the
solution of the Sylvester equation (27) using scipy.linalg.solve_sylvester takes about 100us
which is much less time than 182us that is needed by scipy.linalg.solve__continuous_ are to
solve the associated Riccati equation (4). The additional effort to compute BT P(I+E)~!
in each time step is 12us and comparatively small.

In terms of the overall computation time, however, the sdre approach outperforms the
p-update procedure in the presented example. Here, the generally faster computation of
the feedback is compensated by the additional number of time steps that was required
by the integrator to achieve the same accuracy. We observe that for smaller thresholds
€, which cause more sudden changes in the feedback matrix, the integrator needs more
function evaluations due to less smoothness in the system, cf. Table 2. Nevertheless, as
we show in a second example, for larger systems, for which the differences in the com-
putational complexity between the linear Sylvester and the nonlinear Riccati equation
is much more significant, the p-update will be more economic also in the overall costs.

As a second example, we consider the Chafee Infante equation, which is an autonomous
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§(t, 2)
§(t, 2)

Figure 4: The uncontrolled (left) and the stabilized (right) evolution of the solution to
the Chaffee Infante equation (33).

PDE. Precisely, for the spatial coordinate z € (0,2) and time ¢ € (0, 3], we consider

§=0..L+5(1—&)¢ (33a)
with boundary conditions
g(t)‘z:o =0 and 8Z§(t)‘Z:2 = u(t) (33b)
and the initial value
zo = 0.2sin(0.57%). (33c)

It is known that the equilibrium point £ = 0 of (33) is unstable and that the solution
for any z¢ # 0 converges to one of two stable equilibria; cf. [I]. We discretize (33) by a
finite-element scheme using FEniCS [15] and N equally distributed linear hat functions
which leads to an SDC system with N degrees of freedom in the state and a single input.
The output matrix C' € R>" is defined to observe the solution at the spatial locations
2=0,2=05,2=1, 2= 1.5, and 2z = 2. The parameters are chosen as Q = CTC,
R =10"', and Ra = 0. We use scipy.integrate.odeint to integrate the closed-loop system
as in the previous examples. Since one deals with a finite element discretization, one
should use the norm induced by the corresponding mass matrix to compare the errors
independently of the discretization. We mimic this scaling in the norms by scaling the
prescribed tolerances 107¢ with the inverse of the elements length 2/N.

Both the p-update and the sdre stabilization successfully force the system into the
unstable zero state as illustrated in Figure 4. As expected, for ever larger N, i.e. ever
larger system sizes, the advantage of solving linear updates in the p-update scheme over
solving nonlinear Riccati equations in the sdre scheme becomes increasingly evident; cf.
Table 3.

The code and information on the system architecture used for the tests is available
from the public git repository [11].
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Scheme €  F#fb-switches #f-eva comp-time
N =20

sdre 0 — 442 1.921s

p-update | 0.5 2 838 3.266s

p-update | 0.9 0 451 1.756s
N =140

sdre 0 — 849 6.267s

p-update | 0.5 3 1936 10.000s

p-update | 0.9 1 1186 6.140s
N =60

sdre 0 — 1194 15.4265s

p-update | 0.5 4 2240 18.379s

p-update | 0.9 2 1770 14.140s
N =280

sdre 0 — 1589 42.088s

p-update | 0.5 6 2953 35.840s

p-update | 0.9 3 2096 25.486s
N =100

sdre 0 — 2106 90.148s

p-update | 0.5 7 3778 68.080s

p-update | 0.9 4 2423 43.816s

Table 3: Influence of € on the number of switches #fb-switches in the feedback definition,
on the number of function evaluations #f-eva in the time integrator, and on the
overall computation time comp-time for the simulation of the stabilized Chaffee
Infante equation (33) with finite element discretizations on varying mesh sizes
N.
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6 Conclusions

We analysed the stability of trajectories £ of an SDC system like (2) based on properties of
the spectrum of A(£(t)). The straight-forward adaptation of known sufficient conditions
for linear time-varying systems came with strong global assumptions that are unlikely to
be fulfilled or confirmed. Taking into account that the coefficient function &(t) — A(&(t))
is stabilized together with the trajectory, we derived sufficient conditions for stability
that can be checked locally. In view of using the obtained theoretical results for feedback
stabilization, we developed an update scheme that ensures uniform decay rates and
bounds on the transient behavior of the closed-loop SDC system matrix.

In terms of achieved stabilization, the well-established SDRE approach worked as good
as the newly developed update scheme which, however, comes with two major advan-
tages. Firstly, the update scheme allows for controlling the current spectral properties
of the closed loop matrix so that the developed stability conditions can be applied. Sec-
ondly, in every time instance, only a linear equation is solved, which pays off for larger
systems in particular. Both the usability of the sufficient conditions and the efficiency of
the approach to stabilization via updating an initial feedback was illustrated in numerical
examples.

By now, in the numerical examples as well as in the theoretical investigations, we
have not considered the potential for optimization within the derived approaches. For
example, the freedom in the choice of the weighting matrix perturbation Ra may well be
used to optimize the feedback update E. Additionally, it might be worth investigating
whether structural assumptions on the changes A in the coefficient matrices can be
exploited to provide feedback updates of, e.g., low-rank.
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