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Oscillatory active nematics represent nonequilibrium suspensions of microscopic objects, such as natural or artificial
molecular machines, that cyclically change their shapes and thus operate as oscillating force dipoles. In this mini-review,
hydrodynamic collective effects in such active nematics are discussed. Microscopic stirring at low Reynolds numbers
induces non-thermal fluctuating flows and passive particles become advected by them. Similar to advection of particles
in macroscopic turbulent flows, this enhances diffusion of tracer particles. Furthermore, their drift and accumulation
in regions with stronger activity or higher concentration of force dipoles take place. Analytical investigations and
numerical simulations both for 2D and 3D systems were performed.

1. Introduction

Nematics are formed by elongated molecules. When
temperature is decreased, they undergo a phase transition to
a liquid-crystalline state where the molecules are orientation-
ally ordered, but the translational order is absent and the
system remains fluid.1) For classical nematics, the shapes of
the molecules are fixed (or only subject to equilibrium
thermal fluctuations). There are however important applica-
tions where active nematics with the elements that cyclically
change their shape have to be analyzed.

First of all, this situation is encountered when the elements
represent molecular machines, either natural or artificial.2,3)

The characteristic property of a machine is that, in each
operation cycle, it repeatedly changes its conformation,
powered by the energy that is externally supplied. Protein
machines, acting as motors, enzymes, ion pumps, or
performing operations with other biomolecules, constitute a
fundamental component of the living cell; typically they are
driven by the energy released in the hydrolysis of ATP.
On the other hand, it becomes also possible to design and
synthesize non-biological molecules that behave as machines,
with the energy supplied by illumination or in a chemical
way.4,5) Investigations of artificial molecular machines is
a rapidly developing field. Molecular machines can be
incorporated into liquid crystals (see, e.g., the experiments6)),
so that their orientational ordering is induced. Moreover,
under crowded conditions that are characteristic for bio-
logical cells, they can undergo an orientational ordering
transition and produce liquid crystals themselves. Note that,
in such a liquid crystal, the molecules are active and
cyclically elongate or contract.

A different class of oscillatory active nematics is
constituted by bacteria and other microorganisms. It is well
known that a biological cell may actively change its shape
and this can result in the swimming effect.7) However, one
can also imagine microorganisms that do not propel
themselves, but just repeatedly change their shapes in a
reciprocal way. Again, such microorganisms may undergo an
orientational ordering transition, either as a result of
crowding or external condition.

Moreover, these active nematics can be manufactured too.
Indeed, one can prepare oscillating dumbbells where the
distance between two beads is cyclically changed through

application of an external periodic field or due to other
effects. Such dumbbells can form orientationally ordered
states as well.

Whereas the nature of the considered active nematics may
vary, there are common properties shared by all of them.
From the hydrodynamical point of view, almost any object
immersed into a fluid and changing its shape represents a
force dipole.8) Thus, one needs to consider hydrodynamic
effects in large populations of active force dipoles.

Previously, such hydrodynamical effects have been
analyzed assuming that the orientational ordering of active
force dipoles was absent.9) It has been shown that, even in
this case, diffusion of passive tracer particles becomes
enhanced and, if concentration or activity gradients for force
dipoles are created, directed drift of tracer particles takes
place.9,10) Detailed investigations were performed for two-
dimensional systems, such as biomembranes with active
protein inclusions,11) and the effects in viscoelastic three-
dimensional media were also analyzed.12) In this article, we
construct a general theory for hydrodynamic effects of
orientationally ordered active force dipoles and illustrate it by
numerical simulations for several selected set-ups. We also
briefly review the previous results for disordered force
dipoles. Our approach is general and therefore the analysis is
applicable not only for biological systems, but also for the
synthetic and artificial machines.

2. Populations of Oscillating Force Dipoles

The system that we consider in this study represents a
population of microscopic objects that cyclically change their
shape and are immersed into a viscous fluid. We assume that
hydrodynamic flows induced by such oscillating objects are
characterized by low Reynolds numbers, so that inertia is
absent and the Navier–Stokes equations can be linearized.
Our aim is to determine the intensity and statistical properties
of non-thermal flow velocity fluctuations caused by the active
elements.

It is known that, at a distance much longer than its size,
any object that asymmetrically changes its shape can
generally be described as a force dipole. The force dipole i
is characterized by its position Ri, its orientation unit vector
ei and its magnitude mi. For example, if the object represents
a dumbbell that cyclically changes its length,9) the magnitude
of its force dipole is m ¼ Flfd where lfd is the distance
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between the two beads and F is the force acting between
them. Note that the magnitude m of the force dipole can
be positive or negative, depending on whether there are
repulsive or attractive forces between the beads.

Because inertia is absent on the considered length and time
scales, the flows are instantaneously following changes in the
force dipoles. The flow velocity v at point R is given by (here
and below, summation over repeated indices is always
assumed)

v�ðRÞ ¼
X
i

@G��ðR � RiÞ
@R�

ei;�ei;�mi; ð1Þ

where G��ðrÞ is the Green’s function of the Navier–Stokes
equations,

G��ðrÞ ¼ 1

8��r
��� þ r�r�

r2

� �
; for d ¼ 3; ð2Þ

G��ðrÞ ¼ 1

4��
�ð1 þ ln rÞ þ r�r�

r2
þ const:

h i
; for d ¼ 2;

ð3Þ
with μ being the fluid viscosity. Note that μ is the bulk
viscosity for d ¼ 3 and the surface viscosity for d ¼ 2, and
therefore the dimensions of these two properties are different.

