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Nonlinear diffusion in two-dimensional ordered porous media based
on a free volume theory

A. Godec,a� M. Gaberscek, J. Jamnik, and F. Merzel
National Institute of Chemistry, Hajdrihova 19, Ljubljana 1000, Slovenia

�Received 3 September 2009; accepted 24 November 2009; published online 17 December 2009�

A continuum nonlinear diffusion model is developed to describe molecular transport in ordered
porous media. An existing generic van der Waals equation of state based free volume theory of
binary diffusion coefficients is modified and introduced into the two-dimensional diffusion equation.
The resulting diffusion equation is solved numerically with the alternating-direction fully implicit
method under Neumann boundary conditions. Two types of pore structure symmetries are
considered, hexagonal and cubic. The former is modeled as parallel channels while in case of the
latter equal-sized channels are placed perpendicularly thus creating an interconnected network.
First, general features of transport in both systems are explored, followed by the analysis of the
impact of molecular properties on diffusion inside and out of the porous matrix. The influence of
pore size on the diffusion-controlled release kinetics is assessed and the findings used to comment
recent experimental studies of drug release profiles from ordered mesoporous silicates.
© 2009 American Institute of Physics. �doi:10.1063/1.3274638�

I. INTRODUCTION

The importance of understanding molecular transport in
inhomogeneous media has long been recognized. Especially
diffusion from ordered mesoporous matrices1 recently at-
tracted much attention due to potential of such systems to
serve as platforms for controlled delivery of biologically ac-
tive substances �drugs�.2 Drug release kinetics often deter-
mine the physiological action of the administered drug, in
terms of magnitude, duration, and often also side effects,
therefore one cannot overlook the potential benefits of under-
standing and altering release mechanisms. Having highly or-
dered and controllable structure and pore symmetry �see for
example schematics in Fig. 1� ordered mesoporous materials
may someday replace traditional polymer based systems.

Theoretical attempts to model diffusion in porous media
are based either on percolation theory,3–5 computer simula-
tions �molecular dynamics and lattice Monte Carlo�,4–11

simple continuum models,12 and nonlinear diffusion theory.13

Due to the limitation to nanosecond timescales, atomic detail
simulations cannot be employed to problems of diffusion
from ordered porous media, which take place on a second-
to-hour timescale. Macroscopic approaches to model linear
diffusion from porous media have also been reported. Laud-
one et al.14 used a semianalytical treatment of transport as-
suming linear gradients between pore chambers and one-
dimensional diffusion inside chambers. Lemaire et al.15

modeled linear diffusion from an erodible polymer based po-
rous system. They modeled the pores as idealized cylinders
with time dependent radius, to take into account the pore size
variation due to matrix erosion and focused on the evolution
of the concentration outside the pore. Herein we attempt to

model nonlinear transport from model ordered porous struc-
tures with the focus on the evolution of concentration field
both inside and outside the porous matrix.

The objective to model such systems is obviously a con-
tinuum model but with a firmly established connection to
some microscopic molecular properties. In the present work
we use a free volume theory of diffusion coefficients of bi-
nary simple liquids based on the generic van der Waals
�vdW� equation of state for liquid mixtures,16 which, as we
shall demonstrate, enables the incorporation of molecular-
scale properties into the macroscopic nonlinear diffusion
equation. In the theory of Rah and Eu,16 the connection be-
tween molecular properties �i.e., interaction potentials� and
transport properties is introduced by the determination of
free volume from a generic vdW equation of state. In con-
tinuum nonlinear diffusion theory usually some mathemati-
cally convenient ansatz is used to describe the concentration
dependence of the diffusion coefficient17 which often does
not include any formal physical connection to the concentra-
tion dependent microscopic dynamics.

Here the concentration dependence of the diffusion co-
efficients is established through the relation between free
volume and the generic vdW equation of state, which we
simplify using well known mixing rules from the general
vdW theory. This approximation is, of course, rather arbi-
trary but we assume that it should hold reasonably well for
not too asymmetric systems solute-solvent. Furthermore we
are not interested in the exact values of generic vdW param-
eters and the resulting diffusion coefficients as Rah and Eu,16

but merely in the general behavior of nonlinear mass trans-
port from porous media and the differences brought about by
a small variation in molecular parameters.

In order to obtain analytically integrable equations for
the concentration dependent diffusion coefficient in the case
of particular molecular properties, which are required in thea�Electronic mail: aljaz.godec@ki.si.
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numerical algorithm, two commonly used types of pore sym-
metries are considered, hexagonal and cubic �Fig. 1�. Both
systems are modeled as two-dimensional �2D� networks with
perfectly smooth impenetrable walls �shaded regions� and
constant pore sizes. For a review of the aspects of modulated
pore geometry on the diffusion coefficient, see, for example,
Ref. 18. The hexagonal symmetry is modeled as parallel
channels of finite length while in the case of cubic symmetry
an equal number of parallel channels is additionally placed
perpendicularly, creating an interconnected network �Fig. 1�.
The latter should mimic the interconnection of pores in cubic
systems and correspond approximately to taking the diagonal
plane in the unit cell of the so called I-WP minimal surface,
which accurately describes the symmetry of SBA-16 type
materials.19 The actual ordered mesoporous particle proper-
ties are described by means of geometrical factors. In both
cases the porous network �shown in Figs. 1�a� and 1�b�� is
assumed to extend periodically throughout the entire particle.
The particle size can be varied experimentally, but is always
much larger than the pore diameter, which typically lies in
the range 5–50 nm, depending on the actual material. While
the hexagonal system is well described by means of a 2D
parallel slit model �taking into account two principal diffu-
sion directions in a cylindrical pore, radial and axial� the
simplification of the cubic symmetry as being a network of
square voids connected with slits is somewhat more drastic
�in the sense that one effectively loses one possible diffusion
direction� so that only qualitative findings can be extracted
from the cubic model. In all cases a buffer zone is modeled
around the porous particle, describing the surrounding solu-
tion in into which the model substance diffuses. The evolu-

tion of the concentration distribution is calculated by numeri-
cally solving the 2D nonlinear diffusion equation by means
of the operator splitting concept under Neumann boundary
conditions.

