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Abstract
A lot of different Kelvin probe force microscopy methods were invented since the first
method was presented by Nonnenmacher et al. in the early nineties. Since the nano
scale distribution of surface potential becomes more and more interesting in terms of
material science, e.g. for perovskite solar cells, the goal of this bachelor thesis was the
implementation and comparison of four of these Kelvin probe force microscopy methods
and test their reliability. The reproducibility of a applied voltage was tested with a
reference sample consists of a gold electrode array. It was proved, that the closed loop
methods were able to reproduce the excepted value within some percent, but the open
loop methods showed a strong derivation from that value. During the further procedure
some problems were identified with the aid of special analysis.
This work provides the beginning for a deeper understanding of modern methods to
examine surface potentials, and therefore this work is interesting for further researches
sector of modern solar cells, as the perovskite solar cells, and for doing measurements in
fluids, since these techniques could be easy integrated in such a set-up.



Kurzzusammenfassung
Viele verschiede Formen der Kelvin Sonden Kraft Mikroskopie wurden entwickelt seid
die erste Methode von Nonnenmacher et al. in den frühen Neunzigern vorgestellt wurde.
Da die Oberflächenpotentialverteilung im nanometer Bereich immer mehr interessant
wird für die Materialforschung, wie z.b. bei der Entwicklung von Perowskit Solar Zellen,
war das Ziel der vorliegenden Bachelorarbeit vier verschiedene Formen der Kelvin Son-
den Kraft Mikroskopie zu implementieren, diese miteinander zu vergleichen und auf ihre
Zuverlässigkeit zu testen. Mit Hilfe einer Referenz Probe, einem Array aus Goldelek-
troden, wurde die Reproduzierbarkeit einer angelegten Spannung getestet. Es konnte
gezeigt werden, dass die closed loop Methoden den erwarteten Wert gut reproduzieren,
die open loop Methoden jedoch starke Abweichungen zeigten. Im weiteren Verlauf der
Arbeit konnten einige der Probleme mit Hilfe spezieller Untersuchungen identifiziert
werden.
Diese Arbeit liefert einen Anfang für ein zugrunde liegendes Verständnis moderner Meth-
oden um Oberflächenpotentiale zu bestimmen und ist damit auch besonders interessant
für weiterführende Arbeiten im Bereich der Analyse von modernen Solarzellen, wie Per-
owskit Solar Zellen, oder Stoffen in Flüssigkeiten, da diese Methoden leicht in ein solches
Set-Up integriert werden können.



Der Kluge lernt aus allem und von jedem, der Normale aus seinen
Erfahrungen und der Dumme weiß alles besser.
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1. Introduction
The search for new strategies of producing renewable energies is one of the most impor-
tant tasks in modern physic, since fossil fuels are restricted. One technique to produce
clean energy is to use solar cells, which uses solar power to produce electrical energy.
This process is called the photovoltaic effect and was first discovered by Alexandre Ed-
mond Becquerel in 1839. After a lot of work was done in this sector, the first silicon
p-n junction photocell was invented by D. M. Chapin et al. in 1954, [1]. Since the
simple silicon p-n junction photocell is good understood, there are modern types of solar
cells needed to be more examined. So one type of modern solar cells uses a perovskite
material as the raw material, invented by Akihiro Kojima et al. in 2009, see [2], but this
solar cell type shows some problems as a anomalous hysteresis in the measured current
density against a applied bias voltage, see [3, 4]. To examine effects as this hysteresis a
technique is required, which could measure the surface potential of a sample in the nano
scale. That resolution is necessary, since perovsikte solar cells are not homogeneous and
have a complex nano meter scale structure. So measuring the surface potential and anal-
yse it in respect for significant fluctuation could lead to a hint of static charges trapped
in defects, causing a high local electrical field.
The basic discovery used for the techniques used in this thesis was made by lord Kelvin,
who found out, that there is a potential difference between two metals close to each over,
called the contact potential difference, UCPD. This contact potential difference only
depends on the energy, that is needed to remove a electron from the highest electrical
state into the vacuum state, called the working function. Lord Kelvin also invented a
technique to measure this contact potential difference, the Kelvin probe microscope, see
[5]. However, this technique do not provide the necessary spatial resolution. The solution
is to combine lord Kelvins method with the atomic force microscope, invented in 1986
[6], in a dynamical mode. This was first presented in 1991 by Nonnenmacher et al., see
[7], called the Kelvin probe force microscope. Up to now there are a lot of different
ways invented to perform a KPFM measurement, as methods with feedback loops, e.g.
the heterodyne method, [8] or open loop methods, [9, 10]. The advantage of these open
loop methods are, that they could be applied to a measurement in fluid, since the high
damping factor of the fluid causes a reduction of the oscillation, so that the amount of
cross talking subsystems should be reduced, to provide a stable signal. Therefore the
open loop methods can be used to measure changes in the surface potential e.g. caused
by chemical reactions or to get electrical properties of polymer solutions etc.
So to get qualitative information out of a system a accurate understanding of the used
measurement method is required, so this thesis had the aim to implement different
types of Kelvin probe force microscopy, compare them in respect to the reliability and
to identify possible problems and limits.
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2. Theory

The atomic force microscope (AFM) is used to measure the force between a nano scale
tip and a surface, like the van-der-Waals or electric static forces. In this chapter there is
a short introduction to the theory of the atomic force microscope and the Kelvin probe
force microscope (KPFM), which is used to measure the contact potential difference
UCPD.

2.1. Atomic Force Microscopy
To detect the forces, which acts near a surface on a tip, a micrometer sized cantilever
structure is used with a tip of the order of a few nano meters on its free end (see figure
B.8, on page 42).
This cantilever can be seen in the first approximation like a hooke’s spring (for deeper
analysis the Euler Bernoulli beam theory is required, [11]):

F “ k ¨ s (2.1)

In which k stands for the spring constant and s for the deflection out of the equilibrium
state. That means, that the force acting on the tip, can be simply measured by detecting
the deflection, e.g. align a laser beam on the tip and measure the reflected light by a
photodiode (see picture 2.1).
In this work a dynamic mode of atomic force microscope was used. That means, the
cantilever was mechanically excited with a piezo element on the frequency ωm. The
following equation of motion can be found for a free damped oscillation:

1
ω2

0
:sptq `

1
Qω0

9sptq ` sptq “ Fdrive,ωmptq (2.2)

With ω0: Resonance frequency of the undamped oscillation, Q: quality factor of the oscil-
lation, describing the amount of energy, which is lost during one oscillation, Fdrive,ωmptq
is the driving force acting on the frequency ωm, which is most of the times of the form
A0 ¨ cospωmt` φmq. After a Fourier transform the following equation can be derived:

p´
ω2
m

ω2
0
`
iωm
Qω0

` 1q´1ŝpωmq “ F̂drivepωmq (2.3)

The function
χpωq “ p´

ω2
m

ω2
0
`
iωm
Qω0

` 1q´1 (2.4)
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2.1. Atomic Force Microscopy

A
B C 

D
a)

b)

c)

d)

Fig. 2.1.: Scheme of a atomic force microscope. a) A four field photo diode to detect the
deflection of the laser beam. To get the lateral deflection: pIA`IBq´pID`ICq,
vertical deflection: pIA ` IDq ´ pIB ` ICq, with In: photo current of the nth
photo diode field. b) Laser beam source, focused on the top of the cantilever.
c) Cantilever, driven by a piezo for a mechanical excitation. d) Sample

is called the transfer function of the system, and determines, how a the cantilever reacts,
if a force acts on the frequency ω.
Now an additional weak force field is acting on the cantilever. That means, Fextps “
0q “ 0, since in the equilibrium state s “ 0 there should be no force acting on the
cantilever, and BFext