The expression (1) is invariant with respect to the
reflection e ! �e. Hence, although we can assign a unit
orientation vector to a force dipole, its direction (positive or
negative) is irrelevant. This means that a force dipole is
characterized, like an elongated molecule in a nematic liquid
crystal, by specifying only its director line.

To avoid the ambiguity involved in the choice of vectors e,
a nematic orientation tensor Nd

i;�� for the force dipole i can be
introduced,

Nd
i;�� ¼ ei;�ei;� � 1

d
���: ð4Þ

In terms of this tensor, the velocity field can be equivalently
expressed as

v�ðRÞ ¼
X
i

@G��ðR � RiÞ
@R�

miN
d
i;��; ð5Þ

where we have taken into account that the identity
@G��=@R� ¼ 0 holds.

If there are N force dipoles whose positions, orientations
and magnitudes vary with time, and we have

v�ðR; tÞ ¼
X
i

@G��ðR � RiðtÞÞ
@R�

miðtÞNd
i;��ðtÞ: ð6Þ

Certain assumptions about statistical properties of active
force dipoles will be made: The mean magnitude of the force
dipole is zero, hmiðtÞi ¼ 0, and oscillations in different force
dipoles are statistically independent (i.e., incoherent), so that
hmiðtÞmjðt0Þi ¼ 0 for i ≠ j. The autocorrelation function of
force dipoles is

hmiðtÞmið0Þi ¼ SðtÞ: ð7Þ
In this study, we will consider two limiting cases: when

the nematic order is absent and force dipoles are randomly
oriented, and when all force dipoles are perfectly aligned.
The intermediate situation, where both the nematic order and
orientational fluctuations are present, should be a subject for
further research.

When orientational order is absent, hNd
i;��ðtÞi ¼ 0, we have

(using the orientational symmetry)

hNd
i;��ðtÞNd

j;�0�0 ð0Þi ¼ �ðtÞ�d
���0�0�ij; ð8Þ

where �ðtÞ is the orientational autocorrelation function, such
that �ð0Þ ¼ 1, and

�3
���0�0 ¼

1

15
���0���0 þ ���0��0� � 2

3
�����0�0

� �
; ð9Þ

�2
���0�0 ¼

1

8
ð���0���0 þ ���0��0� � �����0�0 Þ: ð10Þ

In the case of perfect nematic orientational order,

hNd
i;��ðtÞi ¼ N

d
�� ≠ 0; ð11Þ

and

hNd
i;��ðtÞNd

j;�0�0 ð0Þi ¼ N
d
��N

d
�0�0 : ð12Þ

The tensor N
d
�� is symmetric and has a vanishing trace. By

solving the eigenvalue problem, one can find a coordinate
frame where the tensor is diagonal and its eigenvalues are
ð	; 	0; 	0Þ with 	 þ 2	0 ¼ 0, i.e., 	0 ¼ �ð1=2Þ	, for d ¼ 3.
Moreover, we have 2=3 � 	 � 0. Hence, if e0 is a unit vector
specifying the direction of the nematic order, we have

N
3

�� ¼
3

2
	 e0�e

0
� �

1

3
���

� �
; for d ¼ 3: ð13Þ

In the same manner, we have

N
2

�� ¼ 2	 e0�e
0
� �

1

2
���

� �
; for d ¼ 2; ð14Þ

and 1=2 � 	 � 0. Note that λ represents the nematic order
parameter.

Spatial positions RiðtÞ of force dipoles can change with
time. We assume that motions of the particles bearing force
dipoles, represent a diffusion process. Therefore, the condi-
tional probability density ’dðR; tÞ to find an active particle at
time t (> 0) at the distance R from its initial position at t ¼ 0

is given by

’dðR; tÞ ¼ 
d

ðDtÞd=2 exp � R2

4Dt

� �
; ð15Þ

where D is the diffusion coefficient and 
d is a numerical
coefficient [
3 ¼ ð4�Þ�3=2 and 
2 ¼ ð4�Þ�1].

Finally, Eq. (6) can be also written in the form

v�ðR; tÞ ¼
Z

dr
@G��ðR � rÞ

@R�
���ðr; tÞ; ð16Þ

where

���ðr; tÞ ¼
X
i

miðtÞNd
i;���ðr � RiðtÞÞ; ð17Þ

is the noise representing a fluctuating force field.
In absence of orientational order, the autocorrelation

function of this noise is

h���ðr; tÞ��0�0 ð0; 0Þi ¼ cSðtÞ�ðtÞ’dðr; tÞ�d
���0�0 : ð18Þ

where c is the concentration of force dipoles at the reference
point r ¼ 0 and reference time t ¼ 0.

If the orientational order is present, we have

h���ðr; tÞ��0�0 ð0; 0Þi ¼ cSðtÞ’dðr; tÞNd
��N

d
�0�0 : ð19Þ
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Equation (16), that includes the active noise ���ðr; tÞ,
describes fluctuating flows induced by collective activity of
the population of force dipoles.

