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Abstract

Background: Cancer cell invasion, dissemination, and metastasis have been linked to an epithelial-mesenchymal
transition (EMT) of individual tumour cells. During EMT, adhesion molecules like E-cadherin are downregulated and
the decrease of cell-cell adhesion allows tumour cells to dissociate from the primary tumour mass. This complex
process depends on intracellular cues that are subject to genetic and epigenetic variability, as well as extrinsic cues
from the local environment resulting in a spatial heterogeneity in the adhesive phenotype of individual tumour cells.
Here, we use a novel mathematical model to study how adhesion heterogeneity, influenced by intrinsic and extrinsic
factors, affects the dissemination of tumour cells from an epithelial cell population. The model is a multiscale cellular
automaton that couples intracellular adhesion receptor regulation with cell-cell adhesion.

Results: Simulations of our mathematical model indicate profound effects of adhesion heterogeneity on tumour cell
dissemination. In particular, we show that a large variation of intracellular adhesion receptor concentrations in a cell
population reinforces cell dissemination, regardless of extrinsic cues mediated through the local cell density.
However, additional control of adhesion receptor concentration through the local cell density, which can be assumed
in healthy cells, weakens the effect. Furthermore, we provide evidence that adhesion heterogeneity can explain the
remarkable differences in adhesion receptor concentrations of epithelial and mesenchymal phenotypes observed
during EMT and might drive early dissemination of tumour cells.

Conclusions: Our results suggest that adhesion heterogeneity may be a universal trigger to reinforce cell
dissemination in epithelial cell populations. This effect can be at least partially compensated by a control of adhesion
receptor regulation through neighbouring cells. Accordingly, our findings explain how both an increase in
intra-tumour adhesion heterogeneity and the loss of control through the local environment can promote tumour cell
dissemination.
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Background
The ability of tumours to metastasise is one of the ‘hall-
marks of cancer’ [1, 2] and contributes to more than 90%
of cancer-related deaths. Before metastases form, tumour
cells disseminate and migrate away from solid tumours to
invade surrounding tissue [3, 4]. One of the challenges in
the development of effective therapies is that the mech-
anisms that trigger dissemination of single cells or even
groups of cells from tumours are not known in great detail
[2, 5]. Moreover, several triggers, like hypoxia, may pro-
mote cell dissemination in one tumour type and inhibit
it in others [6]. A consequence of this is that therapies
targeting tumour cell dissemination and metastasis for-
mation are largely under-represented [7]. A better under-
standing of the general principles underlying the triggers
of tumour cell dissemination is therefore a key step in
developing effective cancer treatments.
Tumour cell invasion and dissemination are accom-

panied by epithelial-mesenchymal transitions (EMT) of
individual cells [4]. During EMT, epithelial cells grad-
ually and reversibly change their phenotype and adopt
a mesenchymal phenotype [8, 9], which exhibits lower
adhesion to neighbouring cells, but stronger adhesion to
the extracellular matrix compared to the epithelial pheno-
type [10]. Two of the characteristics of cells undergoing
EMT are: an increase in cell motility and downregulation
of the epithelial marker E-cadherin [10–15] (also cf. [16]
for a comprehensive review on the role of E-cadherin and
E-cadherin-related signalling pathways in EMT), the pro-
totypic type-I cadherin which mainly establishes adhe-
sive cell-cell junctions found in epithelial tissues [4].
E-cadherin expression depends on both intrinsic and
extrinsic cues. Intrinsic cues relate to effects of intracel-
lular expression regulation, modification, transport and
membrane presentation of E-cadherin (cf. [17] for a
review of various mechanisms of E-cadherin downregu-
lation and repression in tumours). Genetic mutations in
E-cadherin genes lead to differences in E-cadherin expres-
sion levels. In particular, there are mutations that can
impair the tumour suppressor function of E-cadherin,
promote EMT and, therefore, favour tumour cell dissem-
ination [4, 14, 18]. Extrinsic cues refer to influences of
the cellular microenvironment. In particular, E-cadherin
expression levels increase with local cell density through
cadherin-cadherin interactions [19]. This means that the
adhesion phenotype - i.e. the expression level of adhesion
receptors - of cells is under environmental control as the
strength of adhesive cell-cell junctions is correlated with
the E-cadherin expression level [20]. Consequently, vari-
ations in local cell densities can lead to heterogeneity in
E-cadherin expression levels between cells in a tumour.
Intra-tumour heterogeneity can be observed at differ-

ent levels, e.g. in terms of metabolism and signalling,
but also genetically and epigenetically [21, 22]. There is

a strong interest to understand the preconditions and
implications of tumour heterogeneity [23–25]. Here, we
focus on intrinsic and extrinsic preconditions for adhe-
sion heterogeneity and study the implications for tumour
cell dissemination with a mathematical model. In particu-
lar, we develop a cellular automaton model to account for
both the single cell and the cell population level.
Existing mathematical models that analyse effects of

cell adhesion on tumour cell dissemination differ by the
specific choice of mechanisms included in their respec-
tive definitions [26–30] (see also [31] for an overview of
models for analysing effects of cell adhesion on cell dis-
semination). Aspects of adhesion heterogeneity are not
considered in any of these models. Nevertheless, there are
discrete and hybrid mathematical models in which adhe-
sion heterogeneity is included. For example, Anderson
(2005) developed a hybrid model in which cells can have
different adhesion phenotypes that do not depend on the
cellular microenvironment [32]. Simulations of this model
suggest that a decrease of cell-cell adhesion is important
in early tumour invasion as it affects tumour cell dissem-
ination. Ramis-Conde et al. (2008) developed an agent-
based mathematical model incorporating E-cadherin and
β-catenin dynamics at the individual cell level [33]. β-
catenin is an intracellular protein associated with the actin
cytoskeleton of a cell. E-cadherins bind to β-catenins to
form complexes that can interact both with neighbouring
cells to form bonds, and with the cytoskeleton of the cell.
Computer simulations of this model yield various tumour
invasion patterns by a variation of cell-cell adhesive inter-
action strengths. Thismodel, and an extension by Schlüter
et al. (2014) [34], account for adhesion heterogeneity at
the individual cell level, but the model is not used to sys-
tematically study the effects of intrinsic and extrinsic cues.
Domschke et al. (2014) investigated the effect of variability
in cell-cell adhesion and adhesion between cells and the
extracellular matrix (ECM) on tumour invasion patterns
[35]. Their model is based on a system of partial integro-
differential equations in which adhesion between cells,
and cell-ECM adhesion, are modelled by non-local inter-
action terms. This study shows that considering dynamic
and variable, rather than constant, cell-cell and cell-ECM
adhesion parameters can qualitatively describe invasive
patterns observed in a number of different types of can-
cer. The model includes extrinsic cues mediated through
the extracellular matrix, but it does not account for intrin-
sic factors and the local effects of neighbouring cells on
adhesion heterogeneity. In summary, even though it is
known that spatio-temporal variability in adhesion recep-
tor expression should not be neglected in tumour cell
populationmodels [35], the effects of those dynamics have
not been studied systematically so far.
We propose a two-dimensional multiscale cellular

automaton (CA) model that couples cell-cell adhesion



Reher et al. Biology Direct  (2017) 12:18 Page 3 of 17

with intracellular adhesion receptor regulation. Cellular
automata are widely used as models for different aspects
of cancer dynamics [36–43]. A particular type of cellular
automata, the lattice-gas cellular automaton (LGCA), is
well-suited to model cell-cell interaction and cell migra-
tion [28–30]. Several LGCAmodels have been introduced
to study tumour invasion. For instance, Böttger et al.
[44–46] and Hatzikirou et al. [47] developed LGCA
models to study consequences of the ‘go-or-grow’
dichotomy on cancer growth and invasion. The ‘go-or-
grow’ dichotomy is known to characterise glioma cancer
cells [48]. Here, we analyse the effects of adhesion het-
erogeneity on tumour cell dissemination and couple an
LGCA model for adhesive cell interaction to an adhe-
sion receptor model adapted from Engwer et al. [49]. For
this, we compare simulations of four model scenarios. In
particular, we distinguish scenarios in which single cell
adhesion receptor regulation is either independent from
or controlled by the local cell density and further consider
both homogeneous and heterogeneous cell populations,
the latter ones with different degrees of adhesion hetero-
geneity. For our analysis, we count the number of dissemi-
nated cells that migrated beyond a threshold distance and
measure mean adhesion receptor concentrations of non-
disseminated and disseminated cells at a given time. This
allows us to characterise potential adhesivity differences
between these two subpopulations. We predict that the
degree of adhesion heterogeneity determines the size of
the disseminated cell subpopulation.