Bz ps “ 0q ! 1. This force field could be for an example a Lennard
Jones potential. This leads to an additional force term in equation 2.1:

F “ k ¨ s´ Fextpzq (2.5)

“ k ¨ s´
BFext
Bz

ps “ 0q ¨ s (2.6)

“ keff ¨ s (2.7)

So in our equations of motions we need to substitute ω0 Ñ ω0,eff . To measure the
topography of the sample, a feedback is applied, which controlled the tip sample distance,
so the tip felt the same force all the time. This could be done by holding the amplitude
on a constant value, since force and amplitude are connected through the equation 2.3.
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2. Theory

En
er
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Distance

eUCPD
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εF
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2

Fig. 2.2.: The contact potential difference of two metals is defined through the difference
of the Fermi levels of the two metals, ε1F and ε2F . The Fermi level of a metal
is the energy of the highest occupied quantum mechanical state, [12, 13], [14,
pp. 19-20].

2.2. Kelvin Probe Force Microscopy

The aim of this thesis is to implement and compare different types of measuring the
contact potential difference (UCPD) of a surface with an AFM set-up. This is called
the Kelvin probe force microscope (KPFM).
The UCPD is defined as the difference of the work function of two materials. In the
simple cases for two metals this is described by the difference of the Fermi levels, see
picture 2.2:

e ¨ UCDP “ ε2 ´ ε1 (2.8)

A simple method to measure the UCPD is the Kelvin probe, developed by Lord Kelvin
in 1898, [5]. In this method a probe with a given work function is used. This probe
then vibrates near to the sample, leading to a electric current flowing to the probe, since
the probe sample can be descried by a capacitor. This current can then be nullified
by a constant Ubias, which is then equal to the UCPD. But this technique suffers from
a bad spatial resolution, since you need a probe with a big capacity, and therefore a
big area, which leads to an average of the UCPD over a big area, to get measurable
electric currents. To get a high spatial resolution, the tip of an AFM can be used, but a
different method is required, since the electric current is too low to be measurable. The
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2.2. Kelvin Probe Force Microscopy

tip-sample system can still be described by a capacitor:

F “
1
2 ¨
BC

Bz
¨ p∆Uq2 (2.9)

Where C is the capacity of the tip-sample system as a function of the distance z and ∆U
is the potential difference between the tip and the sample. If we consider the tip-sample
system as a capacitive system, and apply an additional potential on the tip, the total
potential difference is given by:

∆U “ UCDP ´ Uext (2.10)

where Uext has the following form:

Uext “ UAC ¨ cospωEt` φEq ´ Ubias (2.11)

With the amplitude UAC of the excitation at the frequency ωE , φE the phase between the
electrical excitation and the reference signal of the lock-in amplifier and Ubias a constant
offset.
Putting 2.10 in the expression for the force 2.9 leads to the following (w.l.o.g. φE “ 0):

F “
1
2 ¨
BC

Bz
¨ pUCPD ´ Ubias ` UAC ¨ cospωeqq2

This leads to, by expanding and reordering:

Fstat “
1
2
BC
Bz

´

pUCPD ´ Ubiasq
2 `

U2
AC
2

¯

(2.12)

FωE “
BC
Bz pUCPD ´ UbiasqUAC sinpωEtq (2.13)

F2ωE “
1
4
BC
Bz U

2
AC cosp2ωEtq (2.14)

2.2.1. Closed Loop Amplitude Modulation

The first method for measuring the UCPD was the Amplitude Modulation, presented
by Nonnenmacher et al. 1991 [7]. This technique uses the fact, that the response of
the cantilever on the frequency ωE is proportional to the difference between UCPD and
Ubias. This can be easily seen by using FωE from equation 2.13 as an additional force
acting on the cantilever. Since this force is proportional to a sinusoidal function, the
cantilever begins to oscillate with the same frequency. By minimizing the amplitude of
the ωE signal the following equation holds:

Ubias “ UCPD (2.15)

That means, by tracking the bias voltage which is needed to nullify the amplitude with
a feedback the contact potential difference between the surface and the tip is measured.
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2. Theory

2.2.2. FM/Heterodyne
As discussed in the section 2.1 a weak force field causes a shift of the spring constant of
the cantilever, equation 2.7, and therefore changes the first resonance frequency of the
cantilever as follows:

ω̃0 “

d

k ´ BF {Bz

meff
« ω0p1´

1
2k
BF

Bz
q (2.16)

with ω0 “
b

k
meff

being the resonance frequency of the undisturbed cantilever.
Using the derivation of the force 2.13 as the force gradient in 2.16 the following equation
for the frequency shift occurs:

ω̃0ptq « ω0p1´
1

2 ¨ k
B2C

Bz2 pUCPD ´ UbiasqUAC sinpωEtqq (2.17)

Since sptq “ A0 ¨ cosp
şt
t0
ω̃0pt

1q dt1q is a solution for the differential equation, which de-
scribes the deflection of the cantilever:

:sptq “ pω̃0ptqq
2 ¨ sptq

We can find, with ω̃0ptq as defined in 2.17:

sptq “ A0 ¨ cosp
ż t

t0

ω̃0pt
1q dt1q

“ A0 ¨ cospω0t`
δω

ωE
¨ sinpωEtq ` φ0q (2.18)

In wich
δω “

ω0
2 ¨ k

B2C

Bz2 pUCPD ´ UbiasqUAC (2.19)

After expanding this into a Fourier-sum, assuming that δω
ωE
! 1, only take the first two

terms of the sum into account, and setting w.l.o.g. φ0 “ 0, the deflection can be written
as:

s

A0
« cospω0tq `

δω

ωE
¨ pcosppω0 ` ωEqtq ´ cosppω0 ´ ωEqtqq (2.20)

The derivation of this equation is done in the appendix A. Taking into account, that δω
is proportional to UCPD ´ Ubias, it is possible to apply a feedback, that nullifies one of
the Amplitudes at ω0 ˘ ωE , leading to UCPD “ Ubias. This method is called frequency
modulation (FM) (Zerweck et al. [15]) or heterodyne KPFM (Joseph et al. [8]). It was
shown that the spatial resolution of methods using the frequency shift is better than the
resolution with the AM technique, [15]. Also the weight function for charges sitting on
the surface is different for the both techniques, as calculated in [16], which comes from
the fact, that the AM KPFM is sensitive for the capacitive gradient, and the heterodyne
KPFM is sensitive for the second derivative of the capacity. Since only the force acting
on the frequency ωE was taken into account, there is a big approximation neglecting the
static force and the 2ωE force.
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2.3. Open Loop Methods

2.3. Open Loop Methods

Due to the high damping factor of water, causes a quality factor decreasing by 2 orders
of magnitude, measurements of the surface potential of samples in water with a KPFM
requires a special technique. Since the amplitude of the oscillation of the cantilever is
quite small, this technique should perform without an additional feedback, so that the
amount of interfering feedback loops is reduced to the distance feedback. Turing off the
feedback is mathematically equivalent to set the constant bias voltage Ubias in equation
2.11 to zero. Driving a cantilever near to his resonance frequency, ωm « ω0, the position
of the cantilever can be described approximately with:

zptq “ h`AD cospωmt` φmq

with h being the equilibrium position and AD the amplitude of the deflection. This
approximation only holds if the cantilever does not jump into contact with the surface.
To get further a slow electrical excitation is required, [9].
Since the capacity is a function of the tip-sample-distance, which is a periodic function
in time, we can also assume, that the capacity itself is a periodic function in time with
the same frequency:

BC

Bz
pt`

2π
ωm
q “

BC

Bz
ptq

Using this identity there is a easy way to derive the equations for the open loop methods,
which is an alternative derivation as the one presented by Borgani et al. [9]. Because the
capacity is periodic in time with the frequency ωm it can be expanded into the following
Fourier sum, w.l.o.g. φm “ 0:

BC

Bz
ptq “

8
ÿ

n“´8

cne
inωmt

Since the gradient of C is a real and symmetric function, because zptq is a symmetric
function, the equation can be written as:

BC

Bz
ptq “

8
ÿ

n“0
an cospnωmtq (2.21)

with the real Fourier-coefficients an. Now putting equation 2.21 in equation 2.9 the
following forces can be found, neglecting the constant terms and the terms with n ą 1:

FωE “ a0UCPDUACe
iφE (2.22)

F2ωE “
1
4a0U

2
ACe

2iφE (2.23)
Fωm˘ωE “

1
2a1UCPDUACe

˘iφE (2.24)
Fωm˘2ωE “

1
8a1U

2
ACe

˘2iφE (2.25)
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2. Theory

Starting from this equations, two independent equations for UCPD can be derived:

UCPD “
UAC

4
FωE
F2ωE

eiφE (2.26)

UCPD “
UAC

4
Fωm˘ωE
Fωm˘2ωE

e˘iφE (2.27)

Equation 2.26 describes the AM open loop method and equation 2.27 the FM open loop
method. It is also possible to derive the capacity gradient and the second derivation
of the capacity, since the Fourier coefficient a0 and a1 are proportional to the first and
second derivative of the capacity respectively. This also means, that the ωE and 2ωE
force are proportional to the first derivation of the capacity, as the force in the closed
loop AM, and the ωm`ωE and ωm`2ωE forces are proportional to the second derivative
of the capacity as the force of the heterodyne method.
Since the lock-in amplifier only measures amplitudes and not forces as it is required for
2.26 and 2.27, the amplitude needs to be corrected by the ratio of the transfer function,
because the forces and amplitudes are linked through the transfer function, see equation
2.4. The equations changes then to:

UCPD “
UAC

4
gp2ωEq

gpωEq

AωE
A2ωE

eiφE ¨ (2.28)

UCPD “
UAC

4
gpωm˘2ωEq

gpωm˘ωEq

Aωm˘ωE
Aωm˘2ωE

e˘iφE (2.29)

where gpωq is the real amplitude of the complex transfer function χpωq. For the driven
damped harmonic oscillator it hast the following form:

gpωq “
A

b

pω2
0 ´ ω

2q2 ` pω0¨ω
Q q2

(2.30)

with the quality factor Q and a general amplitude A, which depends on the spring
constant of the cantilever and the sensitivity of the system.

2.4. Lock-In-Amplifier
In this section will be a short introduction to the basics of a lock-in amplifier. This device
provides the possibility to measure small amplitudes compared to the noise level. The
amplifier first multiplies the incoming measurement signal with a sinusoidal reference
function with frequency ωref , which is phase shifted by ∆φ, and then multiplies this
product over a certain time τ , the time constant:

Uoutptq “
1
τ

ż t

t´τ
sinpωref ¨ τ `∆φqUin dτ

Increasing the time constant would lead in lesser noise, but also in lesser accuracy. A
scheme of a lock-in-amplifier is showed in 2.3. By a good choice of the integration time
this technique filters frequency bands out of a noise signal, allowing to perform KPFM,
since the signals on a certain frequencies are rather small.

8



2.4. Lock-In-Amplifier

Phase shift

Low-pass/
Integrator

measuring signal

reference Signal

Output-SignalMultiplier

Fig. 2.3.: Scheme of the working principle of a lock-in amplifier, downloaded from
wikipedia.de on the 15.11.2016, description changed to English afterwards.
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3. Set Up

3.1. System

The measurements were performed on a JPK nanowizard III set-up combined with a
Zurich Instruments lock-in amplifier of the type HF2LI. The distance feed-back was
performed by the JPK controller, the kelvin probe measurements by the lock-in amplifier,
controlled by the software allocated by Zurich Instruments. The analysis was done with
Gwyddion (www.gwyddion.net) and Python. The measurements were performed with
platinum-iridium coated cantilever. The properties can be seen in table 3.1, a picture
of the cantilever can be seen in the appendix B.8. The model number of them is SCM-
PITW.

3.2. Sample

The sample was a electrode array structure made by ALS, Japan.
Only the two working electrodes were used, with one of them
set to ground potential, the other one to a higher potential.

Fig. 3.1.: Scheme of the electrode
structure (downloaded from
www.als-japan.com/ on the
11.10.16.)

The sample was a electrode array structure
made by ALS, Japan. Only the two work-
ing electrodes were used, with one of them
set to ground potential, the other one to a
higher potential. The electrodes was made
of gold, the surrounding material was glass.
This sample was chosen, because of the possi-
bility to have a clearly defined potential dis-
tribution on a small range, which could be
controlled during the measurements with an
external instrument. It also has a nearly flat
topography on the glass as it can be seen
in fig. 3.2, but the height falls rapidly on
the edge to an electrode. Also the measured
UCPD used to overshoot on the edge to an
electrode with a high potential, as it can be
seen in fig. 3.3(d). This effect was observed
by all methods, but since the focus of this
work was on the implementation and com-
paring of the different methods, there was

10



3.2. Sample

(a) 2D scan

0 2 4 6 8

Distance [µm]
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H
ei
gh
t
[µ
m
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(b) Cross-section

Fig. 3.2.: A AFM scan of the surface. The conic parts in the cross-section are the
electrodes, the flat parts the glass.

not a closer look taken on this phenomena.
The electrodes were separated by 2µm and their width amounted 2µm. The potential
differences was provided by the lock-in amplifier through two clamps, which were in
contact with the two electrode respectively.
If a UCPD distribution was measured over a area containing more then 3 electrodes, the
applied voltage can be calculated by averaging the UCPD over the electrodes with high
potential and subtracting the averaged UCPD from the electrodes with the low potential,
because of:

∆UCPD “ UCPD,high ´ UCPD,low

“ UCPD,gold ´ UCPD,gold `∆U ext
« ∆U ext

For some measurements in section 4.2 a graphite sample was used, because of a almost
homogeneous surface, providing homogeneous conditions on a large area.
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3. Set Up

(a) (b)
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(c)
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(d)

Fig. 3.3.: In (a) the UCPD was measured without an additional voltage on the electrodes,
in (c) the cross section is plotted. In (b) a potential difference of 500mV was
applied, in (d) the corresponding cross section. The overshoot on the edges of
the electrode with the high potential can be clearly seen in (d).

properties value
width 23–33µm
length 200–250µm
thickness 2.5–3. µm
resonance frequency 60–100 kHz
spring constant 1–5 N

m

Table 3.1.: The properties of the used cantilever
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3.3. Implementation of the Methods