3. Advection of Passive Particles Induced by Force
Dipoles

A small tracer particle immersed into a fluid will always
move, at low Reynolds numbers, at the same velocity as the
local flow velocity of the fluid. Hence, the particle will be
advected by the fluctuating flow field. If RðtÞ is the particle
position, we have

dR�

dt
¼ v�ðR; tÞ; ð20Þ

where vðR; tÞ is the flow velocity determined by Eq. (16).
Here, an important distinction has to be made. If we keep

fixed the observation point R, time average of the local
fluctuating velocity field will be always zero. Indeed, for
T ! 1, we have

1

T

Z T

0

v�ðR; tÞ dt ¼
Z

dr
@G��ðR � rÞ

@r�

1

T

Z T

0

���ðr; tÞ dt

!
Z

dr
@G��ðR � rÞ

@r�
h���ðr; tÞi ¼ 0: ð21Þ

On the other hand, if RðtÞ is the current position of a passive
tracer which is advected with the flow and moves together
with it according to Eq. (20), the time average of the particle
velocity V�ðtÞ ¼ dR�=dt does not vanish. In this case,

1

T

Z T

0

V�ðtÞ dt ¼ 1

T

Z T

0

v�ðRðtÞ; tÞ dt

!
Z

dr
@G��ðRðtÞ � rÞ

@r�
���ðr; tÞ

� 	
≠ 0 ð22Þ

because RðtÞ is correlated with the noise ���ðr; tÞ. Therefore,
directed drift of advected particles can arise.

Thus, we expect that advection will have two effects. First,
diffusion of a tracer particle will be enhanced and, second,
under certain conditions the drift of a tracer particle will be
induced.

Suppose that the nematic order is absent. Then, if
deviations R�ðtÞ ¼ R0

� þ ��ðtÞ of a tracer particle from its
initial position are small, we can approximately write

d��
dt

¼
Z

dr
@G��ðR0 � rÞ

@r�
���ðr; tÞ

� ��

Z
dr

@2G��ðR0 � rÞ
@r�@r�

���ðr; tÞ: ð23Þ
Using this equation, we can determine the drift velocity and
the mean-square displacement of the tracer particle within a
given time.

In the linear order in the noise intensity, the displacement
�ðTÞ from R0 within time T is

��ðTÞ ¼
Z T

0

dt

Z
dr

@G��ðR0 � rÞ
@r�

���ðr; tÞ: ð24Þ

By using this expression, we find

h��ðTÞ��0 ðTÞiR0

¼
Z T

0

dt1

Z T

0

dt2

Z
dr1

Z
dr2

@G��ðR0 � r1Þ
@r1;�

� @G�0�0 ðR0 � r2Þ
@r2;�0

h���ðr1; t1Þ��0�0 ðr2; t2Þi: ð25Þ

Introducing the variables t ¼ ðt1 þ t2Þ=2, 
 ¼ t1 � t2 and R ¼
ðr1 þ r2Þ=2, r ¼ r1 � r2 and taking into account Eq. (18), one
obtains

h��ðTÞ��0 ðTÞiR0

¼ �d
���0�0

Z T

0

dt

Z 2t

�2t
d
 Sð
Þ�ð
Þ

�
Z

dR

Z
dr

@G��ðR0 � R � r=2Þ
@R�

� @G�0�0 ðR0 � R þ r=2Þ
@R�0

cðRÞ’dðr; 
Þ; ð26Þ

where cðRÞ is the concentration of force dipoles at location R.
An important role in the last equation is played by the

product Sð
Þ�ð
Þ of the autocorrelation functions for the
magnitude and the orientation of force dipoles. This product
is nonvanishing only within a certain time 
c. Within this
time, a force dipole will typically diffuse over the distance
about l ¼ ðD
cÞ1=2 and hence the integration over r is in fact
restricted to the volume element of this linear size. Assuming
that the functions G�� do not significantly change over the
short distance lc, we can neglect their dependence on r, i.e.,
we can take G��ðR0 � R � r=2Þ � G��ðR0 � RÞ. Moreover,
we can notice that

R
dr’dðr; 
Þ ¼ 1. As a result, we have

h��ðTÞ��0 ðTÞiR0

¼ 2�d
���0�0

Z
dR

@G��ðR0 � RÞ
@R�

@G�0�0 ðR0 � RÞ
@R�0

� cðRÞ
Z T

0

dt

Z 2t

0

d
 Sð
Þ�ð
Þ: ð27Þ

Note that because of the identity

���
@G��

@R�
¼ 0; ð28Þ

we can replace �d
���0�0 by �d

���0�0 ¼ Cdð���0���0 þ ���0��0� þ
�����0�0 Þ with C3 ¼ 1=15 and C2 ¼ 1=8 in the above
expression and below.

Analyzing Eq. (27), one can notice that mean-square
displacements within time T behave as h��2�ðTÞi / hðTÞ
where

hðTÞ ¼
Z T

0

dt

Z 2t

0

Sð
Þ�ð
Þ d
: ð29Þ

Thus, at very short times, the motion of tracer particles
is ballistic, hðTÞ � Sð0Þ�ð0ÞT2. On the other hand, at long
times, hðTÞ is proportional to T,

hðTÞ � T

Z 1

0

Sð
Þ�ð
Þ d
; ð30Þ

and classical diffusion behavior is observed. According
to Eq. (29), this classical regime sets in when T �
maxð
m; 
angleÞ where 
m is the correlation time for the
magnitude mðtÞ of the force dipoles and 
angle is their
orientational correlation time.