Methods
Definition of the multiscale model
We develop a stochastic, spatio-temporal cell-based
model to study the effects of cell-cell adhesion hetero-
geneity on tumour cell dissemination. To do that, a
discrete model, namely an individual-based lattice-gas
cellular automaton (LGCA) is defined [50, 51]. LGCA
are generalisations of probabilistic cellular automata, in
which the original concept of binary node states, as often
used in statistical physics applications, has been extended
to a more complex node structure with so-called veloc-
ity channels. This approach, inspired by the FHP-LGCA
model for incompressible fluid flow [52], facilitates bio-
logical applications. In a biological context, LGCAmodels
are especially well-suited to model cell-cell interaction
and cell migration [28–30]. Here, we concentrate on the
effects of adhesion heterogeneity on cell dissemination
and neglect cell proliferation. In previous studies, we have
analysed the effects of cell proliferation on tumour growth
and invasion with LGCA models and demonstrated that
the particular migration characteristics play an important
role in tumour invasion [44, 45, 47]. In our model, individ-
ual cells are characterised by their adhesive states, which
describe the overall adhesion receptor concentration on

the cell surface. The adhesive states are regulated by
an adhesion receptor regulation rule which accounts for
extrinsic and intrinsic sources of adhesion heterogene-
ity in the model. Adhesive interactions between cells are
realised by a migration rule, which depends on the adhe-
sive states of the cells: cells perform biased random walks
such that cells with high adhesive state values have a
higher probability to be attracted to neighbouring cells
than cells with lower adhesive state values.
The LGCA model is described on a discrete d-

dimensional regular latticeLwith periodic boundary con-
ditions. Each lattice node r ∈ L is connected to its b
nearest neighbours by unit vectors ci, i = 0, . . . , b, called
velocity channels. The total number of channels per node
is defined by κ > b, where κ − b is an arbitrary number
of channels with zero velocity, called rest channels. Each
channel can be occupied by at most one cell at a time,
defined by the occupation state variable η(r, k) ∈ {0, 1}.
We distinguish moving cells, which reside on the veloc-
ity channels, indexed by i = 1, . . . , b, and resting cells,
which are located within the rest channels of the lattice,
indexed by i = b + 1, . . . , κ . Adhesive cell states are
defined by a variable ai(r) ∈[ 0,∞). The total number of
cells at time k and node r is given by n(r, k). The param-
eter κ is a local cell number bound which is imposed,
since the maximal cell number in a given volume is lim-
ited in a biological tissue. Notice that κ corresponds to a
local carrying capacity and thereby prevents cell crowd-
ing. Figure 1a illustrates the state space of the LGCA
model.
The time evolution of our model is defined by the

following rules:

(R1) Adhesion receptor regulation rule: For each cell,
located in channel i of node r, an updated adhesive
state a′

i(r) is calculated from the actual adhesive
state ai(r) by using an ordinary differential equation
model described below, which allows to distinguish
intrinsic and extrinsic regulation. We assume that
cell adhesion receptor expression of single cells can
increase with higher local cell densities or that it
develops independently from the local environment.

(R2) Migration rule guided by adhesive interaction: Cells
perform a biased random walk and move
preferentially towards densely populated nodes with
high total level of adhesivity. Cells with high
adhesive state are particularly sensitive to this rule.

Adhesion receptor regulation model
Deterministic intracellular adhesion receptor regulation
model
We describe the adhesion receptor concentration of indi-
vidual cells positioned at (r, ci) at time k by an adhe-
sive state variable ai(r, k). To determine ai(r, k), we use
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Fig. 1 Adhesive cell-cell interaction in the LGCA model. a Example configuration of the LGCA; additionally, momentum J(r) (framed arrow) of the
central node and local adhesivity gradientG(r) (gray arrow) are indicated. State space: Cells are placed on a square latticeL where each node has a
substructure with four velocity channels ci , i = 0, ..., 3, and six rest channels (merged into one rest channel in the figure). Accordingly, nodes can host
up to ten cells. Adhesive states ai(r) of single cells (indicated by filled dots) are determined by an adhesion receptor regulation model (see Fig. 2 and
Additional file 1 for details). The momentum J(r) (framed arrow) at a given node r is the vector sum of all occupation states ηi(r, k), weighted by the
adhesive states ai(r) (dot size symbolises adhesivity strength). The local adhesivity gradient vectorG(r) (gray arrow) at a given node r is the vector
sum of the momenta in the next-neighbour neighbourhood, excluding r (see Additional file 1). b Adhesive interaction is characterised by a
reorientation probability P that increases with the degree of alignment between local adhesivity gradientG(r) (left, gray arrow) and momentum
J(r) of the reoriented configuration (right, framed arrow)

the solution of an ordinarz differential equation (ODE)
adapted from Engwer et al. (2015) [49]:

dyri (t)
dt

= h+(R0 − yri (t)) − h−yri (t),

yri (t) = c e−(h++h−)t + h+R0
h+ + h− ,

(1)

in which yri (t) is the concentration of adhesion receptors
on the cell surface at continuous time t ∈ R

+
0 , h+, h− ∈ R

are the respective adhesion receptor association and dis-
sociation rates, R0 ∈ N is the maximum adhesion receptor
concentration, and c ∈ R is a constant of integration. The
initial condition is yri (0) = y0 (see Table 1 for chosen
parameter values). The steady state is given by h+R0

h++h− . (see
Additional file 1 for further details).
We distinguish between a fast regulationmode, in which

we use a quasi-steady state approximation and assume
that the steady state is reached almost instantly, and a slow

regulation mode. In the latter, we use Eq. (1) to calcu-
late an adhesive state for every discrete cellular automaton
time k and every cell. The continuous adhesion receptor
concentration yri (t) of a cell at (r, ci) is then temporally dis-
cretised to give the adhesive state value ai(r, k) by passing

Table 1 Parameters for adhesion receptor regulation models

Parameter Value Stochastic

h+ 0.005 no

h− 0.005 no

〈R0〉 100000 yes

〈y0〉 (slow regulationmode) 80000 yes

〈y0〉 (fast regulationmode) 50000 yes

h+ , h− ∈ R with unit [ s−1] are the respective adhesion receptor association and
dissociation rates, R0 ∈ N is the maximum adhesion receptor concentration. In the
stochastic case, R0 and y0 are the expected values of a normal distribution. y0 has
different expected values for slow and fast regulationmodes (see text). Values
adapted from Engwer et al. (2015) [49]
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the discrete time-step of the LGCA model to Eq. (1) as an
argument [Fig. 2a and Additional file 2 (b)].

