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Abstract

In this work, we study the numerical approximation of local fluctuations of certain
classes of parabolic stochastic partial differential equations (SPDEs). Our focus is
on effects for small spatially-correlated noise on a time scale before large deviation
effects have occurred. In particular, we are interested in the local directions of the
noise described by a covariance operator. We introduce a new strategy and prove a
Combined ERror EStimate (CERES) for the four main errors: the spatial discretization
error, the local linearization error, the local relaxation error to steady state, and the
approximation error via an iterative low-rank matrix algorithm. In summary, we obtain
one CERES describing, apart from modelling of the original equations and standard
round-off, all the sources of error for a local fluctuation analysis of an SPDE in one
estimate. To prove our results, we rely on a combination of methods from optimal
Galerkin approximation of SPDEs, covariance moment estimates, analytical techniques
for Lyapunov equations, iterative numerical schemes for low-rank solution of Lyapunov
equations, and working with related spectral norms for different classes of operators.

Keywords: stochastic partial differential equation, combined error estimates, optimal
regularity, Lyapunov equation, low-rank approximation, local fluctuations.

1 Introduction

This work has two main goals. The first - more abstract - goal is to establish a general
strategy to find and prove Combined ERror EStimates (CERES for dynamical systems
involving several sources of error. The second - more specific - goal is to demonstrate CERES
for a concrete challenge of an infinite-dimensional stochastic problem. The technically precise
formulation of our work starts in Section 2l In this introduction we provide a basic overview
of our strategy and our main results. We focus on the evolution equation

du = [Au+ f(u)] dt + g(u) dW, (1)

LCERES is not only a direct acronym for the main strategy of this work but also contains a nice historical
note: The asteroid Ceres was predicted by Gaufl using the method of least-squares, which also ’combines’
the minimization of several errors to a single function.
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where W = W (xz,t) is a certain white-noise process, A is a suitable linear operator, f,g
are given maps and u = u(x,t) is the unknown function [43]. As a paradigmatic example,
one may think of the Laplacian A = A, W as a ()-Wiener process with trace-class operator
@ and f, g as sufficiently smooth Lipschitz functions- Suppose the deterministic problem,
i.e. g(u) = 0, has a steady state solution u = u*, which solves 0 = Au* + f(u*). Suppose the
steady state is linearly stable, which just means that the spectrum of the linear operator

A=A+ D,f(u") (2)

is properly contained in the left-half of the complex plane [27, [45]. Assume that the initial
condition u(x,0) is very close to u* and the noise in (1)) is sufficiently small, 0 < [|g(u)|| =:
v < 1, in comparison to the spectral gap of A to the imaginary axis. Then the probability
is extremely large that one observes only local fluctuations of sample paths of the SPDE ([IJ)
near u* on very long time scales. Only when the time scale reaches roughly order O(e™¢/ “2)
for some constant ¢ > 0 as v — 0, large deviation effects [53, 43] occur. Here we focus
on the initial scale of fluctuations, which we refer to as sub-exponential scale, on which
large deviation effects do not play a role. However, the noise does still play an important
role near the steady state. Its interplay with the operator A determines the directions, in
which we are going to find the process with higher probability locally near u*. This raises the
question, how to numerically compute these directions. A recent practical strategy suggested

in the context of a numerical continuation [2§] framework for stochastic ordinary differential
equations (SODEs) [31] and then extended for SPDEs [32] is to:

(S1) spatially discretize u with approximation level h and consider the resulting SODEs for
a large vector u;, € R"V;

(S2) locally linearize the SODEs around u} and consider SODEs for the linear approximation
U, € RY, which form an Ornstein-Uhlenbeck (OU) process [16];

(S3) take the covariance matrix Vj, = Vj(t) of the OU process, which satisfies a time-
dependent Lyapunov equation [1}[48], and show that it converges quickly to a stationary
Lyapunov equation for a matrix V, € RV*V;

(S4) compute the matrix V, ~ ZZ" using a specialized iterative method involving a low-
rank approximation Z € R™*® with v < N; j computation steps of an iterative
algorithm yield a matrix V; = V..

Every step (S1)-(S4) produces an error, i.e., the final matrix V; only provides an approx-
imation to the infinite-dimensional covariance operator Cov(u) [18]. Hence, one should aim
for a result of the form

sup, [Cov(u) — Vil < siepsh) + sten ($2) + sien (85) + siap (94) (3)
te[0,T

to really judge the quality from the viewpoint of numerical analysis. Equation (3] is just
a prototypical example, i.e., a chain of different error terms does occur in most challenging
high-dimensional problems, particularly those involving stochastic aspects.



Remark: We do not consider in [B) the modelling error of SPDEs of the form (). On the
one hand, it is partially included in a stochastic formulation anyway and one the other hand it is
always possible to argue in an application, whether other terms or effects matter. The second error
we do not include in the CERES is the standard numerical round-off error, which is universal for
a given precision.

From a technical viewpoint, each step demands different techniques and then a combi-
nation of the different estimates. For this CERES, we decided to consider the spectral or
2-norm || - || on the infinite- as well as finite-dimensional levels. This simplifies comput-
ing a CERES considerably as one may use the standard triangle inequality and suitable
embeddings for the expression

| Cov(u) — Cov(up) + Cov(up) — Vi, + Vi, — Vi + Vi = V; || (4)
~ - N ~ - N’ N’
Step (S1) Step (S2) Step (S3) Step (S4)

For (S1), we rely on an extension to covariance operators of optimal error estimates for
Galerkin finite elements methods for SPDEs [29] 30]. (S2) is treated via small noise approx-
imation in combination with moment equations [49, [33]. (S3) is probably the simplest step
as classical results on spectra for Lyapunov equations [5] and decay of the time-dependent
problem [23] can be combined. (S4) requires a careful tracing of error estimates for low-rank
versions of iterative algorithms, such as alternating direction implicit (ADI) and rational
Krylov methods [11].