The diffusion coefficients are defined by equations
h��ðTÞ��0 ðTÞi ¼ 2D��0T. Note that, in addition to the
advection due to active force dipoles, passive particles will
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also be subject to thermal noise. Therefore, the diffusion
coefficients will be given by a sum D��0 ¼ DT���0 þDA

��0

where DT is the thermal diffusion coefficient and DA
��0 is the

diffusion enhancement caused by the activity of force
dipoles. As follows from Eq. (27), we have

DA
��0 ðRÞ

¼ �d
���0�0

Z
@G��ðR � rÞ

@r�

@G�0�0 ðR � rÞ
@r�0

cðrÞ�ðrÞ dr; ð31Þ
where

�ðrÞ ¼
Z 1

0

Sðr; tÞ�ðtÞ dt: ð32Þ

In this equation, we have taken into account that, generally,
the activity of force dipoles can depend on the coordinates r
(e.g., because the supply of ATP to protein machines is not
uniform in the medium). Note that, if the correlation time for
the magnitude of force dipoles is much shorter than their
orientational correlation time (
m � 
angle), Eq. (32) reduces
to �ðrÞ ¼ SðrÞ where

SðrÞ ¼
Z 1

0

Sðr; tÞ dt; ð33Þ

where the condition �ð0Þ ¼ 1 is taken into account.
Additionally, the mean drift velocity �V�ðR0; TÞ ¼

hd��=dtiR0 at time T for the particle starting its motion at
location R0 at time t ¼ 0 can be determined. To obtain it,
averaging should be performed in Eq. (23). The first term in
this equation vanishes after averaging and we obtain

�V�ðR0; TÞ ¼
Z

dr
@2G��ðR0 � rÞ

@r�@r�
h��ðTÞ���ðTÞi: ð34Þ

Proceeding in the same way as above for the mean-square
displacements, we find that

�V�ðR0; TÞ ¼ �d
���0�0

Z
dr

@G��0 ðR0 � rÞ
@r�0

@2G��ðR0 � rÞ
@r�@r�

cðrÞ

�
Z T

0

d
 SðT � 
Þ�ðT � 
Þ: ð35Þ
When T � maxð
m; 
angleÞ, this velocity becomes independ-
ent of T and we finally obtain
�V�ðRÞ

¼ �d
���0�0

Z
@G��0 ðR � rÞ

@r�0

@2G��ðR � rÞ
@r�@r�

cðrÞ�ðrÞ dr: ð36Þ
The same derivations can be performed in the case of

orientationally ordered force dipoles. As a result, Eqs. (37)
and (38) become derived, but, in these equations, the tensor
�d

���0�0 is replaced by N
d
��N

d
�0�0 , so that we have

DA
��0 ðRÞ

¼ N
d
��N

d
�0�0

Z
@G��ðR � rÞ

@r�

@G�0�0 ðR � rÞ
@r�0

cðrÞ�ðrÞ dr; ð37Þ
�V�ðRÞ

¼ N
d
��N

d
�0�0

Z
@G��0 ðR � rÞ

@r�0

@2G��ðR � rÞ
@r�@r�

cðrÞ�ðrÞ dr; ð38Þ
where

�ðrÞ ¼
Z 1

0

Sðr; tÞ dt: ð39Þ

Since diffusion coefficients and the drift velocity are known,
the Fokker–Planck equation for the probability density pðr; tÞ
of passive particles can be constructed.13) Because the
particles do not interact each with another, the same equation
holds for their concentration nðr; tÞ, i.e., we have

@n

@t
¼ � @

@r�
ð �V�nÞ þ @2

@r�@r�0
ðD��0nÞ: ð40Þ

Note that Eq. (40) can be further rewritten in the classical
form of a diffusion equation,

@n

@t
¼ � @

@r�
ðU�nÞ þ @

@r�
D��0

@n

@r�0

� �
; ð41Þ

where

U� ¼ �V� � @D��0

@r�0
: ð42Þ

Thus, generally, the activity of force dipoles induces not
only the diffusion of passive particles, but also their drift. Both
result from advection of particles in fluctuating hydrodynamic
fields of active force dipoles and represent therefore an analog
of turbulent diffusion effects at high Reynolds numbers.

4. Orientationally Disordered Force Dipoles

In absence of nematic order, general Eqs. (31) and (36) for
diffusion coefficients and the drift velocity can be cast into a
simpler form. Using explicit expressions (2) and (3) for tensor
functions G��ðrÞ and performing transformations in these
equations, we find that in three-dimensional media (d ¼ 3)

DA
��0 ðRÞ ¼ 1

80�2�2

Z
r�r�0

r6
�ðR þ rÞcðR þ rÞ dr; ð43Þ

�V�ðRÞ ¼ 1

40�2�2

Z
r�
r6

�ðR þ rÞcðR þ rÞ dr: ð44Þ
In two-dimensional media (d ¼ 2), one finds11)

DA
��0 ðRÞ ¼ 1

32�2�2

Z
r�r�0

r4
�ðR þ rÞcðR þ rÞ dr; ð45Þ

�V�ðRÞ ¼ 1

32�2�2

Z
r�
r4

�ðR þ rÞcðR þ rÞ dr: ð46Þ

These integrals have singularities at r ¼ 0 (the integrands
for the diffusion coefficients diverge as r�2 for d ¼ 3 and as
r�1 for d ¼ 2). Therefore, a cutoff at some length ‘c needs to
be introduced. Physically, the cutoff length can be chosen as
the sum ‘c ¼ ‘tracer þ ‘dipole of the sizes of a tracer particle
and of the object giving rise to a force dipole. Additionally,
the integrals have a weak logarithmic divergence at r ! 1 in
two-dimensional media; this divergence has the same origin
as for the classical diffusion constant in d ¼ 2. To avoid such
complication, we assume for d ¼ 2 that the concentration c of
force dipoles (or their activity �) vanish at r ! 1.