Heterogeneity in the intracellular adhesion receptor
regulationmodel
We introduce intrinsic adhesion heterogeneity by assign-
ing independent stochastic values to two ODE param-
eters, the initial adhesive state y0 and the maximum
adhesive state R0 (Fig. 2). Heterogeneity in these param-
eters is achieved by randomly selecting values from a
normal distribution with fixed expected values for each
cell before starting the simulation (Table 1). We use the
parameter γ to control the degree of heterogeneity (see
Additional file 1). The rates h+ and h− are held constant
and identical for all cells. Note that rates h+ and h− have
different units compared to rates of second order reac-
tions as yri (t) is not a molar concentration but the actual
number of adhesion receptors on the cell surface [49]. For
the fast regulation mode, where we approximate Eq. (1) by
the steady state value, the parameter R0, which determines
the steady state value h+R0

h++h− , is drawn from a normal
distribution with the same parameters as above.
For modelling extrinsic cell density-dependent adhesion

receptor regulation, we modify Eq. (1) by considering a
linear cell density-dependent weight that is controlled by
an environmental control parameter α ∈[ 0, 1].

Migration rule guided by adhesive interaction
In the LGCA, the migration rule is implemented in
two substeps, (i) a probabilistic reorientation step which
redistributes the cells within the velocity channels at a
node according to their preferred direction of motion,

and (ii) a deterministic propagation step, which moves
all cells in velocity channels to their neighbouring
nodes in the directions of the velocity channels they
reside in.
The probabilistic reorientation step models adhesive

interaction as attraction between cells, depending on
their adhesive states (see Fig. 1b for an illustration and
Additional file 1 for details), and is implemented as a
transition probability from a given to a reoriented config-
uration as follows: a momentum J(r) at node r is defined
by weighting the number of cells in a node with their
adhesive states ai(r). A local adhesivity gradient G(r) cal-
culates the vector sum of all momenta of the nearest
neighbours of r (Fig. 1). The reorientation probability P
is then defined such that it increases with the degree of
alignment between the local adhesion gradient G(r) and
the momentum of the reoriented configuration J(r). The
detailed mathematical description of the model can be
found in Additional file 1.

Model analysis
To investigate the influence of cell adhesion heterogeneity
and adhesion receptor regulation on tumour cell dissem-
ination, we study four adhesion receptor regulation sce-
narios (Fig. 3). First, we distinguish cell populations with
intrinsic adhesion heterogeneity (HET), where we model
heterogeneity with parameter γ > 0 as described in the
previous section and Additional file 1, and without intrin-
sic adhesion heterogeneity (HOM, γ = 0).We use five val-
ues for γ (0, 0.05, 0.25, 0.4, 0.55) to study different levels of
adhesion heterogeneity. Second, we distinguish cell popu-
lations in which adhesion receptor regulation of individual

Fig. 2 Adhesive state changes of individual cells is modelled by an intracellular adhesion receptor regulation model. a Adhesive interactions
between cells [black arrows in (b), (c)] are modelled by the probabilistic reorientation operatorR in the LGCA model that depends on adhesive
states ai(r, k) of individual cells determined by the deterministic intracellular adhesion receptor regulation model (Additional file 1). b Intrinsic
adhesion heterogeneity is modelled by stochastic initial adhesive states y0 (proportional to c, see Additional file 1) and randommaximum adhesive
states R0 (green). c Extrinsically-controlled adhesion heterogeneity is modelled by multiplying adhesive states of single cells by a weight (red) that
increases linearly with the cell density in the local environment, resulting in an adhesion receptor regulation model that also depends on the
occupation states in neighbouring nodes (red arrows)
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Fig. 3 Adhesion receptor regulation scenarios. At the beginning of simulations the tumour cell population of interest can either be homogeneous,
i.e. γ = 0 (HOM), or heterogeneous, i.e. γ > 0 (HET), regarding intrinsic cell-cell adhesivity. Furthermore, the regulation of single cell adhesion
receptor concentration can either be independent, i.e. α = 0 (CONTROL−), or controlled by the environment, i.e α > 0 (CONTROL+), the latter via a
weight that increases adhesion receptor expression with increasing local cell density. With this weight, we model a cellular adhesion phenotype
under environmental control. Combination of these possibilities gives four adhesion receptor regulation scenarios: Scenario I corresponds to a
healthy tissue which we assume to be homogeneous and in which adhesion receptor concentration is under environmental control (γ = 0 and
α > 0). Scenario II corresponds to adhesion heterogeneity caused by differential adhesion receptor expression in the cells, for example due to
mutations which are expected to be found in malignant cells (γ > 0 and α > 0). Scenario III corresponds to a tissue in which cells are still
homogeneous but the environmental control is impaired (γ = 0 and α = 0). This is also expected in malignant cells. Scenario IV is a combination of
both heterogeneity and impaired environmental control (γ > 0 and α = 0)

cells is density-dependent, i.e. α > 0 [CONTROL+] or
independent, i.e. α = 0 [CONTROL−].
In summary, in our first scenario, we assume a homo-

geneous cell population in which adhesion receptor con-
centration is under environmental control (γ = 0 and
α > 0) — this corresponds to a healthy tissue. In the sec-
ond scenario, we introduce adhesion heterogeneity caused
by differential adhesion receptor expression in the cells
(γ > 0 and α > 0). The third scenario corresponds to a
homogeneous cell population with impaired environmen-
tal control (γ = 0 and α = 0). This is also expected in
malignant cells, for example due to mutations. The fourth
scenario is a combination of both heterogeneous adhesion
receptor expression and impaired environmental control
(γ > 0 and α = 0).
All four regulation scenarios are tested in both a slow

regulation mode according to Eq. (1) and a fast regulation
mode in which we use a quasi-steady state approximation.
For the latter, we set the adhesion states of all cells to the
steady state of the ODE Eq. (1) with standard parameters
(Table 1).
In all simulations, we use a circular initial cell configu-

ration mimicking in vitro invasion assays, as described by
Justus et al. [53]. The initial configuration comprises both
the initial positions as well as the initial adhesive states
y0 of all cells (Table 1). Motivated by a densely packed
epithelium, the initial circular cell population has maxi-
mum density, i.e. every channel in every node is occupied.
We perform all simulations with parameters as in Table 2,
averaging results over the number of repetitions. For

statistical analysis, we calculate p-values from two-tailed
t-tests for independent samples with equal variances
(F-test, p ≥ 0.05) or, in the case of unequal variances (F-
test, p < 0.05) from two-tailed Welch’s t-tests (tv-test)
with Welch-approximated degrees of freedom v.
To measure cell dissemination in our model, we define a

distance threshold and consider cells as disseminated only

Table 2 List of simulation parameters

Simulation parameter Value

Lattice spacing ε 1

⇒ Time-step length τ 1

Lattice size 61 × 61 ⇒ |L| = 3721

Number of channels κ 10, i.e. β = 6 (rest channels)

Initial density Full occupation [1610 cells]

Initial adhesive state
(slow regulationmode)

50000 [50%, ODE steady state]

Initial adhesive state
(fast regulationmode)

80000 [80%]

Heterogeneity parameter γ 0, 0.05, 0.25, 0.4, 0.55

Environmental control
parameter α

1

Cell dissemination threshold
distance

50

Number of iterations 1000

Number of repetitions 500

These parameters are used for all simulations, unless otherwise noted. Simulations
results were averaged over 500 identical repetitions
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if they migrate beyond that distance threshold. We define
the cell dissemination threshold distance as the bound-
ary of a ball B ⊂ L centred around the initial circular
population that is larger than the radius of this initial pop-
ulation (Fig. 4a, B corresponds to the area within the red
circle): Cells migrating out of B are considered as dissem-
inated cells. Invasive cells do not lose their disseminated
status once they migrate back into the core cell population
(Fig. 4b, green dots).
With the definition of the cell dissemination thresh-

old distance, we can distinguish two subpopulations of
cells: non-disseminated cells that stay within the core pop-
ulation and disseminated cells that disseminated from
the core cell population and have migrated beyond the
cell dissemination threshold distance. The respective cell
counts are defined as

nN :=
∑

r∈B
nη(r) and nD :=

∑

r∈L\B
nη(r), (2)

where nη(r) is the number of cells in node r and super-
scripts N and D denote non-disseminated and dissemi-
nated cells, respectively.
To analyse the simulations of the four adhesion receptor

regulation scenarios (Fig. 3), we introduce three observ-
ables: the ratio of disseminated cells, the mean adhesive
states of non-disseminated cells, and the adhesivity differ-
ence between mean adhesion phenotypes.