Our final result for (@) is summarized in Theorem Bl It illustrates that many factors
can influence the error. For example, the spatial resolution h, the final time 7", the Lipschitz
constants of f, g, the structure of the operator @, the spectrum of A, and the low-rank t all
appear in some form in the final error. Therefore, balancing a CERES is the key practical
message of our work. Just making a spatial resolution h small or a dynamical error small
by taking higher-order terms into account may not be enough in practice, i.e., one has to be
aware which error term dominates a CERES in the actual numerical implementation.

The paper is structured as follows: In Section 2] we provide the foundational technical
setup for SPDEs (dl) using mild solutions. Section M develops the error estimates for co-
variance matrices while Section [ contains the relevant moment estimates. In Section [@] we
transition to the Lyapunov equation and its reduction to steady state. The last technical
step is carried out in Section [1 tracing the error results for low-rank iterative schemes for
Lyapunov equations. In Section [§ we present the full CERES, which draws upon all the
previous results. An outlook to open problems and further applications of our methodology
is given in Section [9

2 SPDE - Mild Solutions

Let D C R? be a bounded domain with smooth boundary 9D and denote the spatial variable
by x € D. Consider a fixed compact time interval Z = [0, 7], t € Z and a filtered probability
space (Q, F,F;,P). Furthermore, we fix two Hilbert spaces H and U with inner products
(-, ) and (-, ) respectively. Let @ € L(U,U) be a symmetric non-negative linear operator
and let W (t) denote the associated Q-Wiener process; see [43, Sec.4.1] for the definitions
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when @ is of trace class and [43, Sec.4.3] for the case of a cylindrical Wiener process. Let
Uy == QU be a Hilbert space [43] 44] with the inner product (-,-)y, = (Q™V/2., Q7Y2.),
where Q=2 is the pseudoinverse of Q. An operator M : Uy — H is a Hilbert-Schmidt
operator if the norm

. 1/2
1M g = <Z IIMCkII%)
k=1

is finite, where the choice of orthonormal basis {(; }72, for Uy turns out to be arbitrary. The
space of these Hilbert-Schmidt operators will be denoted accordingly by £9. If we consider
Hilbert-Schmidt operators on H, then they will be denoted by Lo = Lo(H, H).

Let u(x, t;w) for w € Q denote the unknown family of random variables u : DxZ x§ — R.
In the notation we shall always suppress w from now on and assume that all maps we define

are measurable with respect to w, which will also imply measurability for u below. We write
u(t) = u(-,t) € H and study the SPDE

du(t) = [Au(t) + f(u(t))] dt +g(u(t)) dW(t),  u(0) = uo, ()

as an evolution equation on the Hilbert space H, which is taken as a suitable function space
on D.

(AO) We assume the operator A : dom(A) C ‘H — H is linear, self-adjoint positive definite
operator with compact inverse and generates an analytic semigroup ¢ — e4 [22].

f, g are given maps to be specified more precisely below and the initial condition uy € H
is a random variable uy. A mild solution u(t) to (B satisfies

u(t) = ey —I—/O e(t_s)Af(u(s)) ds +/0 e g(u(s)) dW (s), (6)

i.e., the integral equation (@) holds P-almost surely (P-a.s.) for t € Z and

t
P </ lu(s)]* ds < —i—oo) =1, P-a.s.;
0

see also [43] Ch.4] or [10] for the construction of the stochastic integral. It is well-known that
under certain Lipschitz assumptions [43], Sec.7.1] or dissipativity assumptions [43] Sec.7.4.2]
on f, g, there exists a unique mild solution. However, since we are interested in numerical
error estimates, it is important to have optimal regularity results for mild solutions so we
follow [29] 30} 25]. Denote by {ax}72,, 0 > ay > ay > --- the eigenvalues of A and by e,
the associated eigenfunctions with Ae, = ager. For r € R, define the fractional operator
A2 dom(A™/?) — H by

APy = —(—A)? = — Z(—@k)rm (v, er)n e
k=1
Set H" := dom(A"/?) and consider the norm ||v| ;. = ||A"/?v||, which turns H" into a
Hilbert space. Let £3, C L9 denote the subspace of Hilbert-Schmidt operators with the
norm | - [zg = | A2 || 9. The following assumptions are assumed to hold from now on

(although we are still going to emphasize this several times in statements of theorems below):
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(A1) Fix two constants r € [0,1) and p € [2, 00) for all assumptions. The initial condition
ug : Q — H™! is Fy-measurable with

1/p
E (ol ] < Cii < +o0.

(A2) f:H — H ! and there exists a constant Cy > 0 such that
| f(w) = f0)]lzr-1 < Cpllu —vlln, forall u,veH. (7)

(A3) g:H — L) and there exists a constant Cj,; > 0 such that
lg(w) = g()lleg < Conllu —vlln, forall u,v & H, (8)
and furthermore g(H") C L3, holds with the estimate
lg()lleg, < Coo(l+ [lully:), forallucH, 9)
and some constant C, o > 0.

Essentially (A3)|are modifications/extensions of the classical Lipschitz assumptions
in [43]. Therefore, one immediately gets:

Theorem 2.1 ([43, Thm.7.4},[24] Thm.1]). Suppose hold, then there exists a
unique mild solution for the SPDE ([H).

