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Abstract
We discuss model order reduction (MOR) for large-scale quadratic-bilinear (QB) sys-
tems based on balanced truncation. The method for linear systems mainly involves
the computation of the Gramians of the system, namely reachability and observability
Gramians. These Gramians are extended to a general nonlinear setting in Scherpen
(Systems Control Lett. 21, 143-153 1993). These formulations of Gramians are not
only challenging to compute for large-scale systems but hard to utilize also in theMOR
framework. This work proposes algebraic Gramians for QB systems based on the
underlying Volterra series representation of QB systems and their Hilbert adjoint sys-
tems. We then show their relation to a certain type of generalized quadratic Lyapunov
equation. Furthermore, we quantify the reachability and observability subspaces based
on the proposed Gramians. Consequently, we propose a balancing algorithm, allowing
us to find those states that are simultaneously hard to reach and hard to observe. Trun-
cating such states yields reduced-order systems. We also study sufficient conditions
for the existence of Gramians, and a local stability of reduced-order models obtained
using the proposed balanced truncation scheme. Finally, we demonstrate the proposed
balancing-type MOR for QB systems using various numerical examples.
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1 Introduction

Numerical simulation is a primary tool to study dynamical systems, e.g., for prediction
and design studies. High-fidelity modeling is an essential step to gain deep insight into
the behavior of complex dynamical systems. Even though computational resources
have been developing extensively over the last few decades, fast numerical simulation
of such high-fidelity systems, whose number of state variables can easily be of order
O(105−106), is still a huge computational burden. Thismakes the usage of these large-
scale systems very difficult and inefficient, for instance, in optimization and control
design. One approach to mitigate this problem ismodel order reduction (MOR).MOR
seeks to substitute large-scale dynamical systems with low-dimensional (reduced-
order) systems such that the input-output behaviors of both original and reduced-order
systems are close enough, and the reduced-order systems preserve some important
properties, for example, stability and passivity of the original system, allowing to use
the reduced-order models as a surrogate in the control design process.

MOR techniques for linear systems are well-established and are widely applied in
various application areas, see, e.g., [1–5]. In many applications where the dynamics
are governed by nonlinear partial differential equations (PDEs), such as Navier-Stokes
equations, a linear system can also be obtained via linearization of the system around
a suitable expansion point, e.g., the steady-state solution so that the linearized system
captures the dynamics very well locally. However, as it moves away from the expan-
sion point, the linearized system might not be able to capture the system dynamics
accurately. Therefore, there is often the need to take nonlinear terms into consider-
ation, thus resulting in a more accurate system. Consider a nonlinear system of the
form

ẋ(t) = f (x(t)) + g(x(t))u(t), x(0) = x0,

y(t) = h(x(t)),
(1)

where f : Rn → R
n , g : Rn → R

n × R
m and h : Rn × R

m → R
p are nonlinear

smooth functions, and x(t) ∈ R
n, u(t) ∈ R

m and y(t) ∈ R
p denote the state, input,

and output vectors of the system at time t , respectively. In this work, we assume
homogeneous initial conditions, i.e., x0 = 0. The main goal of MOR is to construct a
low-dimensional system, having a similar form as system (1). That is as follows:

˙̂x(t) = ̂f (̂x(t)) + ĝ(̂x(t))u(t), x̂(0) = 0,

ŷ(t) =̂h(̂x(t)),
(2)

in which ̂f : Rn̂ → R
n̂ , ĝ : Rn̂ → R

n̂ × R
m and̂h : Rn̂ × R

m → R
p with n̂ � n so

that the output of both systems are close to each other if both systems are excited by
the same input signal, for any feasible input function.