II. THE DIFFUSION COEFFICIENT

Throughout the work we assume that the diffusion coef-
ficient does not explicitly depend on pore size. The most
common interpretation of molecular diffusion in a simple
model liquid is the one of molecules jumping into nearby
free volume regions created by density fluctuations. Such
reasoning is the basis for free volume theories.20 However, it
is not possible to determine the free volume within the
framework of these simple theories. Recently, Rah and Eu21

used the generic vdW equation of state to define the free
volume and diffusion coefficients for binary mixtures. Ac-
cording to their approach the binary diffusion coefficient can
be written as16

D12 = D12
0 exp�− v12

c /v f� , �1�

where D12
0 represents the Chapman–Enskog formula for the

diffusion coefficient.22 The exponential term describes the
distribution of voids in the binary mixture, where v12

c stands
for the common characteristic volume for the two species of
the mixture, while v f represents the free volume per mol-
ecule. v12

c is defined as the mean value of molecular volumes:
v12

c =v1
0X1+v2

0X2, where v1
0 and v2

0 stand for the molecular
volumes of constituent molecules �vi

0=��i
3 /6, and � is de-

fined in Appendix A� and X1 and X2 for the mole fractions
given in terms of number densities, �i, �Xi=�i / ��1+�2��. The
free volume per molecule is expressed by v f =v�1−B��,
where v represents the specific volume, v=1 /�, and B the
generic vdW coefficient �the term generic is used to note that
it results from the statistical-mechanical virial equation of
state�. The concentration dependence of the diffusion coeffi-
cient in Eq. �1� is introduced through the solute mole frac-
tion, while molecular properties are included through mo-
lecular volumes and the vdW coefficient B. Rah and Eu16

used statistical mechanical expressions to calculate vdW pa-
rameters. Since we are interested only in general nonlinear
macroscopic diffusion and relative differences in diffusion
profiles brought about by the variation of molecular param-
eters �i.e., relative molecular volumes and the coefficient B�
we use a slightly different approach. We replace the binary
mixture concept by the two-component-one-fluid classical
vdW approximation �for a derivation and justification see
Appendix A�. Thus we write B as

B = X1
2B11 + 2X1X2B12 + X2

2B22, �2�

where Bii represents the generic vdW coefficient of pure
component i �1 stands for the solvent and 2 for the solute�
and we assumed B12=B21 for the cross coefficient �see Ap-
pendix A�. The one-fluid approximation is valid for systems
where B11 and B22 do not differ appreciably.23 Using Eq. �2�
and combining rules for the cross coefficient �B12

=�B11B22� we can rewrite Eq. �1� in the form

(a) (b)

(c)

FIG. 1. Schematics of �a� hexagonal porous matrix such as SBA-15 and �b�
I-WP minimal surface which represents the pore configuration of cubic me-
soporous materials such as SBA-16. �c� Schematics of 2D models of �a� and
�b�, where the shaded regions represent impenetrable pore walls. The four
types of colored lines and five colored plus signs represent different types of
grid points requiring its own formulation of the diffusion Eqs. �10� and �11�.
Note that the black plus signs represent ordinary grid points, which we find
at sites having all four nearest neighbors. The particle and pore sizes are not
in scale.
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D12 = D12
0 exp� C�1 − ��1 + v2

0/v1
0��

�B11�1 − ��1 − �B22/B11��2 − 1
� , �3�

where C=v1
0 /v is the relative specific volume and we re-

placed X2 with � �the mole fraction of solute� and used X1

=1−�. Equation �3� describes the diffusion coefficient as a
function of solute mole fraction and two molecular param-
eters, the ratios of molecular volumes, and vdW coefficients.
B and vi depend on both attractive and repulsive intermo-
lecular interactions �for details see Appendix A�. As we shall
see later on, the diffusion coefficient needs to be analytically
integrable with respect to the fraction of solute for the devel-
oped algorithm. Equation �3�, its Taylor expansion or expan-
sion in Padé approximants, is not analytically integrable with
respect to �, therefore we evaluate Eq. �3� using desired
molecular parameters and afterward fit them using the fol-
lowing ansatz:

D12 → D��� = a1k exp�a2k�� + b1k exp�b2k�� + ck�
2, �4�

where k stands for the index of the values of molecular pa-
rameters �see text below�. There is no explicit dependence of
the diffusion coefficient on pore size. The dependence is es-
tablished via differences in local composition, which are di-
rectly related to pore network properties �i.e., pore diameter�.