In addition, one may provide (optimal) regularity estimates for the mild solution:

Theorem 2.2 ([30, Thm.3.1 & Thm.4.1]). Suppose hold then the unique mild

solution is almost surely in HY. There exists a constant Cspa > 0 such that

sup (& [Ju(0)lE.])"" < oo+ Con (1500 (8 [ty ])™) 10

holds as a spatial reqularity estimate and for temporal reqularity we have

sup (B [lu(ty) — u(ta)

t1,t2€L,t1#t2

1+r—s

1/p .
P]) S Climelty — a5 (11)

2
for some constant Cime > 0 and for every s € [0, + 1).

As for the deterministic counterpart (¢ = 0) of the SPDE (), one may use regu-
larity estimates to obtain convergence rates and error estimates for associated numerical
schemes [50] [I5]. In this paper, as already discussed in Section [I we are interested in the
spatial approximation error only. We stated the temporal regularity results only for com-
pleteness. It is noted that the constant Cy,, > 0 in Theorem 2 2ldoes depend upon p,r, A, f, ¢
and T'.

As a typical example for the abstract framework, one should always keep in mind classical
one-component reaction-diffusion systems, where

H = L*(D) and A=A:=

but we shall not restrict to this case in this paper and continue to work with the more general
setup.



3 SPDE - Spatial Discretization

Let Sy, for h € (0,1] denote a continuous family of finite-dimensional subspaces of the Hilbert
space H! with
dim(S,) =: N € N, (12)

which are spanned by N basis elements of an orthnormal basis of H!. The spaces S, are
going to be used as the spatial discretization spaces; see [50} [I5] for a detailed overview.
Particularly important examples are the span of a finite set of basis functions of A leading
to a spectral Galerkin method, or the span of piecewise polynomial functions on D, where h
is the diameter of the largest element of a suitable mesh on D, leading to a Galerkin finite
element method. Let Ry, : H — Sy, be the orthogonal projection onto S, with respect to
the inner product a(-,-) := (AY2., A2}, so that we have

a(Rpu,vp) = a(u,vy), forall u e HY, v, €Sy

The discretized version Ay of A is defined by the requirement that for a given u;, € Sy, the
image Ajuy, is the unique element satisfying

a(uh, Uh) = <Ahuh,vh>H, for all v, € Sy,.

Furthermore, let P, : ™! — S, be the orthogonal projection onto S, defined analogously
to Ry, i.e., by requiring

(Pou,vp)y = a(A u,vp), forallu e H7L, v, € Sy
Then the spatial discretization of the SPDE can be written as
duh(t) = [Ahuh(t) + th(uh(t))] dt + Phg(uh(t)) dW(t), uh(O) = Phuo. (13)

It is relatively straightforward to check that (I3]) must also have a unique mild solution; see
also the proof of Lemma 3.2l To fix the role of the discretization parameter h, we are going
to assume:

(A4) There exists a constant C, > 0 such that

|Ryv — vl < Ch b ||v]|, forallv e He, s € {1,2}, h e (0,1]. (14)

Recently, the regularity result of Theorem has been transferred to yield results
on strong/pathwise approximation properties of the finite-dimensional SODE (I3]) for the
infinite-dimensional SPDE (). Consider the norm

1
- llr@n = EIl- 5" (15)
for p € [2,400) as above. Then one can prove the following error estimate:

Theorem 3.1 ([29, Thm.1.1]). Suppose hold, then there exists a constant Cga >
0 such that

||u(t) — Uh(t)HLp(Q;H) < Cgaal hl+r, Vtel. (16)



In the later development of the error estimates for the covariance operator, we shall need
another auxiliary result, which we prove here:

Lemma 3.2. Suppose hold, then here exists a constant C > 0 (independent of
h) such that

sup [[u(t) + un(?) || 2@ < Cs-
teT
Proof. Indeed, we just have
sup [lu(t) + un ()] L2 < sup [[u(t)|| L2y + sup [Jun ()|l 2@
teT teT teT

so the first term is bounded by a direct application of Theorem (or in fact, the classical
result [43, Thm.7.4(ii)]). For the discretization, note that we may apply the same results
since (A0)-(A3) also hold for the discretized SPDE ([I3]). For example, consider (A1) then
we have

[ Enf(w) = Buf ()l s = [1Bulf () = fO)]l[ grs < [ () = f(0)l s (17)
since P, is an orthogonal projector. The other assumptions are checked similarly. O

Of course, it should be noted that the constant C'y > 0 will depend on the data of the
problem, i.e., on f,g,T, A. However, we will only be interested in the convergence rate in
h and we will show later on that we can select T as an order one constant anyhow, while
f, g, A are given and satisfy the Lipschitz and semigroup assumptions stated above.

4 SPDEs - Covariance

The next, and first novel, step is to establish numerical error estimates for the covariance.
Let v € L*(Q;H), then one defines the covariance operator [43] 35] of v as

Cov(v) := E[(v — E[v]) ® (v — E[v])]. (18)

By definition, Cov(v) : H — H is a symmetric linear operator. In addition one may check
that Cov(v) is nuclear using the equivalent characterization of nuclear operators M on Hilbert

spaces via the condition
o

Te(M) := Y (M&, &) < +00
s

for an orthonormal basis {&;}52, of H. The space of nuclear operators £,(H,#) becomes a
Banach space under the norm || - ||z, 3,2 := Tr(-) 43l Appendix C]. Note that we have two
well-defined covariance operators

Cov(u(t)) and Cov(upn(t)) (19)

as the SPDE (Bl and the spatially discretized version (I3]) both have mild solutions in
L*(Q x Z; H) by ().