MOR techniques for general nonlinear systems, namely trajectory-based MOR
techniques, have been widely applied in the literature to determine reduced-order
systems for nonlinear systems; see, e.g., [6–8]. The proper orthogonal decomposition
(POD)method is a very powerful trajectory-basedMORtechnique,whichdepends on a
Galerkin projectionP = VV T , whereV is a projectionmatrix such that x(t) ≈ V x̂(t).
The nonlinear functions ̂f (̂x) can be given as ̂f (̂x(t)) = V T f (V x̂(t)), and similar
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expressions can also be derived for ĝ(̂x(t)) and ̂h(̂x(t)). This method preserves the
structure of the original system in the reduced-order system, but the reduced-order
system still requires the computation of the nonlinear functions on the full grid. This
may obstruct the success of MOR; however, there are many advanced hyperreduction
methodologies, see, e.g., [9] and therein references. In recent years, reduced basis
methods have been successfully applied to nonlinear systems to obtain reduced-order
systems [10, 11].

In this article, we consider a certain class of nonlinear control systems, namely
quadratic-bilinear (QB) control systems. The advantage of this class of nonlinear
systems is that systems containing smooth mono-variate nonlinearities such as expo-
nentials and polynomial functions can also be rewritten in a QB form by introducing
some new variables in the state vector [12]. Note that this transformation is exact, i.e.,
it requires no approximation and does not introduce any approximation error, but this
transformation may not be unique.

Related to MOR for QB systems, the idea of one-sided moment-matching has been
extended from linear or bilinear systems to QB systems; see, e.g., [12–16], where
a reduced system is determined by capturing the input-output behavior of the origi-
nal system, given by generalized transfer functions. More recently, there have been
extensions to two-sided moment-matching in [17–20], ensuring more moments to
be matched for a given order of the reduced system. Even though these methods
have evolved as effective MOR techniques for nonlinear systems, shortcomings of
these methods, however, are choosing the appropriate order of the reduced system
and selecting good interpolation points. Moreover, the applicability of the two-sided
moment-matching method [20] is limited to single-input single-output QB systems,
and the stability of the obtained reduced-order system is a major issue in this method.
Furthermore, the construction ofH2-optimal approach to choose the optimal interpo-
lation points and the corresponding tangential directions has been discussed in [21],
but this requires to have the order of reduced models a priori.

Here, our focus instead lies on balancing-type MOR techniques for QB systems.
This technique mainly depends on the reachability and observability energy function-
als, or in other words, the Gramians of the system. This method is presented for linear
systems, e.g., in [1, 22], and later on, a theory of balancing for general nonlinear
systems is developed in a sequence of papers [23–27]. In the general nonlinear case,
the balancing requires the solutions of the state-dependent nonlinear Hamilton-Jacobi
equation, which are, firstly, very expensive to solve for large-scale dynamical sys-
tems; secondly, it is not straightforward to use them in the MOR context. Along with
these, it may happen that the reduced-order systems obtained from nonlinear balanc-
ing do not preserve the structure of the original nonlinearities. However, for some
weakly nonlinear systems, the so-called bilinear systems, reachability, and observ-
ability Gramians have been studied in [28–32], which are solutions to generalized
algebraic Lyapunov equations. Moreover, these Gramians, when used to define appro-
priate quadratic forms, approximate energy functionals of bilinear systems (in the
neighborhood of the origin), see [29, 30].

In this direction of balanced truncation for quadratic systems, our first goal is to
develop reachability and observability Gramians for these systems, which are state-
independent matrices and suitable for the MOR purpose. Additionally, we show how
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these Gramians can describe the reachable and observable subspaces, providing moti-
vation for MOR. In Section 2, we propose the reachability Gramian for QB systems
based on the underlying Volterra series of the system. Additionally, we determine the
observability Gramian based on the dual system associated with the QB system. Fur-
thermore, we establish relations between the solutions of a certain type of quadratic
Lyapunov equations and theseGramians.Wealso discuss a truncated version ofGrami-
ans using the leading integral-kernels of the Volterra series. In Section 3, we discuss
a connection between the proposed Gramians and reachable/observable subspaces.
Consequently, we utilize these Gramians for balancing QB systems, allowing us to
determine those states that are hard to reach as well as hard to observe. Truncation of
such states leads to reduced systems. In Section 4, we theoretically analyze sufficient
conditions for the existence of these Gramians, and the stability of these reduced sys-
tems obtained using truncated Gramians. In Section 5, we test the efficiency of the
proposed balanced truncation MOR technique for various semi-discretized nonlinear
PDEs and compare it with moment-matching techniques for QB systems.