3.3. Implementation of the Methods
For the implementation of the methods one basic set-up can be used, shown in fig. 3.4.
So for a better overview all of the methods are listed in the table 3.2, with the excitation
and detection frequencies. ω1 stands for the second eigenmode of the cantilever, which
is used to record the closed loop methods, since the response off the system should be
higher. Since the electrical feedback could be controlled with the software provided by
Zurich Instruments, the needed Ubias could be streamed via the auxiliary output of the
lock-in amplifier. In table 3.3 the relevant configurations of the lock-in amplifier are
listed.

method electrical excitation detection frequency feedback
AM, closed loop ωE “ ω1 ω1 on
Heterodyne ωE “ ω1 ´ ω0 ω1 on
AM, open loop ωE ! ω0 ωE and 2ωE off
FM, open loop ωE ! ω0 ω0 ˘ ωE and ω0 ˘ 2ωE off

Table 3.2.: The most important information for the different methods. ω1 stands for the
second eigenmode of the cantilever.

method output 1 output 2 adder
AM, closed loop Ubias residual amplitude on ωE on
Heterodyne Ubias residual amplitude on ω1 on
AM, open loop ωE 2ωE off
FM, open loop ω0 ˘ ωE ω0 ˘ 2ωE off

Table 3.3.: Configuration of the lock-in amplifier for the different methods

13



3. Set Up

In In Diff In In Diff OutAdd Sync OutAdd Sync

Signal Input 1 Signal Input 2 Signal Output 1 Signal Output 2

Aux 1 Aux 3

Aux 2 Aux 4

JPK Controller

Zurich LockIn

Deflection Drive Signal

Cantilever-Sample 
        System

Cantilever Electrode Sum

Data Input

External Input 1 External Input 2

a) b)

d)
c)

e)
f)

g)

Fig. 3.4.: A scheme of the general set-up. a) Cable providing the deflection information
measured by the JPK controller to the lock-in amplifier. b) Cable providing the
drive signal information applied on the cantilever to the lock-in amplifier. c)
Connection to the cantilever, for applying the external voltage Uextptq. d) This
cable has two tasks, first it connects the lock-in amplifier output to a input of
the JKP controller, used to display measured values. Secondly it also connects
to the adder of the signal output 1, this connection is used for the feedback
of the closed loop methods. For the open loop methods the adder should be
disabled. e) Connection of the second out put of the lock-in amplifier to a
input of the JPK controller. For the closed loop methods used for recording
a error signal, for the open loop methods used for recording the amplitude on
the second needed signal. f) This connection is used to apply the potential
difference on the electrodes. See 3.5 for a deeper description of the cantilever-
sample system. g) Cable providing the detected sum signal of the four field
diode to the JPK controller.
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3.3. Implementation of the Methods

Uext(t)

UPot

a)

b)

c)

f) d)

e)

Fig. 3.5.: Scheme of the cantilever-sample system in KPFM a) The external voltage
applied between the tip and the sample caused by the lock-in amplifier. b)
shared ground of the tip and the sample. c) Source for the potential between
the different electrodes, caused by the lock-in amplifier. d) Electrode on the
ground potential. e) Cantilever, perpendicular aligned to the electrode beam.
f) Electrode on the high potential.
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4. Results and Discussion

4.1. Linearity

Fig. 4.1.: Increasing voltage on one elec-
trode, measured with the hetero-
dyne method

In order to test the reliability of the dif-
ferent methods, increasing voltages were
applied to the electrodes of the sample
measured by the different ways. The opti-
mal performance for the measured voltage
plotted against the applied voltage would
be a straight line with the slope of one.
The voltage was varied from 0V to 3.8V
in steps of 100mV ever 25 scan lines, an
example of a measurement preformed in
this way is shown in 4.1, the other mea-
surements are listed in B.1. The config-
uration for the single measurements are
listed in the table 4.1. To get the average
for the contact potential difference, cross

sections perpendicular to the electrodes were taken for every voltage step, with an par-
allel averaging of 15 points. Then the high and low potential of every cross section
was averaged over the associated electrodes. The resulting potential difference was then
plotted against the applied voltage in the fig. 4.2 for every method, also the line for a
perfect measurement was plotted (blue line). This plot shows a linear relationship for
all methods over the whole range of 3.8V , and therefore a linear fit could be performed
to get the slopes, which are listed in the table 4.2. The best result with a slope of 0.929
was obtained for the heterodyne method, followed by the closed loop AM method with
0.812. The largest deviation was observed for the open loop AM method with 0.464 and
the slope of the open loop FM method was 20% to high.

method ωm rkHzs ωE rkHzs UAC rV s

AM, closed loop 66.35 414.47 4
Heterodyne 72.9 386.37 4
AM, open loop 66.35 5 4
FM, open loop 72.9 3 4

Table 4.1.: Configuration for the voltage sweep measurements, ωm, ωE : mechanical and
electrical excitation frequency, UAC : AC excitation amplitude
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4.1. Linearity
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Fig. 4.2.: measured voltage from the different methods by applying increasing Ac volt-
ages.

Method Slope r2

Am closed loop 0.812˘ 0.003 0.9998
Heterodyne 0.929˘ 0.007 0.9987
Am open loop 0.464˘ 0.003 0.9988
Fm open loop 1.209˘ 0.009 0.9987

Table 4.2.: Slopes of the fits in the potential sweep from figure 4.2

17



4. Results and Discussion

The strong variance of slopes of the open loop methods from the close loop methods,
and explicitly from the perfect slope of one, could have multiple origins. For example,
the ratio of the transfer function could be more complex as assumed with the transfer
function of a driven damped harmonic oscillator, equation 2.30. There could be another
frequency dependent function dpωq modulating the old transfer function gpωq in the
following way:

gpωq Ñ g̃pωq “ gpωq ¨ dpωq (4.1)

This modulation would lead to different weighting of the forces as they there treated in
the calculations above. Another possibility could be cross talk between the the different
subsystems, since the mixing products ωm ` ωE and ωm ` 2ωE were close to the first
resonance peak, where the distance feedback was performing, and the bandwidth of this
feedback loop could not be controlled. A third error could occur though the missing
electric phase information. The phase of the electrical signal was set to zero at the
beginning, but for a not scanning situation with high AC voltages. So during the mea-
surement this phase could varied strong from zero, which would lead to an additional
phase factor of cospφEq.
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4.2. Testing the Theory of Open Loop FM

4.2. Testing the Theory of Open Loop FM
To identify the problems with the problems for the open loop FM method, the depen-
dency of the two side bands, ωm ` ωE and ωm ` 2ωE , was analysed respectively to the
applied AC voltage. The two equations, 2.24 and 2.25, predict a linear behaviour for
the amplitude of the first side band in terms of increasing AC voltage, and a quadratic
behaviour for the amplitude of the second side band. So a measurement was designed,
where the tip was positioned over the electrode with the high potential, while 500mV
potential difference was applied to the electrode array. While the cantilever was fixed
on this position, it was excited mechanically with 64.7kHz and electrically at different
frequencies and with various AC excitation amplitudes. This was controlled by a script,
C.1, using the Zurich Instruments lock-in amplifier. This script collected the information
of the amplitudes over five seconds at a certain AC excitation amplitude and electrical
frequency, then the script switched the AC excitation amplitude one step higher, start-
ing from 0V to 4.9V in 100mV steps, until the boundary AC excitation amplitude was
reached. In the plot 4.3 the amplitude data collected in this way are plotted for an
electrical excitation frequency of 4 kHz and 5 kHz.
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Fig. 4.3.: The measured Response on the first and second side band vs different applied
AC excitation amplitudes: (a) signal on ωm ` ωE and (b) signal on ωm `
2ωE . Measured while the tip was positioned over the electrode with the high
potential.
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4. Results and Discussion