Theorem 4.1. There exists a constant Cyq > 0 such that

sup ||Cov(u(t)) — Cov(un(t)) || o) < Cah™". (20)

tel

Proof. The proof is a calculation aiming to use the spatial approximation property of The-
orem 3.1l Suppose as a first case that E[u] = 0 = E[uy]. Consider an orthonormal basis
{& )52, of H. The idea is to estimate the error in the Hilbert-Schmidt norm || - ||z,. For the
following steps we suppress the argument u = w(t) and u, = u,(t) and use the definition of
the covariance operator

sup | Cov(u) - Cov(un)|z, = sup||B[u ® u] - Efu, @ unllZys
= sup [El(u — un) @ (u+ un)]|z,
= sup g(E[(u — ) @ (u A+ un) €k, Er)3
- sup g(E[(u ) ® (- w6l €02,
= sup gE[(u — p, &) (4 un, €Y,

where we use in the last step the definition of the tensor product (v ® vg)vs := (vg, v3)201

for vy € H for k € {1,2,3}. Then a direct application of Cauchy-Schwarz and Parseval’s
Theorem yield

sup | Cov(u) — Cov(un)l, < sup > Ellu — un, &3JELu + un, &6)3),
tel tel 1
< sup [lu —unl B e+ unlgny (21)

In the expression (21I), we may estimate the two terms separately by estimating the supremum
by the product of suprema. Furthermore, a direct application of Theorem Bl to the first
term and Lemma to the second term give

sup ||Cov(u) — Cov(uh)||2£2 < Caa Cy B2+,
teT

which yields the result in the basic case of zero means. If E[u] # 0 and E[uy] # 0, we observe
that

sup lu — up — Elu — uplll T2y < sup lu— unllZ2 (g + sup 1E[u — un]l| 72090,
teT teT teT
< Cga KU + SugE[HU — unll 2011
te
< 20ga h*HY,
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using again Theorem B.] twice. Furthermore, it is easy to see that
E[Hu + up — E[U + Uh] ||L2(Q;7-[)]

remains bounded for nonzero means. The result now follows repeating the same steps shown
for the zero means case also for the nonzero means case. O

Obviously the constant Cy also depends upon the data of the problem as do C'y and Cgy
but all constants are independent of h, which is the key discretization parameter in the step

(S1).

5 SODEs - Linearization

Having estimated the error of the discretization, we are now dealing with a finite-dimensional
system of stochastic ordinary differential equations (SODEs) given by

dup(t) = [Apun(t) + Puf(un(t))] dt + Pog(un(t)) dW (1), up(0) = Pyug,  (22)

where u, € RY. We assume that the original SPDE (&) and its projection have a locally
asymptotically stable homogeneous steady state for zero noise and that we only study the
small noise regime.

(A5) Assume u* satisfies Au*+ f(u*) = 0. Furthermore, suppose f is Fréchet differentiable,
D, f(u*) = f'(u*)Id and

spec(A + f'(u*)Id) C {p € R: Re(p) < 0}. (23)
Furthermore, assume uj := Pyu* satisfies Apuy + P, f(uy) = 0 for all h € (0, 1].

(A6) Suppose there exists a constant v > 0 such that

[Phg(un(t))ll2 < v (24)
for all h € (0, 1].

Below we are also going to assume that v is chosen sufficiently small to get a good approxi-
mation of the linearized system. The goal is to provide a finite-time estimate for the difference
between the covariance matrix Cov(uy(t)) of ([22) and covariance matrix Cov(Uy(t)) of the
linearized OU process

dUL(t) = [Ap + Pu[Duf](u")] Un(t) dt + Prg(u®) dW (1), Un(0) = Puug. (25)

Obviously, for general nonlinearities f, there is no infinite-time asymptotic estimate. Fur-
thermore, without additional assumptions on the nonlinearity f, it is usually not possible to
estimate the error between a linearized and a nonlinear system. To simplify the notation we
let

up =: 2, Apup(t) + Puf(un(t)) =: F(2), Prg(un(t)) =: G(2),
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as well as
Uh = Z, [Ah + Ph[Duf](u*)] = A, Phg(u*) =: B.

Hence, we have to compare the SODE
dz = F(2) dt + G(z) dWF, 29 = 2(0), (26)
near a steady state z* := uj to the SODE
dZ = AZ dt + B aW'*, Zy = Z(0), (27)

where W = (Wy(t),...,Wg(t))" € Rf is a vector of independent Brownian motions. With-
out loss of generahty we may assume that z* = (0,...,0)" since we can always translate
the steady if necessary. Let p = (p1,p2,...,pn) € (Ng)V be a multi-index, define the mean
values of z by p :=E[z] € R" and the centered moments as

El(z — p)?] == E[(z1 — pa)"* (22 — p2)™ - - - (an — puw)PV]- (28)
To make the notation more compact, we also introduce ’altered” multi-indices as follows:

p(k : C) = (p17p27 -y Pk—1, Pk + gvpk—l-la s 7pN)

for ¢ € Z and multiple arguments pertain to changes in the respective components. Further-
more, we consider the diffusion operators

G(2) =G(2)G(2)", B:=BB'". (29)
Lemma 5.1. The evolution equations for the centered moments E[(z— p)P] of ([28) are given
by
d 1 o
Bz~ ZpkE Fr(2)(z — )P 4 3 ;pk@k — DE[G(2) (2 — p)P* 7]
N -1
+ Z szpkE (Gri(2)(z — )P Y]
1=2 k=1