III. NONLINEAR DIFFUSION MODEL AND NUMERICAL
ALGORITHM

Our goal here is to construct a numerical method to de-
scribe nonlinear diffusion in ordered porous media using dif-
fusion coefficients derived from a microscopic theory. We
describe the evolution of the solute concentration distribution
inside and outside the porous matrix with impenetrable hard
walls using the 2D nonlinear diffusion equation

��

�t
=

�

�x
�D���

��

�x
� +

�

�y
�D���

��

�y
� , �5�

where � stands for the fraction of solute molecules and D���
for the solute fraction dependent diffusion coefficient. For
practical reasons, we introduce a new variable �, �� /��
=D���, so that Eq. �1� can be rewritten as

��

�t
=

�2�

�x2 +
�2�

�y2 , �6�

and � is obtained by integration of Eq. �4�.
For the construction of the numerical algorithm, we use

the concept of operator splitting, more specifically the
alternating-direction implicit method �ADI� �Ref. 24� ac-
cording to which we divide each time step into two substeps
each treating one of the spatial dimensions implicitly. The
finite difference counterparts of Eq. �6� are written as

�i,j
n+1/2 − �i,j

n =
�t

2�2 ��i+1,j
n+1/2 − 2�i,j

n+1/2 + �i−1,j
n+1/2 + �i,j+1

n

− 2�i,j
n + �i,j−1

n � , �7�

�i,j
n+1 − �i,j

n+1/2 =
�t

2�2 ��i,j+1
n+1 − 2�i,j

n+1 + �i,j−1
n+1 + �i+1,j

n+1/2

− 2�i,j
n+1/2 + �i−1,j

n+1/2� , �8�

where �x=�y=� is the grid spacing. We now expand each
� on the right hand side of Eqs. �7� and �8� to the first order
in � and obtain, for example,

�i,j
n+1/2 = �i,j

n + ���i,j
n+1/2 − �i,j

n �
��

��
�

i,j

= �i,j
n + ��i,j

n+1/2 − �i,j
n �D��i,j

n � , �9�

where D��� is given by Eq. �4�. The subscripts i and j refer
to the grid point numbering along the x and y dimensions,
respectively, and the superscript refers to the time step. We
can now rewrite Eqs. �7� and �8� as

− �D��i−1,j
n ��i−1,j

n+1/2 + �1 + 2�D��i,j
n ���i,j

n+1/2 − �D��i+1,j
n ��i+1,j

n+1/2

= ���i−1,j
n + �i,j−1

n − 4�i,j
n + �i+1,j

n + �i,j+1
n − D��i−1,j

n ��i−1,j
n

+ �1/� + 2D��i,j
n ���i,j

n − D��i+1,j
n ��i+1,j

n � �10�

− �D��i,j−1
n+1/2��i,j−1

n+1 + �1 + 2�D��i,j
n+1/2���i,j

n+1 −�D��i,j+1
n+1/2��i,j+1

n+1

= ���i−1,j
n+1/2 + �i,j−1

n+1/2 − 4�i,j
n+1/2 + �i+1,j

n+1/2 + �i,j+1
n+1/2

− D��i,j−1
n+1/2��i,j−1

n+1/2 + �1/� + 2D��i,j
n+1/2���i,j

n+1/2

− D��i,j+1
n+1/2��i,j+1

n+1/2� �11�

where �=�t / �2�2�. It is immediately recognized that Eqs.
�10� and �11� represent tridiagonal sets of coupled linear
equations, T�� =r�, with the diagonal elements of T equal to
1+2�D��i,j

n � and off-diagonal −�D��i−1,j
n � and −�D��i+1,j

n �
�analogously for Eq. �11��, which have to be solved each step
for all values of j and i. The grid topology of our system
requires to distinguish among nine different types of grid
points according to the boundary conditions: points in the
corners of the grid and points neighboring edges and pore
walls �see Fig. 1�c� for details�. Accordingly, there are sev-
eral tridiagonal systems of equations of type �10� or type �11�
�see Appendix B�, which we solve sequentially at each time
step. The physical meaning of the Neumann boundary con-
ditions at pore walls and outer boundaries is the following.
We model the pore walls as impenetrable, thus by using
Neumann conditions we assure that there is no effective driv-
ing force for diffusion into the walls. The fact that there is
only a hard repulsion with the fluid mixture means that the
concentration directly at the wall is influenced only by the
concentration gradients in the liquid phase �note that since
we are using a macroscopic approach the oscillations of con-
centration �i.e., density� of both components on the molecu-
lar scale which are due to the presence of the wall are en-
tirely neglected�.

IV. NUMERICAL RESULTS AND DISCUSSION

A. The diffusion coefficient

In applying Eq. �3� for the determination of the diffusion
coefficient, we keep in mind the restriction on the validity of
the two-component-one-fluid approximation �B11 and B11

234106-3 Nonlinear diffusion in 2D porous media J. Chem. Phys. 131, 234106 �2009�



must not differ appreciably�. Therefore, we choose cases
where the volume of the solute molecule is twice as large as,
equal to, and two times smaller than the volume of the sol-
vent molecule. As regards ratios B22 /B11 we are interested in
values 2,1 and 0.5. We consider all possible combinations of
these chosen molecular parameters and index them as given
in Table I. The remaining parameters C, B11, and � corre-
spond to molecular properties of the solvent and the total
number density. Since we are not interested in a particular
solvent nor in the influence of total number density, they
represent free parameters. For the sake of simplicity we
choose C to be equal to unity. The diffusion coefficient from
the Chapman–Enskog formula D12

0 depends only on the total
packing fraction, more precisely on the value of the radial
distribution function at contact, which can be described with
the use of the Mansoori extension of the Carnahan–Starling
equation for hard-sphere mixtures25 through the effective
hard sphere diameter of the mixture and the constituent num-
ber densities. Since we are interested in systems, where sol-
vent and solute particles exhibit similar properties, we may
suppose that the effective diameter of the mixture will not
differ appreciably from the diameters of the constituents. We
are considering softer continuous potentials �i.e., the
Lennard-Jones �LJ� potential� and Ben-Naim26 has shown
that for LJ mixtures the contact values of all radial distribu-
tion functions are almost independent of composition �see
also Appendix A�, thus the term D12