Ratio of disseminated cells
We count cells that disseminate from the cell population
and migrate beyond the cell dissemination threshold dis-

tance (Fig. 4). The ratio of the number of disseminated
cells to the total cell count Eq. (2) in percent is given by

rdiss := nD

nD + nN
100%. (3)

In all simulations, rdiss increases with time almost lin-
early (see Results). We therefore use max(rdiss), the value
of rdiss at the end of a simulation, as an observable. To
do so, we set rdiss := max(rdiss) and call it the ratio of
disseminated cells in the following.

Mean adhesive states of non-disseminated and disseminated
cells
We are interested in mean adhesive states of non-
disseminated cells āN and disseminated cells āD. They are
given by

āN := 1
nN

∑

r∈B
ai(r) and āD := 1

nD
∑

r∈L\B
ai(r), (4)

respectively. Analogously, we use ā to describe the mean
adhesive state of all cells. For both the fast and slow regu-
lation modes, the mean adhesive states converge towards
a time-invariant equilibrium (Additional file 3). Accord-
ingly, we use the mean adhesive states at the end of a
simulation as an approximation for the mean equilibrium
adhesive state.

Adhesivity difference betweenmean adhesion phenotypes
To measure the difference between mean adhesion phe-
notypes, we introduce a distance measure da to give
the difference between mean equilibrium adhesive states

Fig. 4 Circular core population and the cell dissemination threshold. a Snapshot of an initial configuration and the cell dissemination threshold
distance (red circle). Nodes without cells are black, whereas nodes with occupied channels are coloured [colour bar legend for adhesive states shown
in (c)]. The cell population is heterogeneous regarding single cell adhesive states. Note that the mean adhesive states is averaged over all ten
channels in a given node. Accordingly, the mean adhesive state at the border nodes of the occupied area is lower due to unoccupied channels. b
Snapshot of the simulation after 900 time steps. Several cells disseminated from the population and reached the threshold distance indicated by
the red line. These cells are considered as disseminated cells (green dots). Note that disseminated cells are shown in green here, independent of their
adhesive state
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of non-disseminated āN and disseminated cells āD.
Accordingly,

da := āN − āD. (5)

Results
The ratio of disseminated cells rdiss increases with
increasing adhesion heterogeneity
Figure 5a shows that rdiss, the ratio of the number of dis-

seminated cells to the total cell number, always increases
linearly with time. Accordingly, the maximum value of
rdiss (rdiss at k = 1000) is a suitable observable for compar-
ing the appearance of disseminated cells in the different
scenarios. We found an increase of the maximum value
of rdiss with the adhesion heterogeneity parameter γ for
all scenarios [Fig. 5b]. This increase is highly significant
for all pairwise comparisons of γ -values (p < 0.001, see
Additional file 4 for full statistics).

The ratio of disseminated cells rdiss increases in the
absence of external adhesion receptor regulation control
For fixed γ -values, the ratio of disseminated cells rdiss is
always significantly higher for density-independent adhe-
sion receptor regulation [α = 0, scenarios III and IV
(CONTROL−)] than for the other two scenarios in which
cells have density-dependent adhesion receptor regulation
(α = 1, scenarios I and II (CONTROL+), p < 0.05, see
Additional file 5 for full statistics). In contrast, if adhesive
states decrease with increasing cell density, the number
of disseminated cells strongly increases from less than 2%
to more than 90% [Fig. 6b]. However, the increase of rdiss
with time does not strongly depend on the heterogeneity
parameter γ in that case [Fig. 6a]. To model this scenario,
we changed the density-dependent weighting term such

that the term linearly decreases with increasing local cell
density (see Additional file 1).

The adhesion phenotype difference da increases with
increasing adhesion heterogeneity
The mean adhesive states of both disseminated cells āD
and non-disseminated cells āN reach an equilibrium state
for all scenarios for α = 1 (Additional file 3). This justifies
our choice to use the equilibrium values of āD and āN at
k = 1000 as observables. āD decreases with the adhesion
heterogeneity parameter γ (Fig. 7a, empty symbols). The
decrease is highly significant for all pairwise comparisons
of γ -values for all scenarios with γ > 0 (p < 0.001, see
Additional file 6 for full statistics). Additionally, we found
significantly lower equilibrium āD-values for density-
dependent adhesion receptor regulation [α = 1, scenarios
I and II (CONTROL+)] than for independent regula-
tion (α = 0, scenarios III and IV (CONTROL−), p < 0.05,
see Additional file 7 for full statistics). For γ ≥ 0.25, the
difference is highly significant (p < 0.001). Additionally,
the decrease of the equilibrium āD-value is significantly
higher for the slow regulation mode than for the fast regu-
lation modewhen compared for the same adhesion recep-
tor regulation model (γ ≥ 0.25, p < 0.001). In contrast,
āN is invariant to changes in γ (Additional file 3), resulting
in an almost perfect negative correlation between equi-
librium values of āD and da [Fig. 7b]. Consequently, the
equilibrium da increases with the adhesion heterogeneity
parameter γ . Also resulting from this strong correlation,
changes in both āD and da as a function of γ , but also for
fixed γ , are of similar significance (see Additional files 6
and 7 for full statistics for āD and Additional files 8 and 9
for full statistics for da).

Fig. 5 Comparison of the ratio of disseminated cells rdiss between simulation scenarios. a The plot shows the ratio of disseminated cells [Eq. (3)] over
time for all scenarios. The disseminated cell ratio increases linearly over time for all scenarios and γ -values. b The plot shows the maximum value of
the disseminated cell ratio rdiss [Eq. (3)] in percent as a function of the adhesion heterogeneity parameter γ . The maximum of rdiss significantly
(p < 0.001) increases with higher γ -values for all scenarios with γ > 0. For fixed γ -values the difference between scenarios III and IV (α = 0,
CONTROL−) and scenarios I and II (α = 1, CONTROL+) is significant for all γ (p < 0.05). See Additional file 4 for full statistics. Colours of data points
are in accordance with scenario colours in Fig. 3
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Fig. 6 Comparison of the ratio of disseminated cell rdiss between simulation scenarios with inverted environmental control. In this case adhesive
states decrease with increasing local cell density (see Additional file 1). (a) The plot shows the ratio of disseminated cells [Eq. (3)] over time for all
scenarios. rdiss-values are strongly increased. (b) The plot shows the maximum value of the disseminated cell ratio rdiss [Eq. (3)] in percent as a
function of the adhesion heterogeneity parameter γ . The maximum of rdiss is higher than 90% for all scenarios. Note the differences in the y-axis
compared to Fig. 5

The increasing difference between the adhesion pheno-
types in response to adhesion heterogeneity is also visible
in a distinctive peak in the distribution of adhesive states
over the cell population. In Fig. 8, we show an example for
a fixed γ -value of 0.25. The distribution in populations in
which the adhesion phenotype is not under environmen-
tal control [α = 0, scenarios III and IV (CONTROL−)]
is almost normal and stays nearly constant over time
[Fig. 8a and b]. In contrast, the distribution in popula-
tions of cells with density-dependent adhesion receptor
regulation [α = 1, scenarios I and II (CONTROL+)]
is qualitatively differently for both fast and slow regula-
tion mode: Whereas at the beginning of the simulation,
the distribution also resembles the normal distribution
[Fig. 8c, Additional file 10 (c)]; the distribution shifts

towards a bimodal distribution with increasing simulation
time [Fig. 8d, Additional file 10 (d)].
In summary, a higher intrinsic adhesion heterogeneity

in a cell population shows two effects in our simula-
tions. First, increasing adhesion heterogeneity leads to a
higher number of disseminated cells. Second, the aver-
age of the adhesive states of disseminated cells decreases
with increasing adhesion heterogeneity in the cell pop-
ulation. This causes higher adhesivity differences in the
mean adhesion phenotypes between non-disseminated
and disseminated cells.