We note that this manuscript is based on our preprint [33] and mostly reflects our
findings by 2017. Later on, somemoreworks on balanced truncation ofQBsystems has
appeared that cite our preprint, see, e.g., [34–36]. Here, we do not discuss these works
further, but would like to mention that they have advanced the theory and applicability
of balanced truncation of QB systems further.

2 Quadratic-Bilinear systems and their Gramians

In this work, we consider quadratic-bilinear systems of the following form:

ẋ(t) = Ax(t) + H (x(t) ⊗ x(t)) +
m
∑

k=1

Nkx(t)uk(t) + Bu(t), x(0) = 0, (3a)

y(t) = Cx(t), (3b)

where A, Nk ∈ R
n×n, H ∈ R

n×n2 , B ∈ R
n×m , and C ∈ R

p×n . Furthermore, x(t) ∈
R
n , u(t) ∈ R

m , and y(t) ∈ R
p denote the state, input, and output vectors of the

system, respectively, and ‘⊗‘ denotes the Kronecker product. In this section, we aim
at determining algebraic Gramians for QB systems, which can also be related to the
reachable and observable subspaces of the QB systems. We begin by deriving the
reachability Gramian of the QB system and by showing its connection with a certain
type of quadratic Lyapunov equation.

2.1 Reachability Gramian for QB systems

To derive the reachability Gramian, we first formulate the Volterra series for the QB
system (3). Before we proceed further, for ease, we define the following short-hand
notation:

u(k)
(t1,...,tl )

(t) := uk(t − t1 · · · − tl) and x(t1,...,tl )(t) := x(t − t1 · · · − tl),
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where uk denotes the k-th element of the input vector u. Adopting the analysis for
bilinear systems from [37] to QB systems, we can write the solution x(t) as follows:

x(t) =
∫ t

0
eAt1But1(t)dt1 +

m
∑

k=1

∫ t

0
eAt1Nkxt1(t)u

(k)
t1 (t)dt1

+
∫ t

0
eAt1H

(

xt1(t) ⊗ xt1(t)
)

dt1.

(4)

Based on the above equation, we can obtain an expression for xt1(t) as follows:

xt1(t) =
t−t1
∫

0

eAt2Bu(t1,t)2(t)dt2 +
m
∑

k=1

t−t1
∫

0

eAt2Nkx(t1,t2)(t)u
(k)
(t1,t2)

(t)dt2

+
t−t1
∫

0

eAt2H
(

x(t1,t2)(t) ⊗ x(t1,t2)(t)
)

dt2,

and substitute it in (4) to get

x(t) =
t
∫

0

eAt1But1(t)dt1 +
m
∑

k=1

t
∫

0

t−t1
∫

0

eAt1Nke
At2Bu(k)

t1 (t)u(t1,t2)(t)dt1dt2

+
t
∫

0

t−t1
∫

0

t−t1
∫

0

eAt1H(eAt2B ⊗ eAt3B)
(

u(t1,t2)(t) ⊗ u(t1,t3)(t)
)

dt1dt2dt3

+ · · · .

(5)

Repeating this process of substituting for the state yields the Volterra series for the
QB system [38]. Having analyzed the integral-kernels of the Volterra series for the
QB system, we define the reachability mapping P̄ as follows:

P̄ = [P̄1, P̄2, P̄3, . . . ], (6)

where the P̄i ’s are:

P̄1(t1) = eAt1B, (7a)

P̄2(t1, t2) = eAt2
[

N1, . . . , Nm
] (

Im ⊗ P̄1(t1)
)

, (7b)

...
...