0 in Eq. �3� is to a very
good approximation a constant. For the sake of simplicity we
set it equal to 1, and express the diffusion coefficient in Eqs.
�3� and �4� in units of D12

0 . Since we are focused in a general
qualitative picture of transport in ordered porous media, �
and � are free parameters. However due to the fact that we
use a continuum description � must be larger that the wave-
length of density fluctuations on the molecular scale. The
ratios pore-wall thickness/pore size, however, correspond to
realistic situations. After testing for several values the prod-
uct �B11 �which determines the sensitivity of the diffusion
coefficient to compositional changes� was set equal to 5 for
numerical convenience. On one hand, the choice is made to
exclude singularities at zero solute mole fraction, on the
other hand, such a choice ensures the optimal compromise
between numerical stability �i.e., round-off error� and sensi-
tivity to compositional changes.

The concentration dependence of the diffusion coeffi-
cient with the use of parameters of Table I is shown in Fig. 2.
Note that that shapes of the curves switch their character

from convex to concave when the ratio B22 /B11 varies from
large to small values. The meaning of the aforementioned
variation of parameters and the resulting physical conse-
quences are the following. Given that the repulsive part of
the pair potential originates from the overlap of electronic
orbitals, a variation of B �or the ratio B11 /B22, respectively�
while keeping the molecular volume �or volumes, respec-
tively� fixed corresponds to a variation of attractive interac-
tions. Thus lowering of B at constant molecular volume is
related to an increase in intermolecular attraction. In this
respect, for example, going from k=1 to k=3 in Table I
corresponds to increasing attractive interactions between sol-
ute particles while keeping the effective molecular volumes
of both constituents fixed. Such a variation increases the sen-
sitivity of the diffusion coefficient to compositional varia-
tions at higher solute fractions �see Fig. 2� and decreases the
diffusion coefficient at higher solute fractions �which is ex-
pected�. Meanwhile in the case where the attractive interac-
tions between solvent molecules are larger, the diffusion co-
efficient is more sensitive to compositional variations at low
solute fractions.

B. General characteristics of the evolution
of concentration distribution

First we consider systems where initially the solute par-
ticles are located at the intersections of pore channels of a

TABLE I. Expansion parameters used in the calculations.

k v2
0 /v1

0 B22 /B11 a1k b1k a2k b2k ck

1 0.5 2.0 0.2896 0.9939 �2.4889 �0.0756 0.0
2 0.5 1.0 0.6425 0.6415 �0.3726 �0.3774 0.0
3 0.5 0.5 1.2764 0.0 �0.1227 0.0 �0.4042
4 1.0 2.0 0.3319 0.9514 �2.6073 �0.0896 0.0
5 1.0 1.0 1.2840 0.0 �0.5000 0.0 0.0
6 1.0 0.5 1.2807 0.0 �0.2813 0.0 �0.4529
7 2.0 2.0 0.8763 0.4066 �0.1215 �2.8321 0.0
8 2.0 1.0 0.6420 0.6420 �0.7465 �0.7535 0.0
9 2.0 0.5 1.2955 0.0 �0.6552 0.0 0.0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1

D
(D

0 12
)

ϕ

k = 1
k = 2
k = 3
k = 4
k = 5
k = 6
k = 7
k = 8
k = 9

FIG. 2. Concentration dependence of diffusion coefficient from Eq. �4�
using the parameters of Table I.
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matrix with a cubic symmetry. The thickness of pore walls is
set to 10�, the pore diameter to 20�, and the radius of par-
ticles to 4�. We modeled the liquid surrounding the porous
matrix as an �initially� empty region of width 70� around the
porous particle. For the matrix with hexagonal symmetry, the
particle and pore wall coordinates and sizes were set in the
same way as in case of the cubic symmetry, but in the ab-
sence of horizontal pores. For the sake of simplicity we set
D12

0 =1. The time evolution of the concentration fields corre-
sponding to the parameter set k=2 is shown in Figs. 3 and 4.
In both cases it is observed that the concentration fields of
individual particles are strongly coupled. For example, diffu-
sion is slower in the interior of the matrix due to the mutual
interaction of diffusion layers. This coupling is not limited to
diffusion within individual pore channels which is readily
observed in Figs. 3 and 4 �see for example Figs. 3�h�, 3�i�,
and 4�g�–4�i��. Of course the strength of interchannel cou-
pling depends on the interpore distance and vanishes for
large distances. Thus the single channel model of Lemaire
et al.15 may not be appropriate for systems with narrow pore
walls. Time dependent pore size, as introduced by Lemaire
et al., could easily be implemented into the present model.

C. Impact of molecular properties on the diffusion
profiles

The influence of molecular properties introduced into the
expression for the diffusion coefficient was studied in a
straightforward manner, by solving the evolution of the
model system for all k values given in Table I. Here the

porous matrix was built as follows. Similar to section B there
is an empty region surrounding the porous matrix particle of
width 95�. The pore wall thickness and pore diameter were
both set to 10� and the radius of particles was set to 4�. The
concentration distribution along the center of the central pore
channel �that is, the line with coordinates �150� ,y�� of the
cubic model matrix was calculated at different times. The
results are given in Figs. 5�c� and 5�d�. For comparison we
plotted also the results of corresponding linear diffusion
�Figs. 5�a� and 5�b�� with average diffusion coefficients de-

fined as D̄k=	0
1Dk���d�. It has to be noted that linear diffu-

sion can occur only at very high dilution, since the free vol-
ume depends on composition and molecular properties. As
observed, the various studied nonlinear systems exhibit al-
most no difference at very early stages �	
5�. For 	�5 the
differences become progressively more pronounced up to 	