The expected behaviour could only be seen up to a critical Ac voltage around 3.5V .
The amplitude of the ωm ` ωE signal reached a maximum and then decreased. The
amplitude of the ωm ` 2ωE signal began to saturate to a maximum value of 1.34V , by
an excitation frequency of 5 kHz and 1.7V at 4 kHz. Since the critical AC excitation
amplitude was for both frequencies around the same value, the saturation seems not to
be strongly dependent of the frequency.
Because of the small distance of the signal amplitude, ωm ` ωE , to the mechanical
excitation frequency, on which the distance feedback performed, crosstalk between the
distance feedback and the side band detection could occur. That means, that the distance
feedback detected the amplitude of the ωm ` ωE signal, summed this amplitude to the
amplitude of the cantilever caused through the mechanical excitation. The feedback
would tries to compensate this additional side band signal. This effect is expected to
be higher for increasing AC voltages, since the amplitude increases with increasing AC
voltages.
To test this hypothesis a different set up was used, the low noise set up. The low noise
atomic force microscope is a home-build atomic force microscope, with a high signal to
noise ratio, due to special designed electrical components. The advantage of this set
up was the possibility to have a better control over the distance feedback during the
measurements. To get comparative results a graphite sample was measured in the same
way as the gold sample described above on both set ups. During the measurements on
the low noise AFM, the feedback gains were set to the zero, ont the JPK set up that was
not possible. In the fig. 4.4(a) and 4.4(b) the result for the measurement on the JPK set
up were plotted. The behaviour of the two side bands at different AC voltages on the
graphite sample looks similar to the behaviour on the gold sample, with the difference of
the sign of the slope, for the graphite sample its negative. Also the critical AC voltage
is different from the one measured on the gold sample.
Another behaviour can be seen in fig. 4.4(c) and 4.4(d), where the results of the measure-
ment on the low noise set up were plotted. For the first side band, a linear relationship
between the first side band and the AC voltage could be observed over the whole range
of 5V for all the different electrical excitation frequency. The same holds for the sec-
ond side band with a quadratic relationship. Based on this result the expectation of
a feedback problem in the JPK set up seems to be reasonable. Since this effect would
only change the total resulting value of a measured UCPD this have not to be taken into
account for pictures, in which the absolute value of the UCPD is a matter.
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4.2. Testing the Theory of Open Loop FM
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(a) ωm ` ωE , JPK nano wizard III
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(b) ωm ` 2ωE , JPK nano wizard III
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(c) ωm ` ωE , low noise system
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Fig. 4.4.: The measured response on the two harmonics on graphite in the open loop
FM mode. Mention the negative slop on the JPK nano wizard III in the first
harmonic as compared to the positive slope in the low noise system. This
seems to be an effect of a phase jump, in the moment the cantilever leaves the
attractive and enters the repulsive regime.
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4. Results and Discussion

The dependence of the measured side band amplitudes on the AC excitation voltage
provides additional ways to calculate the contact potential difference:
Since the first and second side band are linear and quadratic in the AC excitation voltage
a fit of the following form could be performed:

Aωm`ωE “ m1 ¨ UAc

Aωm`2ωE “ m2 ¨ U
2
Ac

By using the equations from the theory chapter, equations 2.24 and 2.25, w.o.l.g. φE “ 0:
Aωm˘ωE “

1
2¨gpωm`ωEq

a1UCPDUAC

Aωm˘2ωE “
1

8¨gpωm`2ωEq
a1U

2
AC

the following identification for m1 and m2 can be found, with the transfer function gpωq:

m1 “ gpωm ` ωEq
´1 ¨

1
2a1UCPD (4.2)

m2 “ gpωm ` 2ωEq´1 ¨
1
8a1 (4.3)

Since the measurements were done for different electrical excitation frequencies ωE , pairs
of different frequencies can be found in this way, that ωE,1, electrical excitation frequency
of the first side band, and ωE,2, electrical excitation frequency of the second side band,
fulfil the following equation:

ωE,1 “ ωE,2 ¨ 2
In this case the transfer function in equation 4.2 should have the same value as the
transfer function in equation 4.3. So calculating m1

m2¨4 for this pairs should result in
UCPD without the need to take a certain value for the transfer function into account.
The UCPD calculated in this way can then be compared with the UCPD calculated with
the ratio of m1 and m2 on the same electrical excitation by taking the ratio of the
transfer function of the driven harmonic oscillator into account. If there is a significant
deviation between these two UCPD, could this provide a evidance of a possible additional
frequency dependency of the transfer function, as mention in 4.1.
This procedure was done for the measurement on the graphite sample in the low noise
set up, the corresponding frequencies are 1 kHz for m2 combined with 2 kHz for m1
and 2 kHz for m2 combined with 4 kHz for m1. The fitted slopes are listed in the table
4.3, the UCPD calculated with the alternative way are listed in 4.4. The two values are
close to each other with a mean value of 650mV , and the deviations could be caused
by lateral drift of the cantilever. The UCPD calculated with the ratio of the transfer
function are listed in 4.5. As it can be seen in the plot of the UCPD against the different
electrical excitation frequencies 4.5, the value for UCPD calculated with the ratio of the
transfer function was not stable, but increased from a value of 564mV to a final value of
1.04V . The slope of the function of the UCPD against the electrical excitation frequency
also seems to be decreasing, so that the value of UCPD seems to be saturating against a
final value, which is more than 50% higher than the mean value of the UCPD calculated
with the alternative way.
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4.2. Testing the Theory of Open Loop FM

ωE rkHzs m1 r¨10´3s m2 rV
´1 ¨ 10´3s

1 1.664˘ 0.014 0.445˘ 0.003
2 1.206˘ 0.011 0.249˘ 0.002
3 0.844˘ 0.003 0.164˘ 0.001
4 0.626˘ 0.005 0.118˘ 0.001
5 0.49˘ 0.003 0.092˘ 0.001

Table 4.3.: Fit slopes of the measurement on graphite without feedback. The r2 values
were all in the range of 0.99

frequency rkHzs UCPD,1 rV s

1& 2 0.678˘ 0.08
2& 4 0.629˘ 0.08

Table 4.4.: Calculated UCPD by can-
celling out the transfer func-
tion.

frequency rkHzs UCPD,2 rV s

1 0.564˘ 0.08
2 0.808˘ 0.08
3 0.920˘ 0.08
4 0.996˘ 0.08
5 1.036˘ 0.08

Table 4.5.: Calculated UCPD by taking
the transfer function into ac-
count.
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4. Results and Discussion
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Fig. 4.5.: Graphical representation of the tabular 4.4 and 4.5. The blue line is the average
of the two values calculated in 4.4. The green line are the points calculated in
4.5. The slope of the blue line also seems to be decreasing.
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4.3. Height Dependency of UCPD