P̄i (t1, . . . , ti )=eAti
[

H
[

P̄1(t1)⊗ P̄i−2(t2, . . . , ti−1), P̄2(t1, t2)⊗ P̄i−3(t3, . . . , ti−1),

. . . , P̄i−2(t1, . . . , ti−2) ⊗ P̄1(ti−1)
]

,
[

N1, . . . , Nm
] (

Im ⊗ P̄i−1(t1, . . . , ti−1)
)

]

, ∀ i ≥ 3. (7c)
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Using the mapping P̄ from (6), we define the reachability Gramian P as follows:

P =
∞
∑

i=1

Pi with Pi =
∞
∫

0

· · ·
∞
∫

0

P̄i (t1, . . . , ti )P̄
T
i (t1, . . . , ti )dt1 · · · dti , (8)

assuming that the series defining P converges and all improper integrals exit.
In what follows, we show the equivalence between the above-proposed reachability

Gramian and a solution of a certain type of quadratic Lyapunov equation.

Theorem 1 Consider the QB system (3)with a stable matrix A, i.e., all the eigenvalues
of the matrix A strictly lies in the negative half plane. If the reachability Gramian P
of the system defined as in (8) exists, meaning the sum of the infinite series in (8)
converges, then it satisfies the generalized quadratic Lyapunov equation, given by

AP + PAT + H(P ⊗ P)HT +
m
∑

k=1

Nk PNT
k + BBT = 0. (9)

Proof We begin by considering the first term in the summation (8). This is,

P1 =
∫ ∞

0
P̄1(t1)P̄

T
1 (t1)dt1 =

∫ ∞

0
eAt1BBT eA

T t1dt1.

As shown, e.g., in [1], P1 satisfies the following Lyapunov equation, provided A is
stable:

AP1 + P1A
T + BBT = 0. (10)

Next, we consider the second term in the summation (8):

P2 =
∫ ∞

0

∫ ∞

0
P̄2(t1, t2)P̄

T
2 (t1, t2)dt1dt2

=
∞
∫

0

∞
∫

0

eAt2
[

N1, . . . , Nm
]

(

Im ⊗
(

eAt1BBT eA
T t1
))

[

N1, . . . Nm
]T

eA
T t2dt1dt2

=
m
∑

k=1

∫ ∞

0
eAt2Nk

(

∫ ∞

0
eAt1BBT eA

T t1dt1
)

NT
k e

AT t2dt1dt2

=
m
∑

k=1

∫ ∞

0
eAt2Nk P1N

T
k e

AT t2dt2.

Again using the integral representation of the solution to Lyapunov equations [1], we
see that P2 is the solution of the following Lyapunov equation:

AP2 + P2A
T +

m
∑

k=1

Nk P1N
T
k = 0. (11)
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Finally, we consider the i th term, for i ≥ 3, which is

Pi =
∫ ∞

0
· · ·
∫ ∞

0
P̄i (t1, . . . , ti )P̄

T
i (t1, . . . , ti )dt1 · · · dti

=
∞
∫

0

eAti

⎡

⎣H

⎡

⎣

∞
∫

0

F (

P̄1(t1)
)

dt1 ⊗
∞
∫

0

· · ·
∞
∫

0

F (

P̄i−2(t2, . . . , ti−1)
)

dt2 · · · dti−1

+ · · · +
∞
∫

0

· · ·
∞
∫

0

F (

P̄i−2(t1, . . . , ti−2)
)

dt1 · · · dti−2 ⊗
∞
∫

0

F (

P̄1(ti−1)
)

dti−1

⎤

⎦ HT

+
m
∑

k=1

Nk

(∫ ∞

0
· · ·
∫ ∞

0
F (

P̄i−1(t1, . . . , ti−1)
)

)

NT
k

]

eA
T ti dti ,

where we use the shorthand F(A) := AAT . Thus, we have

Pi =
∫ ∞

0
eAti

[

H(P1 ⊗ Pi−2 + · · · + Pi−2 ⊗ P1)H
T +

m
∑

k=1

Nk Pi−1N
T
k

]

eA
T ti dti .

Similar to P1 and P2, we can show that Pi satisfies the following Lyapunov equation,
given in terms of the preceding Pk , for k = 1, . . . , i − 1:

APi + Pi A
T + H(P1 ⊗ Pi−2 + · · · + Pi−2 ⊗ P1)H

T +
m
∑

k=1

Nk Pi−1N
T
k = 0. (12)

Furthermore, let us define

P(L) :=
L
∑

i=1

Pi ,

which satisfies

AP(L) + P(L)AT + HX (L)
P HT +

m
∑

k=1

Nk P
(L−1)NT

k + BBT = 0, (13)

where

X (L)
P :=

L−2
∑

j=1

L−2
∑

i=1

Pi ⊗ Pj with i + j ≤ L − 1.