75 and afterward progressively diminish until 	
300.
However, they never become significant in case of nonlinear
diffusion. In case of linear diffusion, however, the differ-
ences are growing progressively so that they become in fact
significant for 	�150. We see that the linear theory mislead-
ingly predicts significant differences in concentration profiles
inside the porous matrix. The nonlinear diffusion effects ob-
viously antagonize the differences in molecular properties.
Naturally, the concentration at the position of particles de-
creases fastest for the linear and nonlinear diffusion model,
in the case where the solute molecules are smaller than those
of the solvent and slowest in the reversed case. Overall, the
diffusion in the system k=3 is fastest while in the k=8 sys-
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FIG. 3. Contours of ��x ,y� after various time intervals in case of hexagonal pore symmetry. The spatial units are those of grid the spacing � and 	 has units
of the time step �t=2��2.
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tem is the slowest. Although the differences due to variation
of molecular parameters are very small in the nonlinear case,
they turn out to be more pronounced when the solute mol-
ecule is larger. Furthermore, differences in molecular param-
eters in both cases seem to have almost no effect on the
concentration profile outside the matrix, that is, diffusion
from the matrix seems to be completely independent of mo-
lecular properties of the solute. The latter is not surprising if
one recognizes that the concentration outside the matrix
never reaches high values and the differences in diffusion
coefficients become vanishingly small at low solute concen-
trations. Thus the strategy of controlling the diffusion kinet-
ics by doping solutes into ordered porous matrices can in
principle be viewed as quite general and does not depend �at
least not strongly� on the particular solute as long as there are
no strong interactions between the solute molecule and the
walls. Note that for both models �linear and nonlinear� posi-
tions where the concentration peaks at short times �due to the
position of particles� become depleted at longer times, due to
the fact that they correspond to crossing points of horizontal
and vertical channels.

D. Transport from the porous matrix as a function
of pore size

Regarding drug release, one is interested in the variation
of the concentration outside the porous matrix. In real sys-
tems, the matrix particles in a suspension are themselves
subjected to Brownian motion and may be additionally
driven by mixing. Effectively this means that there exists a

distribution of fluid velocity away from the particle. Assum-
ing no-slip boundary conditions at the particle surface, there
must exist a region around the matrix particle, where solute
motion is governed purely by molecular diffusion. However
at larger distances away from the particle surface one must
assume that it is governed by fluid flow. Since the size of the
diffusion controlled region depends on particle size, fluid
viscosity, temperature, etc., it is most convenient to consider
the rate at which solute molecules leave the matrix �i.e., the
transfer rate across the outer surface of the porous matrix
particle� and how this rate is influenced by the pore size. The
local molecular flux across the unit surface at position r� of
the matrix particle can be written as

j��r�� = − D���r��� � ��r�� . �12�

To obtain an expression for the total rate at which molecules
exit the matrix, one has to integrate Eq. �12� over the outer
surface

��ex

�t
= �

S

j��r�� · dS� = − �
S

D��� � � · dS� , �13�

where S� =n�dS and n� is the normal. The cumulative amount of
released molecules �which is conventionally measured in ex-
periments� is thus obtained by integration of Eq. �13�:

FIG. 4. Contours of ��x ,y� after various time intervals in case of cubic pore symmetry. The spatial units are those of grid the spacing � and 	 has units of
the time step �t=2��2.
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�ex�	� = �
0

	 ��ex

�t
�t��dt� = �

0

	

dt��
S

j��r�,t�� · dS� . �14�

First we consider the case where the matrix particle size,
pore volume, and total effective pore-opening area are kept
fixed while varying the pore size and focus on the cubic pore
symmetry and using the parameter set corresponding to k
=2. Three different pore sizes were, namely, d, d /3, and d /7,
where d was chosen to be 21�. The resulting pore wall thick-
ness �in order to assure equal matrix particle size, pore vol-
ume, and total effective pore-opening area� was 40�, 20�,
and 10�, respectively. The thickness of the empty region
surrounding the porous matrix particle was 50� in all three
cases. Initially the concentration was set to be uniform
throughout the matrix ��=1 everywhere inside the porous
matrix and 0 outside the matrix� and the total amount of
substance was set to be equal in all cases. As seen from Fig.
6�b� �blue lines� the exit rate is fastest in the case of smaller
pores for small 	 values �from top to bottom the positions of
curves correspond to d /7, d /3, and d� whereas, eventually,
the situation reverses at some intermediate values of 	 �inset
of Fig. 6�b��. The integral with respect to 	 represents the
fraction of solute outside the matrix and is given in Fig. 6�a�.
The latter is the largest in case of the smallest pore size in the
whole time interval, but the curves eventually converge,
which is due to equal system volumes. Although this might
seem surprising at first sight, it is actually straightforward.
Namely, the available volume outside of the matrix can be
filled more efficiently if there are more sources present. The