Sensitivity analysis for simulation parameters
We set the cell dissemination threshold distance to a fixed
value of 50 in all simulations (Table 2), but also tested

Fig. 7 Comparison of adhesion phenotypes between simulation scenarios. a The plot shows the mean adhesive state of disseminated cells āD

[Eq. (4)] in equilibrium (k = 1000) as a function of the adhesion heterogeneity parameter γ for α = 1). āD decreases significantly with higher
γ -values for all four scenarios (p < 0.001). For fixed γ -values, āD is always significantly higher for scenarios III and IV (α = 0, CONTROL−) than for
scenarios I and II (α = 1, CONTROL+ , p < 0.01). See Additional files 6 and 7 for full statistics. b The plot shows the difference between mean
adhesion phenotypes in the distance measure da [Eq. (5)] as a function of the adhesion heterogeneity parameter γ . Significance levels are similar to
(a). See Additional files 8 and 9 for full statistics. Colours of data points are in accordance with scenario colours in Fig. 3
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Fig. 8 Equilibrium mean adhesive state distributions in cell populations with adhesion heterogeneity (γ = 0.25) and fast regulationmode. a and b
show the distributions of mean adhesive states ā in equilibrium for cell populations with only intrinsic adhesion heterogeneity (γ > 0 and α = 0)
and the fast regulationmode at time k = 1 and k = 1000 (CONTROL−/FAST, Scenario I). There is one expected peak at the steady state of the
adhesion receptor regulation model [Eq. (1)]. The distribution stays constant over time. c and d show the distributions of ā in equilibrium for cell
populations with additional extrinsic adhesion heterogeneity (γ > 0 and α = 1) and the fast regulationmode at time k = 1 and k = 1000
(CONTROL+/FAST, Scenario III). At k = 1 the distribution is equal to (a). At k = 1000 a second peak at lower adhesive states occurs. The equilibrium
adhesivity distributions do not differ when the slow regulationmode is considered (Additional file 10)

further values and found that the choice of the thresh-
old distance is not important for the key results of our
work (Additional file 11). Analogously, we did a sensitiv-
ity analysis for the number of rest channels per node β

(Additional file 12) and the environmental control param-
eter α (Additional file 12). For all sensitivity analyses the
heterogeneity parameter γ = 0.25 remained fixed.We did
not perform a sensitivity analysis for the constant adhe-
sive state value in homogeneous populations because in
our model cell-cell interaction only depends on the dif-
ferences between the adhesive states of interacting cells
(see Additional file 1 for details). As in homogeneous
populations, all cells have constant and equal adhesive
states, the absolute value does not change the model
behaviour.
The three sensitivity analyses described above gave

the following results: First, disseminated cells perform
random walks and thus are more likely to be counted
as disseminated cells if the threshold distance is short.
This behaviour can be seen in lower rdiss-values for
higher threshold distances [Additional file 11 (a) and (b)]

together with a decrease in mean adhesive states, indicat-
ing that cells with low equilibrium adhesive states have
higher dissemination probabilities [Additional file 11 (c)
and (d)]. Second, changing the number of channels κ |
which affects the number of rest channels β | increases the
number of stationary cells as the number of velocity chan-
nels stays constant. Accordingly, higher channel numbers
are expected to generally reduce cell motility, which we
found reflected in reduced rdiss-values [Additional file 12
(a) and (b)]. Additionally, changing κ has no effect on
the mean adhesive states [Additional file 12 (c) and (d)].
Third, the model behaves as expected for variations in
the environmental control parameter α (Additional file 1).
We show that for low α, the quantitative results converge
towards independent adhesion regulation (corresponding
to α = 0) [Additional file 13 (c) and (d)]. For high α-values
the quantitative results converge towards the density-
dependent adhesion regulation (corresponding to α = 1),
reflecting the increasing sensitivity of adhesive states to
changes in local cell density. For γ = 0.25 changing α

does not strongly affect the disseminated cell ratio rdiss
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[Additional file 13 (a) and (b)] as expected from Fig. 5
(γ = 0.25).
Finally, we tested the effect of modelling intracellular

adhesion receptor regulation in greater detail by compar-
ing a slow regulation mode, in which we incorporate the
adhesion receptor regulation model from Engwer et al.
(2015) [49] with a fast regulation mode, in which we use
a quasi-steady state approximation. For higher γ -values,
the increase of rdiss is significantly lower for the slow regu-
lation mode than for the fast regulation mode when com-
pared for the same adhesion receptor regulation model
(γ ≥ 0.4, p < 0.001). The finding that rdiss tends to be
lower for populations with slow regulation mode in con-
trast to the fast regulationmode highlights the importance
of also considering intracellular dynamics in modelling
interacting cell populations [35]. Further support for this
comes from our finding that the adhesion phenotype dif-
ference da is larger for the slow regulation mode than for
the quasi-steady state approximation, even though this
does not result in different distributions of mean adhe-
sive states in the cell population (Additional file 10). These
results also provide grounds for incorporating more real-
istic intracellular models into our multiscale model in the
future, as in our model setting equilibrium states of the
ODE are reached during simulations.

Discussion
In this work, we propose a new multiscale model that
combines a discrete LGCA model for adhesive cell-cell
interaction and a continuous ODE model for intracellu-
lar regulation of adhesion receptor expression. The ODE
model is used to calculate cellular adhesive states, which
influence the adhesive interaction either independent
from or depending on the local cell density.
In model simulations, we investigated the effect of adhe-

sion heterogeneity on tumour cell dissemination from
a circular initial cell configuration. The choice of this
configuration is motivated by a densely packed epithe-
lium and mimics in vitro invasion assays, as reported by
Justus et al. [53]. To analyse our model, we determined
the number of disseminated cells that migrate beyond
a cell dissemination threshold distance within a given
time and recorded the mean adhesive states of both non-
disseminated and disseminated cells.

Adhesion heterogeneity facilitates cell dissemination
We found that rdiss, the ratio of disseminated cells at
the end of a given time, significantly increases with the
adhesion heterogeneity parameter γ (Fig. 5). Accordingly,
adhesion heterogeneity in a cell population leads to an
increase of the proportion of cells that disseminate from
the population. Interestingly, we also found that rdiss is
generally lower for populations, in which the adhesion
receptor concentration increases with increasing local cell

density, i.e. populations in which cellular adhesion pheno-
types are under environmental control. This suggests that
a positive correlation between adhesion receptor expres-
sion and local cell density increases cell-cell adhesion in
epithelial cell populations, which weakens the effect of
adhesion heterogeneity. Thus, environmental control of
the adhesion phenotype could be a general mechanism
to prevent cell dissemination from the cell population.
Making this correlation negative so that adhesion recep-
tor expression decreases with increasing local density lead
to massive dispersal and dissemination of more than 90%
of the cells in our model.