Proof. The calculation of the SODEs for the moments follows from first applying Ito’s for-
mula to monomials of the form 2P as shown in [49, Sec. 4.1]. However, we then need to
average via E[], and terms of the form [(-) dW* average to zero as they satisfy the martin-
gale property [26] by the Lipschitz assumption on G. O

Consider the linear approximation of (2@) given by (27). We use the notation v :=
E[Z] and we may assume without loss of generality that A is already diagonal; indeed, by
assumptions [(A0)| and [(A5)| we already have that A is symmetric with real spectrum so we
can apply a coordinate change to make A diagonal. Now we have two processes and we
would like to compare Cov(z) with Cov(Z). From Lemma [5.1]it follows that

d
dt

CH=EF(),  Sv=Av (30)
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It is relatively easy to write down the formal evolution equations for the covariances. For
the diagonal entries we have

%COV(Z)“. — E[F(2)(z — )] + E[Gi(2)] (31)
%COV(Z),-,- — 2E[(AZ)i(Z — )] + By (32)

Consider the difference Cov(z) — Cov(Z) =: Cov® and also defined the remainders
RY(2) == F(2) — Az, RY%(2) := G(2) - B.
Observe that the remainder RF is Lipschitz

IR (21) = R" (22)|| < (Cr + || 22 — 22, (33)

by assumptions |(A2)| and [(Ab)| for some constant Cp > 0, where || - || always denotes the
2-norm. Regarding the remainder RY, recall that we assumed a uniform noise bound in
so that

IR (21) = RY(2)|| < Cov? (34)

for some constant C¢ > 0. Then one finds, using that A is diagonal and via assumption |(A5)],
that

%Covﬁ = 2E[Fi(2)(2i — i) — (AZ)i(Zi — vi)] + E[Gii(2) — By,
= 2AuR[(z + pi — i — RE(2) ) Au) (2 — ps) — (Zi + v — ) (Z; — )] + B[RS ()],
= 2A4; (Covﬁ + E[(u; — R (2) ) Aii) (i — i) — vi(Z; — Vz)]) + E[R{(2)],
= 2A,; (Covﬁ +E[Rf (2)/ Aii(1i — Zz)]) + E[R5 (2)].

Using the Lipschitz conditions ([33]) and the bound (34]) one has

LR (2)/Au(i — ) + RE() < IELEC gy
AL+ Cr) g o o
WE[HZH ]+ Cou (35)

we denote the right-hand side of the last inequality by 7;;(¢), which implies the final estimate
t t
Cov5 (t) < Cova(0) +/ nii(s) ds +2A4; [ Covi(s) ds, (36)
0 0

=m*(t)

where we note that n*(¢) is non-decreasing. Applying Gronwall’s inequality to (B6]) yields
the following result:

Lemma 5.2. Suppose the assumptions hold for all t € T, then
Cova(t) < [Covﬁ(()) + 0 (t)] e (37)
holds for all t € T.
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Note that an estimate of the form (7)) is fully expected to hold since it states that the
growth of the difference between the covariances in the case of Lipschitz F' and sufficiently
bounded noise is controlled by the first- and second-moments of the nonlinear process. In
particular, if we are close to a linear SODE or the spectral gap is very large, then we have an
excellent finite-time approximation on Z, while large noise and a strong nonlinearity make
the approximation worse. The next step is to look at the off-diagonal terms and consider
the case i > j (the case i < j is similar). The evolution equations are

Coov(e)y = BIR()(z — ) + EIE(:) e — )] + EIGy (2)]

Coov(2)y = BIAZL(Z, ~ v)] + EAZ),(Z ~ )] + By

A similar calculation as above leads one to define
75 (1) ((IIAII + Cp)lpil | (Al + Cr)|uy)
’ | Al | Ajj
(Al +Cr) |, (IIA] + CF)} 5
+ + Ell z|#].
[ A Ay A

As before, we use the notation nj;(t) := fot n;;(s) ds and use Gronwall’s inequality to obtain
the result:

Lemma 5.3. Suppose the assumptions hold for all t € T, then
Covi(t) < [Covi(0) + (t))eAutAit, (38)

cavz) (2]

holds for allt € .

Of course, the estimates (37)-(B8) may blow-up as ¢t — +o0 if the stationary distribution
cannot be approximated well by an OU process. Indeed, if the noise is small, this is exactly
the effect of large deviations [53] 43], which are going to occur on an asymptotic time scale
O(e/ “2) as v — 0. However, the estimate is rather explicit, i.e., if we know the Lipschitz
constant, the spectral gap, the noise level and/or have some a-priori knowledge of the norms
|z]| and/or ||z]|?, then we can select Covfj(O) =0 and A;; < 0 is going to give initially decay
so that the linear approximation (27)) will be a good approximation for a certain initial
time-scale. The worst-case bound is the following:

Theorem 5.4. Suppose the assumptions (AG) hold for all t € T, then there exists a
constant Cy > 0 and a function n*(t) := max;; 1;;(t) such that

ICov(2(1)) = Cov(Z(1))ll2 < Ci[]|Cov(z0) — Cov(Zo) ||z +n*()]e~ ™ Ml (39)
Proof. Using Lemma and Lemma [5.3] we have
1Cov(2(t)) — Cov(Z(®)]l2 < C'max{(Cov(z) — Cov(Zo))i; + (1) Je At
< Cll|Cov(z0) — Cov(Zo)|lz + n'*(£)]e~* i !

so that the result follows. O
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In summary, Theorem [5.4] just states that one has to be extremely careful to trust a local
linear approximation in a numerical context for problems with large noise and/or a very
strong nonlinearity, which both lead to a very quick pathwise sampling of a non-Gaussian
stationary distribution. However, for small noise, sub-exponential time scales and/or a weak
nonlinearity, the local approximation via linearization and covariance operators for of an OU
process is going to correctly expose the relevant directions of fluctuations.