volume per unit pore-opening area into which the molecules
can flow by means of lateral diffusion currents is larger in
case of smaller pore size �which can be observed from the
width/area of the concentration isosurfaces in Fig. 7, which
are wider in case of smaller pores�. The same holds for hex-
agonal symmetry. Recently, Van Speybroeck et al.2 observed
that the transport rate of drug molecules from the SBA-15
matrix was in fact faster that in the case of pure drug par-
ticles which they attributed either to changes in the crystal
structure and size of the confined drug particles. In their
experiment they measured the concentration of dissolved
drug molecules in the bulk aqueous suspensions �in some
cases surfactant molecules were added to simulate physi-
ological conditions� of various drug and drug loaded SBA
particles, respectively, by means of UV spectrometry at dif-
ferent time intervals. Prior to measurements the withdrawn
samples were filtered to remove solid particles. The model
drugs were only poorly water soluble. Since the release is
supposed to be controlled principally by means of diffusion,
we wanted to explore the possibility that, besides the differ-
ence in the size of drug particles, the reason for increased
release rate was purely geometrical. Therefore, we solved the
diffusion Eq. �5� for exactly the same initial conditions using
the same parameter set k=2 as above but in absence of the
matrix walls. In experiment one measures the concentration
in the bulk solution phase containing the matrix or drug par-
ticles. Therefore one measures the rate at which molecules
diffuse across the diffusion-controlled liquid layer. The lat-
eral diffusion currents within the diffusion layer in fact slow
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FIG. 5. Concentration distributions along the central pore channel of cubic matrix �the line �150� ,y�� at various values of 	: �a� linear and �c� nonlinear at
	=1,5 ,10,25,50,75,100,150,300, �b� linear and �d� nonlinear at 	=150,300,500,2000,4000,6000,8000,10 000 using diffusion coefficients given in
Table I. The legend is the same as in Fig. 1.
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down the overall diffusion across this layer. The thickness of
this diffusion layer depends on the particle size, fluid prop-
erties, and mixing. Furthermore since polycrystalline drug
particles are used with sizes of several tens of microns,
whereas the size of SBA-type matrix particles is up to a few
microns �i.e., drug particles and matrix particles have differ-
ent sizes and thus different diffusion layer thickness�, it is
quite difficult to compare the results of experiments directly
from the present theoretical point of view. A rather unam-
biguous manner to do so is to consider the transfer rate
across the same surface as in the presence of matrix walls
�that is, the initial solute concentration distribution is the
same as in the presence of the porous matrix, but the system
evolves freely in the absence of pore walls and the surface,
across which the transfer rate is measured, remains the same
as in the presence of the matrix� using the same parameter
set k=2. The results are shown in Figs. 6�a� and 6�b� �red
lines�. The evolution of outgoing rates has two regimes. The
one at small 	 values is due to the transport at positions
where the pore channels �however without the pore walls�

are connected to the outer surface, whereas the second burst
in transfer rate arises when the diffusion front of the inner
molecules arrives at the surface. The time when the cross-
over between regimes occurs is longer in case of larger pore
size which is readily observed in Fig. 6�b�. The rate after the
crossover is fastest in the case of largest pore size. As com-
pared to matrix systems with corresponding equal pore sizes,
the rates are initially slower for very low 	 values, afterward
they become faster and eventually again fall off bellow the
values of corresponding matrix systems at longer 	 values.
The temporal distance between both intersecting points in-
creases with increasing pore size. Initially the rate in the case
of matrix systems is faster because there is no lateral diffu-
sion and thus no initial dilution before exiting the outer sur-
face. The first intersection arises when the molecules located
further to the center reach the surface, while in the case of
matrix systems the onset diffusion front still has not reached
those molecules. However, due to the larger volume that is
accessible to the diffusing molecules in the absence of pore
walls, the system eventually becomes diluted internally and

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5000 10000 15000 20000 25000 30000

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1000 2000 3000 4000 5000
τ [2α∆2]

τ [2α∆2]

ϕ
ex

/ϕ
to

t

ϕ
ex

/ϕ
to

t

d
d/3
d/7
dnw

d/3nw
d/7nw

(a)

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1000 2000 3000 4000 5000

0

0.04

0.08

0.12

0.16

0.2

10000 20000 30000
τ [2α∆2]

τ [2α∆2]

d
d/3
d/7
dnw

d/3nw
d/7nw

∂
ϕ
/∂

t
[(
2α

∆
2
)−

1
]

∂
ϕ
/∂

t
[(
2α

∆
2
)−

1
]

(b)
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FIG. 7. Concentration fields in cubic porous systems at 	=1500. The area of all concentration isosurfaces is larger in the case of smaller pore size. The
increase is due to more effective diffusion �drainage� in the direction perpendicular to the surface normal.
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the concentration gradient across the outer surface decreases.
Although the effective surface through which the molecules
can leave the matrix is smaller, the overall transfer rate even-
tually becomes faster due to higher gradients across the outer
surface due to less internal dilution. The corresponding evo-
lution of total amount of substance released through the outer
surface also exhibits two intersections with corresponding
curves of matrix systems and thus the total amount is a bit
larger for a short intermediate time interval, after which it
falls bellow again and stays at the same level. The lower final
value is due to larger total volume of the system �recall that
there are no walls present�. Qualitatively the same conclu-
sions hold for a matrix with hexagonal symmetry. Exact
comparison of hexagonal and cubic symmetry is not possible
because one cannot assure equal pore volume, pore size, and
effective pore exit area at the same time. Therefore we
choose to set the pore size equal to d /3 and create a system
with almost equal pore volume �the latter was 0.5% larger in
case of hexagonal symmetry� by taking seven pore channels
of equal width and taking one side of the square representing
the outer matrix surface 6% shorter and the other side 1.3%
shorter. The specific dimensions of the matrix particle with
hexagonal pore structure were the following. The length and
width of pore walls were 90� and 8� and the pore diameter
was 7�. The thickness of the empty region surrounding the
porous matrix particle was again 50�. As in the case of cubic
symmetry, the evolution of the system under exactly the
same initial conditions but in the absence of pore walls is
denoted with the index nw. Such a system has 0.5% larger
pore volume. The results together with the corresponding
results of the cubic system are plotted in Fig. 8. The point at
which the total release from the matrix becomes faster then
free diffusion is shifted toward longer 	 compared to cubic
systems. Furthermore it is observed that the release from the
cubic system with equal pore size and approximately equal
pore volume is faster than from the hexagonal one. This
indicates that besides pore volume, pore size, and matrix-
particle size the transport also depends on the geometry of