We know that the Gramian P = ∑∞
i=1 Pi = lim

L→∞ P(L). Thus, with noting

lim
L→∞X (L)

P = P ⊗ P , we obtain

AP + PAT + H (P ⊗ P) +
m
∑

k=1

Nk PNT
k + BBT = 0.

Hence, it satisfies the generalized quadratic Lyapunov equation stated in (9). �
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Remark 1 We note that it might be the case that there exist multiple P � 0 satisfying
the quadratic Lyapunov equation (9). In this case, we should consider the solution
which also satisfy the definition (8). Later, in Subsection 4.1, we discuss a fixed
point scheme, which, under certain conditions, can yield a solution for the quadratic
Lyapunov equation that also satisfy the definition (8).

2.2 Dual system and observability Gramian for QB systems

We next derive the dual system for the QB system since it plays an important role in
determining the observability Gramian for the QB system (3). Based on it, we seek to
determine the observability Gramian in a similar fashion as done for the reachability
Gramian in the preceding subsection. From linear and bilinear systems, we know that
the observability Gramian is the reachability Gramian of the dual system. Here also,
we consider the same analogy.

Using [39, Corollary 1], we first write down the state-space realization of the adjoint
operator of the QB system as follows:

ẋ(t) = Ax(t) + H(x(t) ⊗ x(t)) +
m
∑

k=1

Nkx(t)uk(t) + Bu(t), x(0) = 0,

ż(t)=−AT z(t)−(x(t)T ⊗ I )HT z(t)−
m
∑

k=1

NT
k z(t)uk(t)−CT u(d)(t), z(∞)=0,

y(d)(t) = BT z(t),
(14)

where z(t) ∈ R
n, u(d)(t) ∈ R and y(d) ∈ R can be interpreted as the dual state, dual

input, and dual output vectors of the system, respectively.
Moreover, using techniques from tensor algebra, we have the following relation:

(x(t) ⊗ I )HT z(t) = H(2) (x(t) ⊗ z(t)) ,

where H(2) is the mode-2 matricization of a tensor H ∈ R
n×n×n with H being such

that its mode-1 matricization is H . For more details on tensor algebra, we refer to [20,
40]. Hence, we can rewrite the system (14) as:

ẋ(t) = Ax(t) + H(x(t) ⊗ x(t)) +
m
∑

k=1

Nkx(t)uk(t) + Bu(t), x(0) = 0,

(15a)

ż(t)=−AT z(t)−H(2) (x(t)⊗z(t))−
m
∑

k=1

NT
k uk(t)z(t)−CT u(d)(t), z(∞)=0,

(15b)

y(d)(t) = BT z(t). (15c)

Now, we focus on determining the observability Gramian for the QB system by
utilizing the state-space realization of the Hilbert adjoint operator (dual system). For
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this, we follow the same steps used to determine the reachability Gramian. Using the
dual system (15), one can write the dual state z(t) of the dual system at time t as
follows:

z(t) =
∫ t

∞
e−AT (t−t1)CT u(d)(t1)dt1 +

m
∑

k=1

∫ t

∞
e−AT (t−t1)NT

k z(t1)uk(t1)dt1

+
∫ t

∞
e−AT (t−t1)H(2) (x(t1) ⊗ z(t1)) dt1,

which, after an appropriate change of variables, leads to

z(t) =
∫ 0

∞
eA

T t1CT u(d)(t + t1)dt1

+
m
∑

k=1

∫ 0

∞
eA

T t1NT
k z(t + t1)uk(t + t1)dt1

+
∫ 0

∞
eA

T t1H(2)(x(t + t1) ⊗ z(t + t1)
)

dt1.