6 Lyapunov Equation - Algebraic Reduction

Recall that we have now considered a spatial discretization of the initial SPDE and we have
localized the problem near a locally deterministically stable steady state via linearization.
We calculated an upper bound on the discretization error and on the linearization error on
a finite time scale. However, although we now can work with the linear SODE problem

dU = AU dt + B dW¥%, Uy = U(0), (40)

we are still surprisingly far from a practical computable problem for many applications! 1t is
well-known [, 31] that V(t) := Cov(U(t)) satisfies the matrix ordinary differential equation
(ODE) given by

%V:AV+VAT+BBT = L4V + B. (41)

The stationary problem is given by
0=AV+VA" +B. (42)

It is well-known [I], that under the assumption there exists a unique stationary solution
Vi to ([@2), which is stable for the time-dependent problem (AIl). However, we work on a
finite-time interval Z so we need a convergence rate.

Theorem 6.1. Suppose |(A5) holds so that A also has a spectral gap then there exists a
constant C'. > 0 such that

V() = Vil < Co(V(0) = Vi|)etmim(iieD (43)

or, alternatively
IV () = Villa < C-(H) ([[V(0) = Vala)e /170, (44)
where H solves AH + HA" +21d = 0.

Proof. For ([@3), one first uses that the eigenvalues of the linear operator L4 are given by
Ai +A; where {\;}, are the eigenvalues of A [5]. For (@), we use that V, is a steady state
of (A1) to obtain

V(t) = Vi + exp(tA)(V(0) — Vi)exp(tA")
= V() = Vill2 < [lexp(AD) [3[V(0) — Vil
Then by [23, Theorem 3.1]

—2t
lexp(tA)2 < €, (H) exp ( ) |
1T,

which leads to ({4]). O
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Basically, Theorem gives an estimate, which allows us to reduce the computation to
the Lyapunov equation (42)) to the stationary case as long we do not start far away from the
locally linearized approximate solution. Unfortunately, direct solution methods, such as the
Bartels-Stewart algorithm [4] are unlikely to work as the space dimension N grows drastically
in practice as we decrease h. Furthermore, N increases due to the curse of dimensionality
as d increases. Direct solution methods come with an complexity O(N?) and with storage
requirements of O(N?), which limits their applicability to problems of moderate sizes. In the
following we, therefore, propose to use special methods for large-scale Lyapunov equation
that work with complexities and storage requirements linear in V.

7 Lyapunov Equation - Low-Rank and Computation

In this section, we want to consider and numerically approximate a low-rank approximation
of V.. This involves two steps, which can be be accomplished by carefully tracing the
literature: (1) understanding error estimates for the low-rank approximation and (2) finding
an error estimate for the computation in a low-rank iterative algorithm for solving Lyapunov
equations.

7.1 Low-rank Approximations and Singular Value Decay

Consider the singular value decomposition of V,

V,=YEX", VY=X"X=1I,
Y = diag(o1(Va),...,on(V4)),
o1 (Ve) 2 ... 2 00(Va) > 001 (Vi) = 0n(Vi) = 0,

where ¢ = rank(V,). The best approximation of V, of rank v is, by the Eckhart-Young
theorem [19, Theorem 2.4.8.], obtained by

SRS Z o, ¥ X, (45)

where Y;, X, contain the first v columns (left and right singular vectors) of Y, R, and X, the ¢
largest singular values. Note that since V, = V', X, = Y; can be chosen. The approximation
error is given by

IV = ViI"l2 < 0. (46)

If the singular values of V, decay rapidly towards zero, a small error can be achieved with
small values of v. In fact, solutions of large-scale Lyapunov equations with low-rank inho-
mogeneities often show a fast singular value decay. This phenomenon has been theoretically
investigated, e.g., in [42] 20, 2l [47]. By assumption we restrict to the symmetric case
A= A". The following basic estimate on the singular value decay can be found in [42]

p—1 (2i4+1)/(2p) _ 2
K .A 1
URt-i—l( < 0'1 (H ,‘{ A 2i+1)/(2p) 1 s 1 < R < N, (47)

1=
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where k(A) = ||Al[2]| A2 A more precise bound is developed in [47] using spec(A) C
la, b] and quantities related to elliptic functions and integrals, which we briefly recall in the
following definition.

Definition 7.1. The elliptic integral of the first kind defined on [0, 1] with respect to the
modulus 0 < k < 1 s

v 1
sp(x) == dt
{e) /0 V-1 kB
Define also the elliptic functions sn,dn by
sn(sg) = x(sx), dn(sg) =+/1— k?sn(sg).

The associated complete elliptic integral (w.r.t. the modulus k) is the value K = si(1). The
complementary modulus is k' = /1 — k? and the associated complementary complete elliptic
integral by K’ = s/(1). The nome q is defined by q := exp (—7wK'/K).

Lemma 7.2. The nome q and complementary modulus k' also satisfy the identity [36]

C1=2¢+2¢" —2¢°+ ...
14 2¢42¢4+2¢° + ..

/

(48)
Using these quantities, the singular values of V, can be bounded by the following result

from [47, [14].