4.3. Height Dependency of UCPD

The theory used to derive the equations for the methods do not predict any dependency of
the tip sample distance for the measured UCPD. That means, that the measured UCPD
should be constant by varying the tip-sample distance, and the following experiment
was done to see if the different KPFM methods could fulfil this expectation. For this
measurement the hover-mode was used, which first scans the topology on the trace
direction and then follows this scanned topology on the retrace without an additional
distance feedback on a user given distance. So for every distance step a picture was
recorded, all pictures are listed in B.2, starting from a distance of 0nm to 150nm.
The averaging of the high and low electrodes was done by masking the electrodes of
interest and calculating the mean and standard deviation for the masked area. Since the
different KPFM methods were tested on different days, various cantilever were used, and
the scanning area was dissimilar, the absolute values of the resulting measured potential
difference of the different techniques could not be compared, however, the general trend
of each of them can be discussed.
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Fig. 4.6.: measured voltage from the four methods by different distance to the surface.
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4. Results and Discussion

method ωm rkHzs ωE rkHzs UAC rV s

AM, closed loop 64.15 400.9 0.5
Heterodyne 63.2 332.0 2
AM, open loop 63.2 5 2
FM, open loop 63.13 1 6

Table 4.6.: Configuration for the height dependency measurements, ωm, ωE : mechanical
and electrical excitation frequency, UAC : AC excitation amplitude

The configuration of the set-up for these measurements are listed in 4.6, the voltage
applied to the electrodes was 500mV . In the plot 4.6 measured potential difference for
the four KPFM methods are plotted against the hover-mode height. All measured UCPD
values decreased with higher tip-sample distance, except the heterodyne method, which
first increases to a maximal value of 471mV at a distance of 50nm and then decreased
to a value of 368mV . The open loop FM methods measured a value of 574mV with a
distance of 0nm and then decreased to a value of 353mV . The closed and open loop AM
method showed a similar trend as the FM open loop, with a starting value of 409mV
and a end value of 278mV , closed loop, and a starting value of 236mV and a end value
of 146mV , open loop. As in the measurement with the different applied voltages on the
electrodes, 4.1, the open loop AM method reproduced much less of the applied potential
difference. So this low efficiency is not a effect of a feedback crosstalk with the distance
feedback, since the hover-mode works without this additional feedback loop. Another
interesting thing is the fact, that the open loop FM method measured for small distances
a value higher than the applied potential difference, then falls below the 500mV around
a distance of 50nm and reproduced a similar value as the heterodyne method. Since
we assumed a harmonic oscillation to derive the equations for the open loop method,
section 2.3, this could be wrong for this small distances, where the cantilever starts to
feel the strong repulsive forces.
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4.4. Electronic Calibration

4.4. Electronic Calibration

To exclude spurious signals or additional resonance frequencies in the transfer function of
the system, especially some additional peaks in the lower range of the excitation frequen-
cies, a sweep of the electrical excitation frequency was done from 100Hz to 100 kHz with
an AC excitation amplitude of 2V and a mechanical excitation of 63.06 kHz. During this
sweep the amplitude of the first, ωE , and the second harmonic, 2ωE , was recorded, while
the tip was positioned at the surface. On the plot of the first harmonic, fig. 4.7(a), there
is no spurious signal in the lower regime of the frequencies, the only thing to mention
here is the unusual decreasing after the mechanical excitation frequency, which could
be an effect of crosstalk between the distance feedback and the electrical excitation.
However, since the electrical excitation of the open loop methods was always small as
compared to the mechanical excitation, ωE ! ωm, the distribution in this area seems to
be rather flat. The same discussion holds for the second harmonic 2ωE , which is plotted
in 4.7(b). In this plot the resonance peak appears at a lower frequency, and also in the
regime where ωE ! ωm holds, the distribution was rather flat.
Since no spurious signal or additional resonance peak appears in the low frequency
regime, there is still no explanation of the reproducible low measured potential difference
between the electrodes by the open loop AM method.

(a)

(b)

Fig. 4.7.: The measured response of the two side bands on the open loop am method,
with ωE : 4.7(a) and 2ωE : 4.7(b) on different electrical excitation.
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4. Results and Discussion

4.5. Possible Error Cause in Open Loop AM
After identifying different problems for open loop FM, the deviation of the value mea-
sured with the open loop AM is still not understood. However, there was some effects
worth to discuss. Going back to the measurement that was done in 4.1, where over 25
lines different voltages were applied to the electrodes. In the topology scan, 4.9(a), was a
change of the measured height on the electrode with the high potential at higher applied
voltages, upper end of the picture. At the same time, a change in the amplitude of the
second harmonic, A2ωE , happened, 4.9(c). By using the equation for the amplitude of
the second harmonic, equation 2.23, the amplitude should only depend on the gradient
of the capacity and the AC excitation amplitude. The change of the amplitude measured
over the electrode is plotted along the high electrode 4.8(a) and the low electrode 4.8(b)
in 4.8. As it can be seen, the deviation is in the range of 10mV increasing for the low
electrode and 70mV decreasing for the high electrode. This effect seems to be very
small.
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Fig. 4.8.: The cross sections are taken along the electrodes for amplitude of the second
harmonic of the open loop AM measurement from 4.1. The applied voltage on
the electrodes increased with higher distance.
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4.5. Possible Error Cause in Open Loop AM
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Fig. 4.9.: (a) topology scan for the measurement of the UCPD with increasing electrode
voltages in open loop AM mode. (b) amplitude of the first harmonic, (c)
amplitude of the second harmonic
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4. Results and Discussion

For an example the following calculation was done: By taking the cross section respec-
tively for the amplitude of the first and second harmonic perpendicular to the electrodes
for the highest electrode voltage, 3.8V , the ∆U can be calculated, fig. B.6. The values
for the amplitude on the second harmonic are for the low electrode: 0.41V , for the low
electrode: 0.33V , for the amplitude of the first harmonic: for the high electrode: 0.42,
for the low electrode: 0.98V . From this follows, with the ration of the transfer function
being 1 and with an AC excitation amplitude of 4V :

∆U “ p0.98
0.33 ´

0.42
0.41qV “ 1.98V

If the value for the amplitude of the second harmonic is now being substituted with the
value for the low electrode:

∆U “ p0.98
0.41 ´

0.42
0.41qV “ 1.37V

The calculated vale becomes even lower. Other possibilities are that the high AC ex-
citation amplitude of 4V caused that the amplitudes of the first and second harmonic
left the linear and quadratic regime, as it happened for the open loop FM method.
However, by taking a look at a measurement, where different AC excitation amplitudes
were tested in the lift mode, B.7, it can be seen, that the measured UCPD decreased for
higher AC excitation amplitudes. One of the last possible origins for the deviation of the
measured UCPD from the expected value is, that there was some AC-coupling between
the electrical excitation and the piezo, which mechanical excited the cantilever, in the
form of some extra excitation of the piezo due to the alternating voltage in combination
with a resonance of the piezo in the area of the electrical excitation, causing a additional
stimulation of the cantilever, but with opposite phase resulting in a reduction of the
total amplitude. This theory could not be proven in the framework of this work.
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5. Conclusion and Outlook