(16)

Eqn. (15a) gives the expression for x(t + t1). This is

x(t + t1) =
∫ t+t1

0
eAt2Bu(t + t1 − t2)dt2 +

m
∑

k=1

∫ t+t1

0

(

eAt2Nkx(t + t1 − t2)

× uk(t + t1 − t2)
)

dt2 +
t+t1
∫

0

eAt2H(x(t + t1 − t2) ⊗ x(t + t1 − t2))dt2.

We substitute for x(t+ t1) using the above equation, and z(t+ t1) using (16), which
gives rise to the following expression:

z(t) =
∫ 0

∞
eA

T t1CT u(d)(t + t1)dt1 +
m
∑

k=1

∫ 0

∞

∫ 0

∞
eA

T t1NT
k

× eA
T t2CT u(d)(t + t1 + t2)uk(t + t1)dt1dt2 +

∫ 0

∞

∫ t+t1

0

∫ 0

∞
eA

T t1

× H(2)
(

eAt2B ⊗ eA
T t3CT

)

u(t + t1 − t2)u
(d)(t + t1 + t3)dt1dt2dt3 + · · · .

(17)

By repeatedly substituting for the state x and the dual state z, we derive the Volterra
series for the dual system, although the notation becomes much more complicated.
After inspecting the integral-kernels of theVolterra series of the dual system,we define
the observability mapping Q̄, similar to the reachability mapping, as follows:

Q̄ = [Q̄1, Q̄2, Q̄3, . . .], (18)
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in which

Q̄1(t1) = eA
T t1CT ,

Q̄2(t1, t2) = eA
T t2
[

NT
1 , . . . , NT

m

] (

Im ⊗ Q̄1(t1)
)

,

...
...

Q̄i (t1, . . . , ti ) = eA
T ti
[

H(2)[P̄1(t1) ⊗ Q̄i−2(t2, . . . , ti−1),

. . . , P̄i−2(t1, . . . , ti−2) ⊗ Q̄1(ti−1)
]

,
[

NT
1 , . . . , NT

m

] (

Im ⊗ Q̄i−1(t1, . . . , ti−1)
)

]

, ∀ i ≥ 3,

where P̄i (t1, . . . , ti ) are defined in (7). Based on the above observability mapping, we
define the observability Gramian Q of the QB system as follows:

Q =
∞
∑

i=1

Qi with Qi =
∫ ∞

0
· · ·
∫ ∞

0
Q̄i Q̄

T
i dt1 · · · dti , (19)

assuming that the series defining Q converges and all improper integrals exit. Analo-
gous to the reachability Gramian, we next show a relation between the observability
Gramian and the solution of a generalized Lyapunov equation.

Theorem 2 Consider the QB system (3) with a stable matrix A, and let Q, defined
in (19), be the observability Gramian of the system and assume it exists. Then, the
Gramian Q satisfies the following Lyapunov equation:

AT Q + QA + H(2)(P ⊗ Q)(H(2))T +
m
∑

k=1

NT
k QNk + CTC = 0, (20)

where P is the reachability Gramian of the system, i.e., the solution of the generalized
quadratic Lyapunov equation, given in (8).

Proof The proof of the above theorem is analogous to the proof of Theorem 1; there-
fore, we skip it for the brevity of the paper. �

Remark 2 As onewould expect, the Gramians for QB systems boil down to theGrami-
ans for bilinear systems [29] if the quadratic term is zero, i.e., H = 0.We shall discuss
sufficient conditions for the existence of solutions of (9) and (20) in Subsection 4.1.

2.3 Truncated Gramians based on leading integral-kernels

It would also be interesting to look at a truncated version of the Gramians of the
QB system based on the leading integral-kernels of the Volterra series, like done for
bilinear systems in [30]. We refer to them as truncated Gramians of QB systems. For
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this, let us consider approximate reachability and observability mappings using the
leading integral-kernels as follows:

˜PT = [

˜P1, ˜P2, ˜P3
]

, ˜QT = [

˜Q1, ˜Q2, ˜Q3
]

,

where

˜P1(t1) = eAt1B,

˜Q1(t1) = eA
T t1CT ,

˜P2(t1, t2) = eAt2
[

N1, . . . , Nm
] (

Im ⊗ ˜P1(t1)
)

,

˜Q2(t1, t2) = eA
T t2
[

NT
1 , . . . , NT

m

] (

Im ⊗ ˜Q1(t1)
)

,

˜P3(t1, t2, t3) = eAt3H(˜P1(t1) ⊗ ˜P1(t2)),

˜Q3(t1, t2, t3) = eA
T t3H(2)(˜P1(t1) ⊗ ˜Q1(t2)).