Theorem 7.3. ([/7, Theorem 2.1.1.],[T}]) Let A = A" and spec(A) € [a,b] with a :=
min \; < b := max)\; < 0. Set the complementary modulus to k' = b/a = 1/k(A) and
set k, the complete elliptic integrals K' and K, as well as the nome q via the relations in
Definition[7.1. Then it holds for the singular values of the solution of (42)

VR

where k; relates to ¢° in the same way k' is build from q via ([@S):

2
1— /K
onet(Va) < on(Va) (—f) Cl<Rr<N, (19)

N 1 —2¢° 4+ 2¢*% — 2¢” + . ..
14 2¢5 2%+ 2¢% 4.

We stress that, while better than (A7), the bound (@) might not be very sharp in practice,
where one often observes an even faster singular value decay. One reason is that Theorem
only uses k(A), i.e., the extremal eigenvalue a, b of A. More realistic, but also more difficult
to compute, bounds can be obtained by using more than these two eigenvalue of A [47].

Remark: In case of non-symmetric A, the above bounds are not applicable. In this case much
less is known about the singular value decay of Vi, see, e.g., the discussion in [3].

Judging by ([49), the decay of the singular values depends mainly on k(.A) and the value
R = coldim(B). For instance for fixed a, the closer b to the origin, i.e. the smaller the spectral
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gap, the larger x(.A) and, consequently, the closer k, k¥’ will be to one and, respectively, zero.
Hence, K" and K will tend towards 7 and oo, respectively, leading to ¢ close to one. In this
extreme situation, ¢* will also be close to one, leading, in the end, to

- VR
VR

such that no singular value decay might be observed. In particular, the main insight is that
the spectral gap also plays a numerical analysis role at the error in step (S4). Furthermore,
the column dimension R of B plays a significant role in the bound (49)). Recall the B is the
result from evaluating g at u* and approximating the stochastic process W (t). Suppose we
truncate the Q-Wiener process [43] to obtain a numerical approximation [39]

~ 1

Wi(t) ~ Z VA, Bi(t) ¢

for a basis {(;}2; of H, eigenvalues A\g; of ) and independent Brownian motions f;(t) is
used. The scalars A\g; form a non-increasing sequence. Hence, the slower the A\ ; decrease,
the higher the value of R should be chosen and, consequently, the slower the decay of the
singular values of V. This implies the key practical guideline that space-time white noise is
more difficult to treat numerically than a Q-trace-class Wiener process.

7.2 Error Bounds for Numerically Computed Low-Rank Solutions

Using the low-rank approximation (4H) is not practical as it requires to first obtain Vi
and then compute its singular valued decomposition. Numerical methods for large-scale
Lyapunov equations [48, [7] typically directly compute low-rank factors Z € RV** ¢ <
N that form a low-rank approximate solution V™* = ZZT which will, however, not be
optimal in the sense of the SVD based approximation (45]) but close if the method is properly
executed. The advantage of these methods is that they are able to provide accurate low-
rank solutions in a very efficient manner by utilizing tools from large-scale numerical linear
algebra. By exploiting, e.g., the sparsity of A and the low-rank R of the inhomogeneity,
state-of-the-art methods are able to compute low-rank solution factors at complexities and
memory requirements of O(N).

One iterative method for solving (42)) is based on the fact that for any a € C_, ({2 is
equivalent to the matrix equation

X =C(a)XC(a) + B(a)B(a)”
with C(a) == (A+ald)" (A —ald), B(a):=+/—2Re(a)(A+ald) "B,

where (-) is the Hermitian conjugate. This motivates the self-evident iteration scheme
Xj = Clay)X;-1C(ay) + Blay)Blay)"

for varying a; € C_, which is the alternating directions implicit (ADI) iteration for Lyapunov
equations [52]. In order to be applicable to large-scale equations, one uses Xy = 0 and, after
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a series of basic algebraic manipulation [38], one arrives at the low-rank ADI (LR-ADI)
iteration [38, [6], [34]
= (.A + Oéde)_1Wj_1, Wj = Wj_l - QRG(Ozj)Hj,
Zj =21, \/—2Re(a;) Hj] € CV*1Y

for Wy := B, j > 1. It produces low-rank approximations of the solution of ([@2) of the
form V., =V, = ZjZ]H . The numbers «; € C_ are referred to as shift parameters and
are crucial for a fast convergence of the LR-ADI iteration. Obviously, the main numerical
effort of the LR-ADI iteration comes from the solution of the linear systems of equations
(A+a;1d)H; = W;_ for H; which can for sparse A be done efficiently by sparse-direct [12]
or iterative solvers [46]. The error of the constructed low-rank approximation V; is given by

V- V.=IJV.I!, T ch, C; = Clay) (50)
such that

J
IV; = Ville < 6(SPIV:ILES, €= ]

Z—q

pi=p(C;) = max

z€spec(A) | 2 + ’

and S is the matrix containing the eigenvectors of A. Since spec(A) € C_ and a; € C_, it
holds p; < 1, Vi > 1 and, thus, ©; = p,;0,_1 < ©,_;, indicating that the sequence of the
spectral radii ©; is monotonically decreasing and, in the limit, will approach the value zero.
The shifts «; should therefore be chosen such that ©; is as small as possible leading to the
ADI parameter problem

(51)

{af,...,aj} =argmin©; = arg min  max
a; €C_ z€espec(A)

This problem is in general a formidable task which has been addressed in numerous works,
e.g., in [14, 52, 47, [6, B4]. Again, the situation simplifies for the important case A = A",
where real shifts are usually sufficient (and Z; will also be real). Note that in this case
k(S) = 1. In summary, we have the following relevant result for our purposes:

Theorem 7.4. ([51, [/7, [52]) With the same assumptions and settings for k, k', K, K', q
as in Theorem [7.3, construct real shifts parameters oy, ..., o; € R_ by

a; =adn((20 —1)K/2j), 1 <i<j (52)
with the elliptic function dn from Deﬁmtwn@ Usmg these shifts, the smallest value of the

spectral radius ©; = ©;(aq, ..., a;) in ([BI) s ﬁ, where the modulus K is associated to

the nome ¢’ via [@R). Hence, carrying out j steps of the LR-ADI iteration using (B2) yields

kJ
1V = Vidl2 < [Vl (1 f)
+ /K
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We can, thus, expect to approximate the solution V, by the LR-ADI low-rank approx-
imation V; at a speed similar to the predicted singular value decay by Theorem For
other low-rank algorithms for solving ([42)), e.g., rational Krylov subspace method [11], there
exists similar error bounds [I1].