It was possible to implement the different KPFM methods into the JPK, and it was
possible to reproduce the expected value for a potential difference between the two
electrodes in the case of the closed loop methods. The open loop methods showed
strong deviation from the expected value, 4.1. During a deeper analysis of the open loop
methods other problems were identified, as the height dependence 4.3, or the feedback
problem, 4.2. It was also possible to find a feasible additional frequency dependency
of the transfer function using a new way to analyse the amplitude for different AC
excitation amplitudes and electrical excitation frequencies, also discussed in 4.2. This
technique can also easily applied to the open loop AM method by measuring the first
and second harmonic amplitude for an electrical excitation.
Since all the problems cause systematic errors, adding a multiplicative factor to the
measured UCPD, the methods worked in principle, insofar as they behaved linear for
increasing contact potential differences, further work should focus on how to optimise
these slopes of the measured voltage against the applied voltage for the open loop meth-
ods. To do this, a first step could be, to reduce the complexity of the sample and just
use a single metal electrode. The big advantage of a sample like that is, that it has a
simple geometry. Studies of the first and second harmonic of the open loop AM method
and the first and second side band of the open loop FM method could therefore easily
compared with simulations.
Another thing worth to examine would be if there is any difference between the upper
side band, ωm ` ωE and ωm ` 2ωE , and the lower side band, ωm ´ ωE and ωm ´ 2ωE .
In this work only the upper side band was used, since there was no possibility to stream
all four amplitudes to the JPK controller, so a possible further work could be to find a
way to detect all four amplitudes at once.
However, not only the lower side band was neglected but also the phase between the
electrical signal and excitation. This phase was set to zero at the beginning of every
measurement, while the tip was positioned over a more or less unknown point on the
sample, so there is the possibility of a change in the phase during the scan. So to reach
higher accuracy recording the phase could also be a object of interest. As one motivation
was the testing the usability of the open loop methods, since they provide a technique to
measure samples in fluids, the long term goal is to doing this analysis with a sample as
the one used in this thesis in a fluid. Some dependencies worth to examine could be the
choose of the electrical excitation, since the mechanical resonance frequency in water is
much lower compared to the one in air, the condition of ωE ! ωm is harder to fulfil. So
a better control of the bandwidth of the distance feedback and of the lock-in amplifier
is necessary, to isolate the mechanical frequency and the two side band frequencies.
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A. Heterodyne Derivation

Useful equations
Bessel-functions
For the Bessel-function of the first kind and of the nth order the following equation
holds:

Jnpxq “
1

2π

ż π

´π
exp tipn ¨ τ ´ x ¨ sinpτqqu dx (A.1)

For negative n the following relation can be found:

J´npxq “ p´1qn ¨ Jnpxq (A.2)

Trigonometry Relations
For the addition of 2 angles in a cosine the next formula can be derived:

cospα` βq “ cosα ¨ cosβ ´ sinα ¨ sin β (A.3)

Fourier-Sum
A function fptq with the Period T “ 2π

ω , e.g. fpt` T q “ fptq, can be Fourier expanded
in the following way:

fptq “
8
ÿ

n“´8

Cn ¨ exppinωtq (A.4)

with the coefficients:

Cn “
1
T

ż T
2

´T
2

fptq ¨ expp´inωtqdt

with the transformation:

τ “ ω ¨ t

ñ

$

&

%

dt “ dτ
ω

τ0 “ ´π
τ1 “ π

You get:
Cn “

1
2π

ż π

´π
f
´ τ

ω

¯

¨ expp´inτqdτ (A.5)
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Derivation of the sidebands in heterodyne
Starting with the equation:

sptq “ A ¨ costωct` h ¨ sinpωmtqu

With the relation A.3 and by calling α “ ωct und β “ h ¨ sinpωmtq the formula above
can be written as:

sptq “ Apcospωctq ¨ cosph ¨ sinpωmtqq ´ sinpωctq ¨ sinph ¨ sinpωmtqqq

The function can be easily continued to a complex function:

s̃ptq “ A ¨ fptq ¨ exppiωctq
with: fptq “ exppih ¨ sinpωmtqq

fptq is periodic with T “ 2π so it can be expend like it was present in equation A.4 The
coefficients are given by A.5:

Cn “
1

2π

ż π

´π
exppih ¨ sinpτqq ¨ expp´inτqdτ

“
1

2π

ż π

´π
expp´ipnτ ´ h ¨ sinpτqqqdτ

with τ Ñ ´τ you get:

Cn “
1

2π

ż π

π
exppipnτ ´ h ¨ sinpτqqqdτ

“ Jnphq

whereat the relation A.1 was used. so we get for s̃ptq:

s̃ptq “ A ¨
8
ÿ

n“´8

Jnphq ¨ exppinωmtq ¨ exppiωctq

If h ! 1 the following relation holds:

Jnphq «
hn

n!
So the expansion can be snapped after the first order:

s̃ « AptJ0phq ` J1phq ¨ exppiωmtq ` J´1 ¨ expp´iωmtqu ¨ exppiωctqq
“ ApJ0phq ¨ exppiωctq
` J1phq ¨ exppipωm ` ωcqtq
` J´1phq ¨ exppipωc ´ ωmqtqq

All we need to do is to take the real part of s̃ptq and we get with the relation A.2:

sptq « J0phq cospωctq ` J1phqpcospωm ` ωcqtq ´ cospωc ´ ωmqtqq
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B. Pictures

B.1. Voltage Sweep

(a) closed loop AM (b) open loop AM

(c) open loop FM

Fig. B.1.: sweep of the applied voltage measured with the different techniques
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B.2. Height Measurement

B.2. Height Measurement
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Fig. B.2.: Height measurements with the closed loop AM technique
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Fig. B.3.: Height measurements with the open loop AM technique
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B.2. Height Measurement
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Fig. B.4.: Height measurements with the closed loop FM technique
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B. Pictures

(a) 0nm (b) 10nm

(c) 50nm (d) 100nm

(e) 150nm

Fig. B.5.: Height measurements with the open loop FM technique
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B.3. Open Loop AM Extra Pictures

B.3. Open Loop AM Extra Pictures
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B. Pictures
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Fig. B.6.: Cross sections taken from the highest electrode voltage from the open loop
AM measurement for increasing electrode voltages respectively for the am-
plitude on the first and the second harmonic, 4.1, averaged over 10 pixels,
perpendicular to the electrodes.
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B.3. Open Loop AM Extra Pictures

method ωm rkHzs ωE rkHzs hHover rnms

AM, closed loop 64.2 400.9 10
Heterodyne 63.2 332.0 10
AM, open loop 63.2 5 10
FM, open loop 63.1 1 10

Table B.1.: Configuration for the AC excitation amplitude dependency measurements,
ωm, ωE : mechanical and electrical excitation frequency, hHover: height of
the hover mode
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Fig. B.7.: Plot of the measured potential difference while 500mV voltage was applied to
the electrodes against increasing AC excitation voltages, with hover mode on.
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B. Pictures

B.4. Pictures of the used Cantilevers

Fig. B.8.: The used Cantilevers, downloaded from brukerafmprobes.com on the 20.10.16.
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C. Code

C.1. AC Amplitude Sweep

1 import zh in s t . ziPython as ziPython #In t e r f a c e f o r the used LockIn
amp l i f i e r

2 import zh in s t . u t i l s as u t i l s #Helper func ion
3 import time
4 import numpy as np
5 import os
6

7 #Function to save a data array to a path in to a text document o f name
8 de f save ( data , path , name) :
9 i f not os . path . e x i s t s ( path ) :

10 os . makedirs ( path )
11 output=open ( path+name+’ . txt ’ , ’w ’ )
12 s=’ ’
13 f o r i in range ( l en ( data ) ) :
14 s+=s t r ( data [ i ] )+ ’ \n ’
15 output . wr i t e ( s )
16 output . c l o s e ( )
17

18 #used parameter
19 endFreq=5 #End frequency in kHz
20 endAmp=5 #End Ac amplitude in V
21 ampStep=0.1 #Ac amplitude i n c r e a s i n g s t ep s in V
22 pathName=’ fo lderToSave ’ #Save path
23

24 # Open connect ion to z i S e r v e r
25 daq = ziPython . ziDAQServer ( ’ l o c a l h o s t ’ , 8005)
26

27 # Detect dev i c e
28 dev i ce = u t i l s . autoDetect ( daq )
29

30 #reading in the s e t t i n g s from a z i c f g f i l e , z i c f g are c on f i g sh e e t s
produced by the so f tware .