Then, one can define the truncated reachability and observability Gramians in a
similar fashion as the Gramians of the system:

PT =
3
∑

i=1

̂Pi , where ̂Pi =
∫ ∞

0

˜Pi (t1, . . . , ti )˜P
T
i (t1, . . . , ti )dt1 · · · dti , (21a)

QT =
3
∑

i=1

̂Qi , where ̂Qi =
∫ ∞

0

˜Qi (t1, . . . , ti )˜Q
T
i (t1, . . . , ti )dt1 · · · dti , (21b)

respectively. Similar to the Gramians P and Q, in the following, we derive the relation
between these truncated Gramians and the solutions of the Lyapunov equations.

Corollary 2.1 Let PT and QT be the truncated Gramians of the QB system as defined
in (21) with a stable matrix A. Then, PT and QT satisfy the following Lyapunov
equations:

APT + PT AT + H(̂P1 ⊗ ̂P1)H
T +

m
∑

k=1

Nk ̂P1N
T
k + BBT = 0, and

(22a)

AT QT + QT A + H(2)(̂P1 ⊗ ̂Q1)(H(2))T +
m
∑

k=1

NT
k
̂Q1Nk + CTC = 0, (22b)

respectively, where ̂P1 and ̂Q1 are solutions to the following Lyapunov equations:

ÂP1 + ̂P1A
T + BBT = 0, and (23)

AT
̂Q1 + ̂Q1A + CTC = 0, respectively. (24)
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Proof We begin by showing the relation between the truncated reachability Gramian
PT and the solution of the Lyapunov equation. First, note that the first two terms of
the reachability Gramian P in (21a) and the truncated reachability Gramian PT in (8)
are the same, i.e., ̂P1 = P1 and ̂P2 = P2, and ̂P1 and ̂P2 are the unique solutions of
the following Lyapunov equations for a stable matrix A:

ÂP1 + ̂P1A
T + BBT = 0, and (25)

ÂP2 + ̂P2A
T +

m
∑

k=1

Nk ̂P1N
T
k = 0. (26)

Now, we consider the third term in the summation (21a). That is

̂P3 =
∫ ∞

0

∫ ∞

0

∫ ∞

0

˜P3(t1, t2, t3)˜P
T
3 (t1, t2, t3)dt1dt2dt3

=
∫ ∞

0

∫ ∞

0

∫ ∞

0
eAt3H(˜P1(t1)˜P

T (t1) ⊗ ˜P1(t2)˜P
T (t2))H

T eA
T t3dt1dt2dt3

=
∫ ∞

0
eAt3H

((∫ ∞

0

˜P1(t1)˜P
T (t1)dt1

)

⊗
(∫ ∞

0

˜P1(t2)˜P
T (t2)dt2

))

HT eA
T t3dt3

=
∫ ∞

0
eAt3H

(

̂P1 ⊗ ̂P1
)

HT eA
T t3dt3.

Here, we have used that the infinite integrals exist due to the stability of A. Further-
more, we use the relation between the above integral representation and the solution
of the Lyapunov equation to show that ̂P3 solves:

ÂP3 + ̂P3A
T + H(̂P1 ⊗ ̂P1)H

T = 0. (27)

Summing (25), (26) and (27) yields

APT + PT AT + H(̂P1 ⊗ ̂P1) +
m
∑

k=1

Nk ̂P1Nk + BBT = 0. (28)

Analogously, we can show that QT solves (22b), thus concluding the proof. �

Next, we study how these Gramians characterize reachable and observable sub-
spaces of QB systems.