Further transformation can be also performed for the
normalized drift velocity U� ¼ �V� � @D��0=@r�0 . Using
expressions (43) and (44) and performing partial integration,
for d ¼ 3 we find that it is determined by a surface integral

U�ðrÞ ¼ � 1

80�2�2

Z
�

r�r�0

r6
�ðR þ rÞcðR þ rÞ dS�0 : ð47Þ

Here the integration is performed over the surface Σ that
represents a sphere with radius ‘c located at the considered
point r; we employ the notation dS ¼ n dS where n is a unit
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vector normal to the surface element dS. It can be shown that,
in the limit ‘c ! 0, this surface integral yields

U�ðrÞ ¼ 1

60��2‘c

@ð �ðrÞcðrÞÞ
@r�

: ð48Þ

A similar derivation could be performed11) for d ¼ 2 and
the result is

U�ðrÞ ¼ 1

32��2
@ð�ðrÞcðrÞÞ

@r�
: ð49Þ

Note that the last expression does not include the cutoff
length. Thus, according to Eq. (41), passive particles will
drift along the direction of the increase of �c.

4.1 Three-dimensional systems
Suppose that the system is uniform, i.e., �ðrÞ ¼ const: and

cðrÞ ¼ const: Then, by taking the integral in (43), one finds9)

that diffusion enhancement is isotropic, DA
��0 ¼ DA���0 , and

DA ¼ �c

60��2‘c
: ð50Þ

Hence, diffusion of passive tracers will be enhanced in the
regions with the higher concentration or the stronger activity
of force dipoles. Moreover, as follows from Eq. (48), such
regions will also attract passive particles.

If the gradients of χ and c are sufficiently small, the local
approximation (50) can be used and the evolution Eq. (41)
for the distribution of passive particle takes the form

@n

@t
¼ � @

@r�
�
@ð�cÞ
@r�

n

� �
þ @

@r�
ðDT þ ��cÞ @n

@r�

� �
; ð51Þ

where � ¼ ð60��2‘cÞ�1. This evolution equation resembles
an equation that describes chemotaxis in bacterial popula-
tions: the particles tend to move into the regions with the
higher �c and to accumulate there. However, the drift of
passive particles is not induced by forces applied or generated
by them. Instead, it is caused by a gradient in fluid agitation
by active elements that cyclically change their shapes.

The drift is counterbalanced by the concentration gradient
and finally a stationary distribution of passive particles
becomes established. In the local approximation, it is given
by10)

nðrÞ ¼ n0 1 þ ��ðrÞcðrÞ
DT

� �
; ð52Þ

where n0 is the concentration of passive particles in the
regions without force dipoles.

The force dipoles correspond to physical objects, such as
molecular machines, that are also immersed into the fluid and
are free to diffuse. These microscopic objects, like passive
tracers, will be also advected in fluctuating flow fields and
their diffusion will be enhanced, as described by Eq. (50).
Moreover, their drift described by Eq. (48) will also take
place. The evolution of the concentration distribution of such
objects will be governed by Eq. (51) where n should be
replaced by c, so that we obtain10)

@c

@t
¼ � @

@r�
�c2

@�ðrÞ
@r�

� �
þDT

@2c

@r2�
: ð53Þ

Hence, force dipoles will tend to aggregate in the regions
where their activity is increased. The stationary distribution is

cðrÞ ¼ cmax

1 þ ð�=DTÞð�max � �ðrÞÞ ; ð54Þ

where cmax is the concentration at the point where � ¼ �max (this
parameter can be determined from the normalization condition
that the total number of force dipoles in the medium is fixed).
Note that, as follows from Eq. (53), the activity of force dipoles
does not affect their spatial distribution if �ðrÞ ¼ const:

The above results were obtained in the local approxima-
tion. To discuss how strong nonlocal effects are, we consider
a situation when force dipoles occupy only a spherical region
of radius R. Depending on the experimental setup, this can
be a region where active bacteria are concentrated or an
intracellular domain rich with active proteins. Moreover, we
assume that, within this region, their activity and concen-
tration are fixed, � ¼ �0 and c ¼ c0. By taking the integrals
in Eq. (43), diffusion coefficients can be determined both
inside and outside of the sphere.

We find that nonlocal effects significantly modify the
prediction (50) of the local approximation only within a layer
with the width about the cutoff length ‘c near the surface of
the sphere. They also lead to weak diffusion enhancement
outside of the sphere, i.e., in the region without force dipoles.
When r � R, diffusion enhancements in the radial (DA

k ) and
axial (DA

?) directions are

DA
k ðrÞ ¼ DA

‘cR
3

r4
; DA

?ðrÞ ¼ DA
‘cR

5

5r6
; ð55Þ

where DA is the diffusion coefficient inside the sphere given
by Eq. (50).