31 #Easy way to con f i gu r a t e the LockIn : ´s e t the LockIn to s t a t e o f opera t i on
by the so f tware

32 # ´save z i c f g
33 #The z i c f g i s not in a way the LockIn can handle , so some operat i on on the

l i n e s i s nece s sa ry whi l e read ing in the l i n e s .
34 #In every l i n e i s the f i r s t element the node and the second the value t h i s

node ho lds .
35 reader=open ( ’ yourConf . z i c f g ’ , ’ r ’ )
36 x=[ ]
37 y=[ ]
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C. Code

38 reader . r e ad l i n e ( ) #F i r s t l i n e could be l e f t out
39 f o r l i n e in i t e r ( lambda : reader . r e ad l i n e ( ) , ’ ’ ) :
40

41 i f l en ( l i n e . s p l i t ( ) ) i s not 0 :
42 x . append ( ’ / ’+l i n e . s p l i t ( ) [ 0 ] . lower ( ) ) #Need to convert c a p i t a l l e t t e r s

to smal l l e t t e r s f o r nodes
43 temp=l i n e . s p l i t ( ) [ 1 ] . r ep l a c e ( ’ , ’ , ’ . ’ ) #Node value
44 i f temp . f i nd ( ’ 000000 ’ ) i s not ´1: #Int value in the case a Int i s

needed
45 y . append ( i n t ( temp [ : ´7 ] ) )
46 e l s e :
47 y . append ( f l o a t ( temp) )
48 e l s e :
49 pr in t ( ’ Kein Element vorhanden ’ )
50 reader . c l o s e ( )
51

52 #ge t t i ng the s e t t i n g s in the r i g h t form , so the lock in can handle them .
53 gene ra l_se t t i ng =[ ]
54 f o r i in range ( l en (x ) ) :
55 temp=[ [ ’ / ’ , device , x [ i ] ] , y [ i ] ]
56 gene ra l_se t t i ng . append ( temp)
57

58 #se t the s e t t i n g s
59 daq . s e t ( g ene ra l_se t t i ng )
60 time . s l e e p (1 )
61 daq . f l u s h ( )
62

63 #ge t t i ng the data
64 path0=’ / ’+dev i ce+’ /demods/1/ sample ’ #F i r s t harmonic in FM mode , change 1´>0

f o r AM
65 path1=’ / ’+dev i ce+’ /demods/2/ sample ’ #Second harmonic in FM mode , change

2´>1 f o r AM
66

67 #Uncommend in the case the lower s idebands should be recorded too
68 #path2=’/’+ dev i ce+’/demods/4/ sample ’
69 #path3=’/’+ dev i ce+’/demods/5/ sample ’
70

71 daq . sub s c r i b e ( path0 ) #prepar ing the r e co rd ing
72 daq . sub s c r i b e ( path1 )
73

74

75 #daq . sub s c r i b e ( path2 )
76 #daq . sub s c r i b e ( path3 )
77

78 #I n i t i a l i z a t i o n
79 amp=0.0 #Sta r t i ng amplitude in V
80 f r e q=1 #Sta r t i ng f requency in kHz
81

82

83 rangeAmp=daq . getDouble ( ’ / ’+dev i ce+’ / s i g ou t s /0/ range ’ ) #ge t t i n g the output
range in percent

84

85
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C.1. AC Amplitude Sweep

86 f o r i in range (1 , endFreq ) : #f o r s t a r t i n g at another f r e q 1́ > custom s t a r t
f r e q

87 amp=0.0 #f o r every f requency the amplitude i s s e t t ed to 0
88 f r e q=i+1 #frequency i s i n c r ea s ed by one kHz in every step
89 daq . setDouble ( ’ / ’+dev i ce+’ / o s c s /0/ f r e q ’ , f r e q ∗10∗∗3) #Set t ing the new

va lues f o r e x c i t a t i o n
90 daq . setDouble ( ’ / ’+dev i ce+’ / s i g ou t s /0/ ampl itudes /6 ’ ,amp) #and amplitude
91

92 f o r j in range ( i n t (endAmp/ampStep ) ) :
93 daq . f l u s h ( ) #c l ean ing the memory
94 dataDict=daq . p o l l (5 ,500)#c o l l e c t i n g data f o r 5 sec
95 #ca l c u l a t i n g the i n t e r e s t e d data s e t s and sav ing in numpy ar rays .
96 #x2 , r2 can be used f o r the lower s idebandes
97 x1=dataDict [ dev i c e ] [ ’ demods ’ ] [ ’ 1 ’ ] [ ’ sample ’ ] [ ’ x ’ ]
98 r1=np . sq r t ( dataDict [ dev i c e ] [ ’ demods ’ ] [ ’ 2 ’ ] [ ’ sample ’ ] [ ’ x ’ ]∗∗2+ dataDict [

dev i c e ] [ ’ demods ’ ] [ ’ 2 ’ ] [ ’ sample ’ ] [ ’ y ’ ] ∗ ∗2 )
99

100 #x2=dataDict [ dev i ce ] [ ’ demods ’ ] [ ’ 4 ’ ] [ ’ sample ’ ] [ ’ x ’ ]
101 #r2=np . sq r t ( dataDict [ dev i ce ] [ ’ demods ’ ] [ ’ 5 ’ ] [ ’ sample ’ ] [ ’ x ’ ]∗∗2+ dataDict [

dev i c e ] [ ’ demods ’ ] [ ’ 5 ’ ] [ ’ sample ’ ] [ ’ y ’ ] ∗ ∗ 2 )
102

103 #saving the data to a e a s i l y readab le d i r e c t o r y h i e ra r chy
104 save ( x1 , pathName+’ f i r s tHarm/ ’+s t r ( f r e q )+’kHz/ ’ , s t r (amp) . r ep l a c e ( ’ . ’ , ’_ ’

)+’V ’ )
105 save ( r1 , pathName+’ secHarm/ ’+s t r ( f r e q )+’kHz/ ’ , s t r (amp) . r ep l a c e ( ’ . ’ , ’_ ’ )+

’V ’ )
106

107 #save ( x2 , pathName+’ lowerSideband/ f i r s tHarm/’+ s t r ( f r e q )+’kHz/ ’ , s t r (amp) .
r ep l a c e ( ’ . ’ , ’_ ’ )+’V ’ )

108 #save ( r2 , pathName+’ lowerSideband/secHarm/’+ s t r ( f r e q )+’kHz/ ’ , s t r (amp) .
r ep l a c e ( ’ . ’ , ’_ ’ )+’V ’ )

109

110 amp+=ampStep #in c r e a s i n g the amplitude by one step
111

112 daq . setDouble ( ’ / ’+dev i ce+’ / s i g ou t s /0/ ampl itudes /7 ’ ,amp/rangeAmp) #se t
the new amplitude f o r the next loop step

113

114 daq . f l u s h ( ) #c l ean ing the memory f o r the next s tep .
115

116

117 daq . unsubscr ibe ( path0 )
118 daq . unsubscr ibe ( path1 )
119 #daq . unsubscr ibe ( path2 )
120 #daq . unsubscr ibe ( path3 )
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