Adhesion heterogeneity causes the emergence of two
distinct subpopulations of cells
Adhesion heterogeneity does not only change the ratio
rdiss of the number of disseminated cells to the total cell
number, but also themean adhesive states of disseminated
cells. As expected, we found that non-disseminated cells
have significantly higher mean adhesive states than dis-
seminated cells. We used the difference between mean
equilibrium adhesive states of non-disseminated and dis-
seminated cells to define da as a distancemeasure between
adhesion phenotypes. Our results show that da increases
with an increasing adhesion heterogeneity. This is driven
by lower mean adhesive states of disseminated cells āD
as the mean adhesive state of non-disseminated cells
āN is insensitive to the adhesion heterogeneity param-
eter γ (Fig. 7 and Additional file 3). This suggests that
cells with low equilibrium āD-values, which have a higher
probability to disseminate from the cell population, form
a subpopulation of disseminated cells. Support for this
interpretation comes from our observation in the sensi-
tivity analysis of the cell dissemination threshold distance,
which shows that higher threshold distances decrease
equilibrium āD-values. In summary, for higher γ -values
two subpopulations of cells emerge that can be distin-
guished by their respective mean adhesive states. These
findings correlate well with the biological knowledge that
EMT is accompanied by reduced E-cadherin expression
[10, 14, 15] and that cells in metastases are often E-
cadherin negative [18].
The distributions of adhesive states within the cell

population exhibit a qualitative difference between the
two adhesion receptor regulation models: Although the
distribution follows a normal distribution for indepen-
dent regulation, density-dependent regulation causes a
bimodal distribution in which one peak can be associ-
ated with the initial cell population. The second peak at
lower adhesive state values corresponds to disseminated
cells (Fig. 8). This indicates that environmental control
of the adhesion phenotype reinforces differences between
cellular adhesion phenotypes. Thus, environmentally con-
trolled adhesion phenotypes could lead to a trade-off



Reher et al. Biology Direct  (2017) 12:18 Page 12 of 17

between stronger adhesive coherence in a cell popula-
tion and reduced adhesion receptor concentrations in
disseminated cells. This offers an intriguing interpretation
of our results: If cells with the lowest adhesion receptor
concentration disseminate from the population and adhe-
sion heterogeneity increases the number of these cells,
adhesion heterogeneity could produce a constant flow of
less adhesive disseminated cells with a rate that depends
on the degree of heterogeneity. Accordingly, adhesion het-
erogeneity could be a mechanism that explains the occur-
rence of multiple disseminated cells within short periods
of time or even during early tumour development. There
is increasing evidence that tumour cells can disseminate in
early, even pre-malignant stages, as opposed to the tradi-
tional concept that metastasis formation is a late event in
tumour progression [54–56]. In line with this, our results
suggest that adhesion heterogeneity can lead to tumour
cell dissemination even in cells with sustained adhesion
control.

Adhesion heterogeneity could increase tumour cell
dissemination efficiency
With our model, we study effects of adhesion heterogene-
ity on tumour cell dissemination. In doing so, we neglect
several important factors, such as adhesive interaction
of migrating cells with the extracellular matrix [10, 15],
and other non-cellular environmental effects. A candidate
for an environmental influence different from the studied
cell density-dependent regulation is the impact of mor-
phogen gradients, which are known to affect E-cadherin
expression [57–59]. We also neglected cell division, since
we were primarily interested in the isolated effects of
adhesion heterogeneity on tumour cell dissemination. To
relax the model assumption of non-dividing cells, how-
ever, would be of interest, given that the number of stem
cell divisions strongly correlates with cancer risk over var-
ious tissues [60, 61], and that heterogeneity in cell division
rates could also have great impact on tumour cell compo-
sition and therefore cell dissemination efficiency. We have
previously shown that plasticity in proliferation/migration
behaviour may have important consequences on tumour
growth and invasion [44, 45, 48]. In the future, the men-
tioned factors, such as gradients and proliferation, can
be included in our model one by one to determine their
respective contribution to the complex phenomenon of
tumour cell dissemination and ultimately tumour inva-
sion, as LGCA models can be easily extended [50, 62–64].
Further, we decided to develop an LGCA on a 2D square
lattice, which approximates the geometry of epithelial
tissues well. In principle, the model definition can be
extended to 1D or 3D lattices. Such extensions are poten-
tially interesting for studying tumour cell dissemination
in non-epithelial tissues, e.g. the 1D geometry is suitable
for studying cell dissemination in breast ducts or small

bronchi in the lungs and the 3D geometry is appropriate
for studying corresponding phenomena in the brain.
Nevertheless, our proposed minimal model shows that

adhesion heterogeneity reinforces tumour cell dissemi-
nation from dense cell populations of otherwise identi-
cal cells. Cell dissemination is reduced when adhesion
receptor expression increases with local cell density, as
can be assumed in healthy cells. When cells lose envi-
ronmental control, i.e. adhesion receptor expression is
independent from the environment, the rate of cell dis-
semination increases. This corresponds to tumour cells
that gain independence from environmental signals. Inter-
estingly, a scenario in which adhesion receptor expression
decreases with increasing local density leads to massive
dispersal of cells which could correspond to highly malig-
nant tumour cells. In all cases, cell dissemination leads to
the emergence of two distinct subpopulations, namely dis-
seminated cells and cells that did not disseminate. These
subpopulations can be distinguished by their mean adhe-
sion receptor concentrations. The differences between
the adhesion phenotypes are stronger when adhesion
receptor expression of cells increases with increasing
local cell density, i.e. if adhesion receptor expression is
under environmental control. Following these simulation
results, we hypothesise that adhesion heterogeneity, i.e.
the differential expression of adhesion receptors between
cells, provides a mechanism for more efficient metasta-
sis. According to this hypothesis, we would expect that
heterogeneity in adhesion receptor expression in cells of
highly invasive tumours is larger than in less invasive types
of cancer. Interestingly, recent experimental findings sup-
port our model prediction. In particular, disseminated
tumour cells isolated from breast cancer patients show
an extensive variability in the expression of epithelial cell
adhesion molecules [65, 66].
Additionally, our simulation results suggest that adhe-

sion receptor regulation in cells of tumours is independent
from the local environment. To test this hypothesis, rigor-
ous experimental investigation of E-cadherin expression
levels in tumours and tumour metastases will be neces-
sary. On the basis of such expression levels, one could
distinguish effects of intrinsic and extrinsic regulation and
parameterise the model.
Finally, as our model does not depend on assump-

tions with respect to cancer type or the type of surface
molecules, our findings are not restricted to E-cadherin
or epithelial cancers but could be used to describe a fairly
general mechanism for any cell surface proteins that are
involved in migration and invasion in various tumour
types. For instance, expression levels of the epidermal
growth factor receptor (EGFR) can be highly hetero-
geneous within glioblastoma multiforme, a particularly
aggressive type of brain tumour [67]. EGFR is a cell surface
protein that functions as an oncogene in many cancers
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due to aberrant activation and can promote invasion and
migration in glioblastoma [68–70]. Even though targeting
aberrations that are only altered in a subset of tumour cells
can cause clonal selection and drug resistance, targeting
EGFR variants can indeed prolong survival in glioblas-
toma patients, despite tumour recurrence [71]. Interest-
ingly, the recurrent tumours tend to lack expression of
the EGFR variant after therapy. Our model suggests a
mechanism on the level of cell dissemination character-
istics that explains how targeting EGFR aberrations, or
heterogeneous aberrations, might increase treatment suc-
cess based on the reduction of heterogeneity within the
tumour. Our results suggest that strategies aimed at mod-
ulation migration are worth to be explored as alternatives
to those mainly focused at keeping tumour proliferation
under control.

Conclusions
In this work, we analyse the effects of adhesion hetero-
geneity caused by intrinsic and extrinsic factors on the
dissemination of tumour cells from an epithelial cell pop-
ulation theoretically. By studying a novel mathematical
model, we report minimal conditions for the emergence
of tumour invasion. In particular, we study the influence
of adhesion heterogeneity and environmental control of
adhesion receptor expression on tumour cell dissemina-
tion. In summary, our results indicate that reinforcement
of cell dissemination in epithelial cell populations can be
triggered by adhesion heterogeneity. If, however, adhesion
receptor expression increases with the density of neigh-
bouring cells, this effect can be compensated at least par-
tially. Our findings offer an explanation for the promotion
of tumour cell dissemination by both an increase in intra-
tumour adhesion heterogeneity and hampered environ-
mental control of adhesion receptor regulation. Based on
these findings, we argue that adhesion heterogeneity pro-
vides a mechanism for more efficient metastasis that has
already been partially confirmed by experimental studies.