Figure 1(a) shows accumulation of passive particles inside
the region occupied by active force dipoles. In this simu-
lation, force dipoles have the concentration distribution

cðrÞ ¼ 1

2
c0 1 þ tanh � r � R

�

� �� �
; ð56Þ

and hence the drift velocity of passive particles is

UðrÞ ¼ �c0
2�

cosh � r � R

�

� �� ��2
: ð57Þ

Initially, passive particles are uniformly distributed.14) We
see that gradual aggregation of particles inside the sphere
takes place through an “adsorption” process: the particles
reaching the boundary are dragged inside the sphere and
their concentration near the boundary starts to increase. This
process continues until a stationary distribution is achieved
where adsorption and evaporation compensate each another.

4.2 Two-dimensional systems
The local approximation does not hold at d ¼ 2 and

nonlocal effects are always present in such systems. More-
over, the integrals in Eqs. (45) and (46) diverge logarithmi-
cally at r ! 1 (this is the same divergence as for the classical
diffusion coefficient in 2D); hence the estimates cannot be
made assuming that an infinite area is uniformly filled with
active force dipoles. To avoid this difficulty, one can consider
a situation when the force dipoles occupy only a disk area, so
that their concentration is constant, cðrÞ ¼ c0, inside the disk
and vanishes outside it. Moreover, it is convenient to assume
that the activity of the dipoles is uniform too, �ðrÞ ¼ �0. With
an application to biomembranes with active protein inclu-
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sions, this situation was analyzed in our previous work.11) The
results of the analysis hold however also in the general case.

Inside the disk (for r < R � ‘c), diffusion enhancement is
isotropic and one finds

DA
k ðrÞ ¼ DA

?ðrÞ ¼ D0 ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

p

‘c

 !
; ð58Þ

where

D0 ¼ �0c0
32��2

: ð59Þ

Outside of the disk (for r > R þ ‘c), diffusion enhance-
ments in the radial and angular directions are different,

DA
k ðrÞ ¼ D0 ln

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � R2

p
� �

þ R2

2r2

� �
; ð60Þ

DA
?ðrÞ ¼ D0 ln

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � R2

p
� �

� R2

2r2

� �
: ð61Þ

At a large distance from the disk (r � R), the following
asymptotics hold

DA
k ðrÞ ¼

D0R
2

r2
; DA

?ðrÞ ¼
D0R

4

r4
: ð62Þ

Thus, the angular part of the diffusion coefficient falls much
more rapidly with the distance r.

Similar to 3D media, passive particles will accumulate
inside the disk. In the final stationary state, the particles are
uniformly distributed with concentrations nin and nout inside
and outside the disk, respectively. The ratio of the
concentrations is11)

nin
nout

¼ exp
2

lnðR=‘cÞ þ ð1=2Þ þ ð2DT=D0Þ
� �

: ð63Þ

Thus, for example, if D0 � DT and R=‘c ¼ 16, this ratio is
nin=nout ’ 1:84.

Numerical simulations for evolution of the concentration
of passive particles have been performed.11) Figure 1(b)
shows snapshots of the distribution at different subsequent
times. In this simulation, force dipoles were distributed as in
Eq. (56).15) As seen in Fig. 1(b), the disk filled with active
dipoles is sucking the particles from the region around it.

Therefore, the concentration of passive particles starts to
increase near the border of the disk. Later on, the particles
become uniformly distributed within it.

5. Nematically Ordered Force Dipoles

If oscillating force dipoles are orientationally ordered,
flows of passive particles, induced by dipole activity, persist
even in the steady state. Although principal effects are
similar, the descriptions are different for 2D and 3D media
and we consider separately these two cases.

5.1 Three-dimensional systems
The nematic order tensor is N

3

�� ¼ ð3	=2Þðe0�e0� � ���=3Þ,
where λ is the nematic order parameter and e0 defines the
common orientation of the dipoles. The diffusion coefficients
and the drift velocity are given by Eqs. (37) and (38). Note
that, due to identity @G��=@r� ¼ 0, the factor N

3
��N

3

�0�0 in
these equations can be replaced by ð3	=2Þ2e0�e0� e0�0e0�0 . More-
over, the direction of the vector e0 can be chosen as the
direction of the first coordinate axis in the reference frame.
With such notations, we have

DA
��0 ðRÞ
¼
Z

@G�1ðR � rÞ
@r1

@G�01ðR � rÞ
@r1

sðrÞcðrÞ dr ð64Þ

¼ 1

64�2�2

Z
ðr2 � 3r1

2Þ2 r�r�0

r10
sðR þ rÞcðR þ rÞ dr; ð65Þ

�V�ðRÞ

¼
Z

@G�1ðR � rÞ
@r1

@2G�1ðR � rÞ
@r�@r1

sðrÞcðrÞ dr ð66Þ

¼ 1

32�2�2

Z
ðr2 � 3r1

2Þ2 r�
r10

sðR þ rÞcðR þ rÞ dr; ð67Þ

U�ðrÞ ¼ �M��0
@ðsðrÞcðrÞÞ

@r�
; ð68Þ

where M is a diagonal matrix, M��0 ¼ Mð�Þ���0 , with Mð1Þ ¼
11=7, and Mð2Þ ¼ Mð3Þ ¼ 5=7, and

sðrÞ ¼ 9	2

4
�ðrÞ ¼ 9	2

4

Z 1

0

Sðr; tÞ dt: ð69Þ

Similar to the orientationally disordered 3D case, local
approximation can be used again and we obtain

DA
��0 ðrÞ ¼ �M��0sðrÞcðrÞ; ð70Þ
�V�ðrÞ ¼ 2�M��0

@ðsðrÞcðrÞÞ
@r�0

: ð71Þ
Thus, diffusion is anisotropic: it is enhanced stronger along
the orientation line of force dipoles than in the directions
orthogonal to this line. Note also that the drift velocity is not
parallel to the gradient rðscÞ.