the porous network. As regards experimental findings, unfor-
tunately, Van Speybroeck et al. did not sample short time
intervals so that only long-time tails can be compared. Still,
the relative profile shapes and differences between pure drug
particles and matrix systems are reproduced quite nicely by
our model, although we considered equal sizes of matrix-
loaded and free particles. Our analysis shows that the en-
hancement of drug release by incorporating drugs into po-
rous matrices is mainly due to geometrical reasons. Note that
among all substances studied by Van Speybroeck et al. they
found exceptions where the release slowed down after the
incorporation into the SBA-15 matrix, which they attributed
to specific interactions between the drug molecules and the
matrix walls. Naturally, such cases are not supported by the
present model as it is, but can be incorporated by means of
an external potential. In such a case the evolution of the
system would be governed by free-energy gradients.

V. CONCLUSION

A mathematical model was developed to describe non-
linear diffusion in 2D ordered porous media on a continuum
level. Basic molecular properties, such as molecular volume
and generic vdW parameters, were introduced to the macro-
scopic diffusion equation through a modified free volume
theory of binary diffusion coefficients. The resulting govern-
ing equation was solved numerically with a fully implicit
ADI method. Our analysis shows that the nonlinear diffusion
controlled release from an ordered porous matrix particle
does not depend strongly on the molecular properties of the
solute. In contrast it was also shown that simple linear diffu-
sion predicts a significant influence of molecular parameters
on diffusion inside and from the porous matrix particle.
Somewhat surprisingly, the release is enhanced with respect
to the release from free particles in absence of pore walls.
This finding coincides well with the recent experimental re-
sults from drug release studies and indicates that the en-
hanced release could be mainly due to geometrical reasons.
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FIG. 8. �a� Total substance outside the matrix and �b� transfer rate across the outer matrix surface. Black lines correspond to hexagonal system and blue to
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Further, the present results predict that the release depends
on pore size, volume, and pore symmetry. For example, it is
faster in the case of smaller pore sizes assuming equal pore
volume and, also, it is faster in the case of cubic symmetry, if
assuming equal pore size and volume. The latter reveals the
actual underlying complexity of the relationship between the
diffusion kinetics and the matrix geometry and its param-
eters. In this respect, the developed model along with further
detailed experimental studies could be useful for optimiza-
tion of matrix parameters in order to obtain desired release
profiles.
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APPENDIX A: GENERIC VDW EQUATION OF STATE

The generic �or virial� vdW equation of state for a mix-
ture of c constituents with number densities �n ,n=1, ¯c
and pair interaction potentials uij�r� at temperature T and
total number density � is written as

�p

�
= 1 −

2�

3�
��

i=1

c

�
j=1

c

�i� j�
0




drr3duij

dr

�exp�− �uij�yij�r;�i,T� , �A1�

where �n denotes the set of constituent number densities
�n ,n=1, ¯c, �=1 /kT, and yij�r ;�i ,T� is the cavity function,
given by the usual relation

yij�r;�i,T� = exp��uij�gij�r;�i,T� , �A2�

where gij�r ;�i ,T� stands for the equilibrium pair correlation
function. Realistic pair potentials consist of an attractive and
a repulsive part and the interparticle distance at zero of pair
potential energy can be denoted as �ij�uij��ij�=0�. The inte-
gral in Eq. �A1� can be split in two parts �a repulsive part
0
r
�ij and an attractive part r��ij� and the resulting
equation rearranged into the form of the classical vdW equa-
tion of state, with generic parameters A and B given by

A = �
i=1

c

�
j=1

c

AijXiXj , �A3�

B =
�i=1

c � j=1
c BijXiXj

1 + ��i=1
c � j=1

c BijXiXj

, �A4�

where

Aij =
2�

3
�

�ij




drr3duij

dr
gij�r� , �A5�

Bij =
2�

3
��

0

�ij

drr3duij

dr
gij�r� . �A6�

�ij thus stands for a characteristic size parameter, and is in-
fluenced by both repulsive and attractive interactions. For a
two component fluid the generic parameter B is given by

B =
1

C
�B11X1

2 + B22X2
2 + X1X2�B12 + B21�� , �A7�

where the denominator of Eq. �A4� �essentially a constant for
a given system at given temperature and density� has been
absorbed in the constant c. The only difference between pa-
rameters B12 and B21 is in the pair correlation function and
they become equal in the limit of vanishing density. The sum
B12+B21 can be thought of as a common cross coefficient
2B12

c used in Eq. �2�. Furthermore if the constituents have
similar properties ��ii
� j j 
�ij, and similarly for the depths
of potential minima� we can use combining rules for the
cross coefficient B12+B21=2�B11B22. This approximation
has to be made in order to arrive at an expression for the
diffusion coefficient which can be used directly in the diffu-
sion equation. We now turn to the validity of these approxi-
mations as a function of the mole fractions of constituents.
Ben-Naim has shown26 that the heights and positions of the
first peak �positioned roughly at �ij� of pair correlation func-
tions of binary LJ mixtures almost do not change when one
varies the mole fraction of one component from 0 to 1. The
position and height of the second peaks, however, depend on
the composition of the mixture. Since the integral in
Eq. �A6� goes from 0 to �ij the approximations should
therefore hold for all compositions.