Reviewers’ comments
Reviewer’s report 1: Hanspeter Herzel, ITB, Germany
Reviewer comments:
The introduction was easy to read and valuable ref-

erences are provided. With the chapter LGCA model a
stylistic break occurs. I am afraid that many non-experts
stop reading here. The ODEs and the simulations later are
better accessible to non-mathematicians than the oper-
ator concepts. I suggest to formulate the chapter less
technical for a broad readership. Of course, precise tech-
nical details are required to ensure that the model is
reproducible but technical aspects can be placed in the
supplements.
Author’s response: Following the reviewer’s suggestion,

we have reformulated the model definition to make it

accessible for a broad readership. We still provide the
precise mathematical formalism in a supplementary note
(Additional file 1). With this additional information, read-
ers are able to reproduce our findings.
Corresponding changes in the manuscript: p. 3-5 (defini-

nition of the multiscale model and p. 4 (legend of Fig. 1).

Reviewer’s report 2: Thomas Dandekar, Department of
Bioinformatics, University of Würzburg, Germany
Reviewer comments: Major point 1
First of all, cellular automata is an active field and it

is reasonable to claim that for this particular question it
is novel not just to use cellular automata (that has been
demonstrated before, there are of course several models
on cancer using this approach and the authors may re-
check whether they want to give some other models in
addition credit, no harm for the reader).
Author’s response: We have added further examples of

tumour-related studies using cellular automata and have
reformulated the corresponding part in the introduction.
Corresponding changes in the manuscript: p. 2, 3.

Reviewer comments: Major point 2
However, their lattice-gas cellular automaton model is

elegantly implemented and in this sense at least for me
novel: Exactly the right level of complexity to study basic
properties of cell adhesion and if one looks closely at the
involved equations the intricacies of the model become
visible. 2b) Think however, that for instance you could also
think about an alternative biology-inspired model such
as “local growth – cell adhesion”. In such a model you
assume that the local growth speed varies (not unreason-
able, tumor cells can be less and more aggressive). If you
then keep direct cell adhesion properties constant you will
still have the thresholding behavior for larger cell masses
as you currently have (nice feature, I liked that and good
biology), as the more rapid dividing cells will easier reach
the metastasis threshold. The interesting point is that you
now have a completely different conclusion from your
modeling: Only the growth speed determines whether you
have metastasis or not and if you have there heterogeneity
then this will lead to metastasis formation and the faster
themore uneven the property of cell division is distributed
in the original cancer population. Actually my impression
is that this is indeed the case, that tumors which have very
heterogenous cell division distribution such as lung can-
cer very rapidly develop metastasis and this is the main
factor. Of course, due to this heterogeneity and, most of
all, genetic instability of a highly malignant tumor (you
may think for instance also on melanoma as another good
example) you have then also heterogeneity of cell adhesion
properties. However, in my mind, this is only a secondary
indicator of the decisive principal factor, speed of cell divi-
sion and that a cancer in which there is heterogeneity
in this basic property is a really dangerous cancer, as all
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other sources of further heterogeneity such as cell adhe-
sion derive from this. 2c– So maybe you can even check
this alternative hypothesis in your model?
Author’s response: We are aware that there are other

factors that affect tumour dissemination and invasion,
e.g. cancer cell proliferation, that are also worth study-
ing. In fact, some of the authors have analysed effects of
growth behaviour plasticity (in particular effects of the go
or grow dichotomy) on tumour invasion in several studies
(see e.g. ref. [40, 42] in our manuscript). The main goal of
the current study was to focus on cell migration guided by
adhesive interactions and to investigate the isolated effects
of cellular adhesion heterogeneity within epithelial tumour
cell populations on tumour cell dissemination that leads to
tumour cell invasion and, ultimately, metastasis. Accord-
ing to the suggestions given by the reviewer, we discussed
the motivation for our model choice in greater detail and
point to the possibility to incorporate cell proliferation in
future model extensions.
Corresponding changes in the manuscript: p. 12.

Reviewer comments: Major point 3
The formalism is in a good sense theoretical: transpar-

ent mathematics, no unnecessary additional complexities
and so one factor alone, in particular the cell adhesion, can
be studied in transparent clarity. However, this is also the
major limitation of the approach and my remaining com-
ments pertain to the effort, to include even more biology
in the article: For instance discuss a bit more, how now
factors mentioned in the discussion such as EMT or gene
expression data (you have their as a start figures mention-
ing extrinsic and intrinsic regulation) will be integrated in
future versions of the model.
Author’s response: Comprehensive experimental data

on gene expression, especially adhesion receptor expres-
sion, heterogeneity is rare. We now refer to this lack of data
more clearly in our manuscript, discuss some of the few
available studies especially on EGFR regulation, and hint
at the necessity of further studies (and how these might
be designed) to experimentally support our findings. In
particular, once available, expression data could be used
to quantify effects of intrinsic and extrinsic regulation as
predicted by our model.
Corresponding changes in the manuscript: p. 12, 13.

Reviewer comments: Major point 4
What is nice in this model of the authors (and suf-

ficient reason in my opinion to publish it and why I
basically endorse it) is its elegance, but as given already
in 1-3 the biology should still be further strengthened.
For instance there are now two important papers by
Bert Vogelstein which appeared in the last two years
where he had this really impressive theory supported
by data (!) that just the number of cell divisions alone

in the stem cells enhances the probability to turn into
cancer and that this fits well the observed different
cancer probabilities for different cancer tissues. 4b–So
the big question here is whether one can nail down
the main factor in the model presented here, i.e. the
assumed higher heterogeneity in cell adhesion proper-
ties for metastasis-bound tumors by some experimental
data (for instance NGS data from tumor progression, take
for instance the beautiful data from Francesca Cicarelli
lab http://www.nature.com/articles/ncomms12072)? 4c–
or maybe you rather find that my suggestion is right,
heterogeneity in cell division? 4d–or that one pointed out
by Prof. Cicarelli, i.e. damaging germline mutations in
immune-related genes (where perhaps this latter feature
is of course not fully integrated into your present model)?
As you can see from these comments, there is nothing
wrong with your nice modeling approach, but on the con-
trary, rather I consider it strong enough to probe some
of the more challenging questions in tumorigenesis and
metastasis and of course develop the approach further.
Author’s response: The main prediction of our modelling

study is that adhesion heterogeneity can promote cancer
cell dissemination and invasion and therefore is an indi-
cator of malignancy. Thanks to the reviewer’s suggestion,
we have now included a reference to brand new studies
on breast cancer which support the model prediction of a
positive correlation between molecular heterogeneity and
malignancy.
Corresponding changes in the manuscript: p. 12.

Reviewer’s report 3: Marek Kimmel, Rice University, USA
Reviewer comments: Major point 1
It will help the paper if the authors explain several fun-

damental issues, which mostly concern the realism of
this model. 1. The model does not include proliferation,
which is an important element of seeding of metastases,
although the authors discuss the role of EGFR in cancer
progression.
Author’s response: We are aware that there are other

factors that affect tumour dissemination and invasion, e.g.
cancer cell proliferation, that are also worth studying. In
fact, some of the authors have analysed effects of growth
behaviour plasticity (in particular effects of the go or grow
dichotomy) on tumour invasion in several studies (see e.g
ref. [40, 42] in our manuscript). The main goal of the cur-
rent study was to investigate the isolated effect of cellular
adhesion heterogeneity within epithelial tumour cell popu-
lations on tumour cell dissemination that leads to tumour
cell invasion and, ultimately, metastasis. According to the
suggestions given by the reviewer, we discussed the reasons
for our model choice in greater detail and point to the pos-
sibility to incorporate cell proliferation in a future model
extension. (see also our response to Thomas Dandekar,
major point 2).

http://www.nature.com/articles/ncomms12072
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Moreover, we have more clearly formulated the postu-
lated role of EGFR in our model.
Corresponding changes in the manuscript: p. 12.