The equation for concentration of passive particles is
@n

@t
¼ � @

@r�
�Mð�Þ @ðscÞ

@r�
n

� �
þ @

@r�
ðDT þ �Mð�ÞscÞ @n

@r�

� �
: ð72Þ

It is equivalent to the conservation equation

@n

@t
þ @j�

@r�
¼ 0; ð73Þ

for the flux

4.5
n

0.5

t = 1 t = 10 t = 1000
(a)

1.7
n

0.7

t = 1 t = 10 t = 1000
(b)

Fig. 1. (Color online) Accumulation of passive particles inside (a) a
sphere and (b) a disk occupied by active force dipoles. Consequent
snapshots of the concentration distribution are shown. The parameters are
R ¼ 16‘c, � ¼ 2‘c, and D0=DT ¼ 1; the time unit is ‘c

2=DT; the particles
are uniformly distributed with n ¼ 1 at t ¼ 0.
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j�ðr; tÞ ¼ �Mð�Þ @ðscÞ
@r�

n � ðDT þ �Mð�ÞscÞ @n
@r�

: ð74Þ

In contrast to the orienationally disordered case, this flux
does not vanish in the steady state.

The existence of circulating fluxes in the steady state can
be demonstrated by considering a situation where force
dipoles occupy a sphere of radius R and are absent outside of
it, cðrÞ ¼ c0 for 0 < r < R and cðrÞ ¼ 0 for r > R; moreover,
we assume sðrÞ ¼ s0. Suppose that the dipole activity is
weak, �s0c0 � DT. In this limiting case, the distribution of
passive particles will be only slightly affected by force
dipoles, so that nðrÞ � n0. Then, the flux in the steady state is

j� � ��s0c0n0Mð�Þ�ðr � RÞbr�; ð75Þ
wherebr ¼ r=r. This flux is present only on the surface of the
sphere, it varies over it and has both the radial and the
tangential components. Such surface flux induces weak
circulating flows of particles both inside the sphere and in the
bulk.

Numerical simulations were performed assuming that
concentration distribution of force dipoles is smooth and
given by Eq. (56) and that sðrÞ ¼ s0.16) Figures 2(a) and 2(b)
show the distribution nðrÞ in the final steady state. We see
that particles become accumulated inside the sphere.
However, their distribution is not uniform inside and outside
of the sphere. This is because of the circulating flows that are
present in the steady state. The distribution of magnitude jðrÞ
of the flux is shown in Fig. 2(c) and the stream lines are
displayed in Fig. 2(d). The particles enter the sphere through
the poles and leave it over the equator. It can be shown that
the fluxes outside of the sphere are of the order DT=ð�s0c0Þ
when �s0c0 � DT.

5.2 Two-dimensional systems
The nematic tensor in 2D systems is N

2

�� ¼ 2	ðe0�e0� �
���=2Þ, the diffusion coefficients and the drift velocity are
determined by the integrals (64) and (66) with

sðrÞ ¼ 4	2�ðrÞ ¼ 4	2
Z 1

0

Sðr; tÞ dt: ð76Þ

The local approximation is not applicable in this case. As
previously, for the disordered dipoles, the integrals (64) and
(66) can be cast into a more simple form

DA
��0 ðRÞ
¼ 1

16�2�2

Z
ðr12 � r2

2Þ2 r�r�0
r8

sðR þ rÞcðR þ rÞ dr; ð77Þ
�V�ðRÞ

¼ 1

16�2�2

Z
ðr12 � r2

2Þ2 r�
r8

sðR þ rÞcðR þ rÞ dr; ð78Þ
where the first axis is chosen as the orientation line of
the force dipoles. These expressions can be used to determine
the diffusion constants and the drift velocities for any spatial
distribution of force dipoles. For the drift velocity, we have

U�ðrÞ ¼ 1

32��2
@ðsðrÞcðrÞÞ

@r�
; ð79Þ

which is the same expression as in the disordered case.
As an example, we consider a situation when the dipoles

are uniformly distributed inside a disk of radius R and are

absent outside of it; we also assume sðrÞ ¼ s0. In this case,
calculations yield the following results:

Inside the disk (r < R � ‘c), we have

DA
k ðrÞ ¼ DA

?ðrÞ ¼ D0 ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

p

‘c

 !
; ð80Þ

which is the same as for the random alignment.
Outside of the disk, diffusion is anisotropic and, moreover,

cross diffusion takes place. The components of the diffusion
tensor outside of the disk (r > R þ ‘c) are