APPENDIX B: BOUNDARY CONDITIONS USED IN
THE CALCULATION

Neumann boundary conditions are used �zero gradient�
and the resulting formulae are presented according to the
classification of points on the grid:

�1� Points neighboring the left outer boundary and points
directly at right pore walls: �i−1,j =�i,j and �i−1,j =�i,j,

�1 + �D��i,j
n ���i,j

n+1/2 − �D��i+1,j
n ��i+1,j

n+1/2

= ���i,j−1
n − 3�i,j

n + �i+1,j
n + �i,j+1

n

+ �1/� + D��i,j
n ���i,j

n − D��i+1,j
n ��i+1,j

n � , �B1�

− �D��i,j−1
n+1/2��i,j−1

n+1 + �1 + 2�D��i,j
n+1/2���i,j

n+1

− �D��i,j+1
n+1/2��i,j+1

n+1

= ���i,j−1
n+1/2 − 3�i,j

n+1/2 + �i+1,j
n+1/2 + �i,j+1

n+1/2

− D��i,j−1
n+1/2��i,j−1

n+1/2 + �1/� + 2D��i,j
n+1/2���i,j

n+1/2

− D��i,j+1
n+1/2��i,j+1

n+1/2� . �B2�

�2� Points neighboring the right outer boundary and points
directly at left pore walls: �i+1,j =�i,j and �i+1,j =�i,j,

− �D��i−1,j
n ��i−1,j

n+1/2 + �1 + �D��i,j
n ���i,j

n+1/2

= ���i−1,j
n + �i,j−1

n − 3�i,j
n + �i,j+1

n − D��i−1,j
n ��i−1,j

n

+ �1/� + D��i,j
n ���i,j

n � , �B3�
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− �D��i,j−1
n+1/2��i,j−1

n+1 + �1 + 2�D��i,j
n+1/2���i,j

n+1

− �D��i,j+1
n+1/2��i,j+1

n+1

= ���i−1,j
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n+1/2��i,j+1

n+1/2� . �B4�

�3� Points neighboring the bottom outer boundary and
points directly at top pore walls: �i,j−1=�i,j and
�i,j−1=�i,j,

− �D��i−1,j
n ��i−1,j

n+1/2 + �1 + 2�D��i,j
n ���i,j
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− �D��i+1,j
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n
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�4� Points neighboring the top outer boundary and points
directly at bottom pore walls: �i,j+1=�i,j and
�i,j+1=�i,j,

− �D��i−1,j
n ��i−1,j
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�5� Top left corner: �i−1,j =�i,j and �i,j+1=�i,j,
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n ��i+1,j
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n+1 + �1 + �D��i,j
n+1/2���i,j

n+1

= ���i,j−1
n+1/2 − 2�i,j

n+1/2 + �i+1,j
n+1/2 − D��i,j−1

n+1/2��i,j−1
n+1/2

+ �1/� + D��i,j
n+1/2���i,j

n+1/2� . �B10�

�6� Bottom left corner: �i−1,j =�i,j and �i,j−1=�i,j,

�1 + �D��i,j
n ���i,j

n+1/2 − �D��i+1,j
n ��i+1,j

n+1/2

= ���i,j+1
n − 2�i,j

n + �i+1,j
n + �1/� + D��i,j

n ���i,j
n

− D��i+1,j
n ��i+1,j

n � , �B11�

− �D��i,j+1
n+1/2��i,j+1

n+1 + �1 + �D��i,j
n+1/2���i,j

n+1

= ���i,j−1
n+1/2 − 2�i,j

n+1/2 + �i+1,j
n+1/2 − D��i,j+1

n+1/2��i,j+1
n+1/2

+ �1/� + D��i,j
n+1/2���i,j

n+1/2� . �B12�

�7� Bottom right corner: �i+1,j =�i,j and �i,j−1=�i,j,

− �D��i−1,j
n ��i−1,j

n+1/2 + �1 + �D��i,j
n ���i,j

n+1/2

= ���i−1,j
n − 2�i,j

n + �i,j+1
n − D��i−1,j

n ��i−1,j
n

+ �1/� + D��i,j
n ���i,j

n � , �B13�

�1 + �D��i,j
n+1/2���i,j

n+1 − �D��i,j+1
n+1/2��i,j+1

n+1

= ���i−1,j
n+1/2 − 2�i,j

n+1/2 + �i,j+1
n+1/2

+ �1/� + D��i,j
n+1/2���i,j

n+1/2 − D��i,j+1
n+1/2��i,j+1

n+1/2� .

�B14�

�8� Top right corner: �i+1,j =�i,j and �i,j+1=�i,j,

− �D��i−1,j
n ��i−1,j

n+1/2 + �1 + �D��i,j
n ���i,j

n+1/2

= ���i−1,j
n − 2�i,j

n + �i,j−1
n − D��i−1,j

n ��i−1,j
n

+ �1/� + D��i,j
n ���i,j

n � , �B15�

�1 + �D��i,j
n+1/2���i,j

n+1 − �D��i,j−1
n+1/2��i,j−1

n+1

= ���i−1,j
n+1/2 − 2�i,j

n+1/2 + �i,j−1
n+1/2

+ �1/� + D��i,j
n+1/2���i,j

n+1/2 − D��i,j−1
n+1/2��i,j−1

n+1/2� .

�B16�

The program identifies the point type �ordinary point or
a specific type of boundary point given above� and, accord-
ing to the direction currently being updated, constructs the
tridiagonal matrix T and vector r� �see main text� and the
resulting linear equations are solved with LU decomposition,
forward and backward substitution.
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