Reviewer comments: Major point 2
On the technical side, the automaton includes up to 10

cells in each node, each of them in one of the four active or
one of the six resting channels. It is not quite clear what is
the role of such configuration. If I understand correctly, in
the basic gas lattice automaton the state of the node is sim-
ply binary. 3. Again, as far as I understand the model, this
is a planary (two-dimensional) automaton. If this is cor-
rect, it is a far idealization of the three-dimensional reality.
On the other hand, cancer spread frequently occurs along
tubular or linear structures such as breast ducts or small
bronchi in the lungs. Accordingly, it might help if the
authors discuss the role of geometry.
Author’s response: Following the reviewer’s suggestion,

we described the node configuration in greater detail and
also motivated our choice of a 2D geometry.
Corresponding changes in the manuscript: p. 12/13.

Additional files

Additional file 1: Model details. Mathematical formalism and full model
description. (PDF 225 kb)

Additional file 2: LGCA transition dynamics. LGCA transition dynamics
D := R ◦ A in a von Neumann neighbourhoodNr around node r (gray)
followed by translocation Ti . (a) During reorientationR cells are
stochastically redistributed within nodes according to a probability
function P. The highest probability is assigned to a resulting node
configuration η′(r) with post-reorientation momentum J := J(η′ ,a′′)(r)
parallel to the pre-reorientation local adhesivity gradientG := G(η,a′)(r)
of the neighbourhood excluding r [Fig. 1b]. (b) In our model, the newly
introduced adhesivity update operatorA couples the time scales of the
LGCA and ODE models. The graph shows an example for the analytical
solution yr(t) [Eq. (1)] of the underlying ODE [Eq. 1] according to whichA
decreases the adhesive states ai(r, k) of all cells as ai(r, k) > ai(r, k + τ) ∀ k;
in this example there is no adhesion heterogeneity. The update from
time-step k = t to k + τ = t + τ shown here is labelled red in the
graph. After reorientation, cells are moved by the translocation operator Ti
(see Additional file 1 for details). Note that all nodes have only one rest
channel. Notation as in Fig. 1. (PDF 28 kb)

Additional file 3: Mean adhesive states comparison. Mean adhesive states
comparison for disseminated cells in populations with different adhesion
heterogeneity parameters γ and α = 1. The plots show the mean adhesive
states [Eq. (4)] of disseminated cells āD (curves) and non-disseminated cells
āN (curves + circles) over time for γ = 0, 0.05, 0.25, 0.4, 0.55 and α = 1.
Both āD and āN converge towards equilibrium states for all γ -values. The
decrease of mean equilibrium adhesive states with increasing γ -values is
significantly stronger between and for fixed γ in scenarios in which cellular
adhesion phenotypes are under environmental control (red, Additional
files 5 and 6). (PNG 347 kb)

Additional file 4: Full statistics for Fig. 5b (1). p-values from two-tailed
t-tests for significance levels in Fig. 5b between γ -values. pw-values were
calculated with Welch tests as variances between samples were
significantly (pf < 0.05) different. (XLSX 37 kb)

Additional file 5: Full statistics for Fig. 5b (2). p-values from two-tailed
t-tests for significance levels in Fig. 5b for fixed γ -values. pw-values were
calculated with Welch tests as variances between samples were
significantly (pf < 0.05) different. (XLSX 32 kb)

Additional file 6: Full statistics for Fig. 7a (1). p-values from two-tailed
t-tests for significance levels in Fig. 7a between γ -values. pw-values were
calculated with Welch tests as variances between samples were
significantly (pf < 0.05) different. (XLSX 37 kb)

Additional file 7: Full statistics for Fig. 7a (2). p-values from two-tailed
t-tests for significance levels in Fig. 7a for fixed γ -values. pw-values were
calculated with Welch tests as variances between samples were
significantly (pf < 0.05) different. (XLSX 32 kb)

Additional file 8: Full statistics for Fig. 7b (1). p-values from two-tailed
t-tests for significance levels in Fig. 7b between γ -values. pw-values were
calculated with Welch tests as variances between samples were
significantly (pf < 0.05) different. (XLSX 37 kb)

Additional file 9: Full statistics for Fig. 7b (2). p-values from two-tailed
t-tests for significance levels in Fig. 7b for fixed γ -values. pw-values were
calculated with Welch tests as variances between samples were
significantly (pf < 0.05) different. (XLSX 32 kb)

Additional file 10: Equilibrium mean adhesive state distributions.
Equilibrium mean adhesive state distributions in cell populations with
adhesion heterogeneity (γ = 0.25) and slow regulationmode. (a) and (b)
show the distributions of mean adhesive states ā in equilibrium for cell
populations with only intrinsic adhesion heterogeneity and the slow
regulationmode at time k = 1 and k = 1000 (Scenario I). (c) and (d) show
the distributions of ā in equilibrium for cell populations with additional
extrinsic adhesion heterogeneity and the slow regulationmode at time
k = 1 and k = 1000 (Scenario III). The equilibrium adhesivity distributions
do not differ when the fast regulationmode is considered (Fig. 8).
(PNG 7966 kb)

Additional file 11: Sensitivity to the cell dissemination threshold distanc.
Sensitivity to the cell dissemination threshold distance for γ = 0.25. (a)
shows the disseminated cell ratio rdiss over time for different threshold
distances. (b) shows rdiss over time for different threshold distances in a
higher resolution for low values. From both (a) and (b) one can see that
rdiss decreases with the cell dissemination threshold distance as would be
expected. There is a striking difference for the cell dissemination threshold
distance of 5 where rdiss increases drastically until it saturates at high ratios.
(c) shows the mean equilibrium adhesive state of disseminated cells āD for
different threshold distances. (d) shows the difference in adhesion
phenotypes da between the two subpopulations for different threshold
distances. As would be expected, the adhesion phenotype does not
strongly depend on the distance threshold except for a very low distance
threshold of 5. In the latter case more than half of the cells are considered
disseminated so that the differentiation between the adhesion
phenotypes is blurred. This is not surprising as within such short distance
cells are likely to disseminate and re-join the cell population due to
stochasticity. Accordingly, the effect is rather a model artefact than a
biological phenomenon. (PNG 8294 kb)

Additional file 12: Sensitivity to the number of channel. Sensitivity to the
number of channels κ for γ = 0.25. (a) shows the maximum value of the
disseminated cell ratio rdiss for different values of κ that affect the number
of rest channels β . (b) shows rdiss over time for different values of κ . Both
the maximum of rdiss and the slope of rdiss as a function of time decrease
with κ as expected. This is due to lower mobility caused by a lower
numbers of rest channels. (c) shows the mean equilibrium adhesive state
of disseminated cells āD for different values of κ . (d) shows the difference
in adhesion phenotypes da between the two subpopulations for different
values of κ . As expected, the adhesion phenotype does not depend on κ .
(PNG 8058 kb)

Additional file 13: Sensitivity to the environmental control parameter.
Sensitivity to the environmental control parameter α for γ = 0.25. (a)
shows the maximum value of the disseminated cell ratio rdiss for different
values of α. (b) shows rdiss over time for different values of α. Both the
maximum of rdiss and rdiss over time do not depend on α. (c) shows the
mean equilibrium adhesive state of disseminated cells āD for different
values of α. (d) shows the difference in adhesion phenotypes da between
the two subpopulations for different values of α. Whereas the mean
equilibrium value of āD decreases with α, the distance da between the
adhesion phenotypes increasesdue to growing influence of the
environmental control mechanism (Fig. 7). (PNG 7925 kb)
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