DA
k ðrÞ ¼ D0

�
ln

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � R2

p
� �

þ R2

2r2

þ R2ð12r4 � 21r2R2 þ 10R4Þ
12r6

cos 4�

�
; ð81Þ

DA
?ðrÞ ¼ D0

�
ln

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � R2

p
� �

� R2

2r2

þ R4ð3r2 � 10R2Þ
12r6

cos 4�

�
; ð82Þ

and

DA
crossðrÞ ¼ D0

R4ð6r2 � 5R2Þ
6r6

sin 4�: ð83Þ

Here, we set r ¼ ðr cos �; r sin �Þ and the diffusion tensor is
written as

DA
��ðrÞ ¼ ðDT þDA

?ðrÞÞ��� þ ðDA
k ðrÞ � DA

?ðrÞÞ
r�r�
r2

þDA
crossðrÞ ���

r�r�
r2

þ ���
r�r�
r2

� �
; ð84Þ

with ��� defined as �12 ¼ �1, �21 ¼ 1, and �11 ¼ �22 ¼ 0.
Furthermore, temporal evolution of the distribution of

passive particles and this distribution in the final steady state
can be obtained by integrating Eq. (40). We have performed

4.5
n

0.5

(a)

1.3
n

0.7

(b)

0
log10 j

-2

(c) (d)

Fig. 2. (Color online) Distribution of passive particles (a, b) and their
fluxes (c, d) in the steady state of a 3D system with orientationally ordered
force dipoles that occupy a sphere in the center (t ¼ 1000). Part (b) shows
the distribution enhanced in the region of low concentrations. The logarithm
log10 jðrÞ of the local magnitude of the fluxes and their stream lines are
displayed in (c) and (d). In panel (d), the stream lines in the region for
log10 jðrÞ > �2 are shown. The vertical direction corresponds to the
orientation line of force dipoles (r1-axis). The parameters are R ¼ 16‘c,
� ¼ 2‘c, c0 ¼ 1, and s0 ¼ 1.
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the numerical integration assuming that the distribution of
force dipoles is fixed and given by Eq. (56). We also assume
that sðrÞ ¼ s0. The simulations started with a uniform
distribution of passive particles.17)

Figure 3 presents the results for the final distribution of
passive particles and for the flux. We see that there are
significant differences from the three-dimensional case (cf.
Fig. 2). While the 3D distributions had a two-fold symmetry
in the median cross-section, the symmetry is four-fold in 2D.
Now the particles are leaving the disk both along the
orientation line of force dipoles and along the line orthogonal
to it.

6. Discussion and Conclusions

In oscillatory active nematics, a variety of hydrodynamic
effects can be observed. The activity of force dipoles,
corresponding to the elements that cyclically change their
shapes, leads to stirring of the fluid and generation of non-
thermal fluctuating flows within it. Passive particles are
advected by such fluctuating flows and, as a result, their
diffusion is enhanced. This phenomenon is analogous to
turbulent diffusion, but takes place at low Reynolds
numbers where inertial effects and nonlinearities are absent.
Furthermore, directed drift of tracer particles is induced if
the spatial distribution of force dipoles (or of their activity)
is non-uniform. The effects are local in 3D systems and
nonlocal in 2D. Depending on a system, orientational
ordering in oscillatory active nematics can arise. As we
have seen, hydrodynamic behavior is sensitive to the
nematic order in populations of force dipoles.

An important consequence is that passive particles are
driven by fluctuating flows into the regions with the high
concentration or activity of force dipoles. This leads to a non-
equilibrium redistribution of passive particles in the medium,

maintained only as long as the activity of force dipoles
persists. This provides a possibility to control spatial
distributions of particles by purely hydrodynamic means,
without applying any force fields.

In original publications,9,10) hydrodynamical effects in
oscillatory active nematics were studied under an assumption
that orientations and positions of active force dipoles did not
change significantly within a cycle, so that the dipoles could
be treated as immobile. In the present article, we allowed for
orientational fluctuations in the disordered state. Furthermore,
systems with the orientational nematic order were also
analyzed.

The considered phenomena are important for biological
cells. It was shown by in vivo experiments that active
non-thermal noise dominates transport phenomena in the
cytoplasm.18) Such non-thermal noise can be due to
molecular motors operating on the cytoskeleton18,19) or be
caused by the metabolic activity inside the cell.20) To
analyze such effects, viscoelastic properties of the cytoplasm
have to be taken into account.12) Moreover, biological
membranes typically include a large number of proteins and
many such inclusions operate as molecular machines,
cyclically changing their shapes. Active proteins are
typically confined within protein rafts. On the length scales
shorter than about a micrometer, lipid bilayers behave as 2D
fluids21,22) and, therefore, fluctuating lipid flows are induced
when inclusions change their shapes. Their activity enhances
diffusion and induces redistribution of particles over the
membrane.11)

Experiments with suspensions of synthetic molecular
machines4) or with the oscillating dumbbells can be
performed too. Moreover, similar effects are expected for
populations of microorganisms that, while not acting as
swimmers, reciprocally change their shapes. With this
respect, it should be noted that in bacterial layers formed
by swimming microorganisms, diffusion can be enhanced by
a factor up to 100;23) these effects have been theoretically
investigated.24–26)

Our analysis was based on a number of simplifications.
Energetic interactions between the particles were not taken
into account, although they might become important when
accumulation of the particles in some regions occurs. We
have also not taken into account fluctuation effects, even
though they may become essential on short length scales.
Moreover, only the situations with a perfect orientational
order or without any order were considered by us. The
respective theory extensions are the task for some future
work.
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