8 Summary and Main Result

Although we stated and proved all our main error estimates, it is helpful to summarize
the results to provide a CERES. Recall from the introduction that our setup considered four
steps. To combine the four steps, we have to link operators on H* with the finite-dimensional
approximation spaces Sy. If Ly, : 8 — &), is a finite-dimensional linear operator, then we
can always view it as an infinite-dimensional linear operator L on H! by declaring basis
vectors not in P,H' to lie in nullspace(L).

Theorem 8.1. Suppose|(A0) hold. Let Cov(u) denote the covariance operator of the
SPDE (). Then a low-rank solution V; of the locally linearized discretized problem on Sy,
near the steady state u* computed after j ADI steps satisfies the CERES

sup ||Cov(u) — V|2, < sup [err(31) + err(sy) + errs) + err(s4)} (53)
te[0,T teZ

and the individual error terms are given by

el”l”(31) = thl—l-T,
errsa = Ci[|Cov(un(0)) — Cov(Up(0))||a + 7 (¢)]e =" mini Ml
errgg) = C-(||Cov(Ui(0)) — V*Hz)etmaX(SpeC(A))

errgy = y|my|2<1_\/k7>2/(1+\/k7>2,

where Cyq, Cy, Cr, k; > 0 are constant depending upon the data of the problem (i.e. on A, f,g,Q),
up(0),Un(0) are initial conditions for the discretized full and linearized problems, V. =
limy o Up(t) is the finite asymptotic limit for the stationary problem, n*(t) depends upon
the data and first two moments of the SPDE, and A is the leading-order discretized linear
operator part near u*.

54
55

(54)
(55)
(56)
(57)

57

Proof. Just applying a triangle inequality to the left-hand side of (B3]), the proof follows
from a direct application of Theorems .1}, 5.4 [6.1] and [7.4l O

Theorem illustrates very well that it would be short-sighted to just look at one source
of error. For example, even if the spatial discretization h is extremely small, the actual error
could be very large if the spectral gap is small, i.e., the deterministic steady state is only
weakly locally stable. We may also summarize the behaviour of the different constants and
terms in the CERES into more practical observations, which effects lead to smaller error:

e A large gap in the spectrum of the local linearization of the deterministic part exists.

e A small spatial discretization level h is chosen.
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One starts with initial data close to the local approximating OU stationary distribution.

The nonlinear part of f does not have a strong effect on sub-exponential time scales.

The noise is small to stay for a long time in the sub-exponential regime.

The Q-trace-class operator has fast decaying eigenvalues.

The iteration number j in the low-rank Lyapunov solver is chosen large.

For a detailed discussion of these effects, we refer to the individual proofs of the different
parts of the CERES in previous sections. However, it is very interesting to note that certain
effects, which decrease the error occur in multiple steps. Obviously this is true for the spectral
gap of A = A, + P,D, f(v*) in (S2) and (S3) but also for the type of noise, which crucially
influences the, usually growing, function n*(¢) in (S2) as well as the convergence rate of a
low-rank approximation in (S4).

9 Outlook

We stress again that our results presented here should be viewed as a first key step to
introduce a general framework of CERES for high-dimensional stochastic problems, where
many different sources of error naturally occur. In this regard, a multitude of problems can,
and should, now be tackled from a similar viewpoint. For example, uncertainty quantification
of random partial differential equations (RPDE) [17], 54 [40l 41] contains an entire chain of
error sources such as truncation error for polynomial chaos, dynamical error if the RPDE is
just an approximation, error from the large-scale numerical linear algebra, and/or error due
to reduced bases, just to name a few. Hence, to compute a CERES in a single norm, such as
the spectral norm we used here, for all the steps would be very worthwhile. Similar issues
also appear for problems involving large deviations and transition paths in high-dimensional
energy landscapes [9] [13] 37, 21], where developing a CERES would definitely be very helpful.

On the very concrete level of the SPDE (H) studied here, several interesting directions
could be pursued. Firstly, we do not claim that all our estimates are sharp and/or the
assumptions are the theoretically weakest possible. Already the CERES presented in this
work is interesting and difficult to chain together properly from its different components.
Nevertheless, improvements might be possible, e.g., if f is a strongly dissipative non-Lipschitz
nonlinearity, we expect that the results still hold from a dynamical perspective but essentially
the steps (S1)-(S2) would then require a major extension or even a completely new approach.

Furthermore, it could be desirable to specify the constant Cy precisely as the techniques
in [29, B0] are more explicit than the final statements on optimal regularity. Unfortunately
this would entail re-writing the entire optimal regularity proof for the spatial discretization
so we refrain from attempting to carry this program in this work. Similar remarks also apply
to the constant C} but in this case it is important to make the potentially growing function
n*(t) explicit, which we have achieved in Section [l
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