3 Characterization of reachable and observable subspaces using
Gramians

In this section, our objective is first to provide an interpretation of the proposed
Gramians—that is, the connection of Gramians with the reachability and observability
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of the system. For the observability energy functional, we consider the output y of the
following homogeneous QB system:

ẋ(t) = Ax + H (x(t) ⊗ x(t)) +
m
∑

k=1

Nkx(t)uk(t),

y(t) = Cx(t), x(0) = x0,

(29)

inspired from the bilinear systems [29, 32]. However, it might also be possible to
consider an inhomogeneous system by setting the control input u completely zero,
as shown in [25]. We first investigate how the proposed Gramians are related to the
reachability and observability of the QB systems, analogues to derivation for bilinear
systems in [29].

Theorem 3
(a) Consider the QB system (3), and assume the reachability Gramian P exists and

satisfies (9). If the system is steered from 0 to x0 /∈ ImP, then the controllability
energy functional Lc(x0) = ∞ for all input functions u.

(b) Furthermore, consider the homogeneous QB system (29) and assume P � 0 and
Q to be the reachability and observability Gramians of the QB system, which are
solutions of (9) and (20), respectively. If the initial state satisfies x0 ∈ NullQ,
then the observability energy functional Lo(x0) = 0.

Proof
(a) By assumption, P satisfies

AP + PAT + H(P ⊗ P)HT +
m
∑

k=1

Nk PNT
k + BBT = 0. (30)

Next, we consider a vector v ∈ NullP and multiply the above equation from the
left and right with vT and v, respectively, to obtain

0 = vT APv + vT P AT v + vT H(P ⊗ P)HT v +
m
∑

k=1

vT Nk PNT
k v + vT BBT v

= vT H(P ⊗ P)HT v +
m
∑

k=1

vT Nk PNT
k v + vT BBT v.

This implies BT v = 0, PNT
k v = 0 and (P ⊗ P)HT v = 0. From (30), we thus

obtain PAT v = 0. Now, we consider an arbitrary state vector x(t), which is the
solution of (3) at time t for any given input function u. If x(t) ∈ ImP for some t ,
then we have

ẋ(t)T v = x(t)T AT v + (x(t) ⊗ x(t))T HT v+
m
∑

k=1

uk(t)x(t)
T NT

k v+u(t)BT v=0.

123



   88 Page 14 of 31 P. Benner and P. Goyal

The above relation indicates that ẋ(t) ⊥ v if v ∈ NullP and x(t) ∈ ImP . It
shows that ImP is invariant under the dynamics of the system. Since the initial
condition 0 lies in ImP , x(t) ∈ ImP for all t ≥ 0. This reveals that if the final
state x0 /∈ ImP , then it cannot be reached from 0; hence, Lc(x0) = ∞.

(b) Following the above discussion, we can show that (P ⊗ Q)
(H(2)

)T
NullQ = 0,

QNkNullQ = 0, QANullQ = 0, and CNullQ = 0. Moreover, if P > 0, then
(I ⊗ Q)

(H(2)
)T

NullQ = 0. Let x(t) denote the solution of the homogeneous
system at time t . If x(t) ∈ NullQ and a vector ṽ ∈ ImQ, then we have

ṽT ẋ(t) = ṽT Ax(t)
︸ ︷︷ ︸

=0

+ṽT H(x(t) ⊗ x(t))) +
m
∑

k=1

ṽT Nkx(t)uk(t)
︸ ︷︷ ︸

=0

= x(t)TH(2)(x(t) ⊗ ṽ) = x(t)TH(2)(I ⊗ ṽ)
︸ ︷︷ ︸

=0

x(t) = 0.

This implies that if x(t) ∈ NullQ, then ẋ(t) ∈ NullQ. Therefore, if the initial
condition x0 ∈ NullQ, then x(t) ∈ NullQ for all t ≥ 0, resulting in y(t) =
C x(t)
︸︷︷︸

∈NullQ
= 0; hence, Lo(x0) = 0. �

The above theorem suggests that the state components belonging toNullP orNullQ,
do not play a major role as far as the system dynamics are concerned. This shows that
the states which belong to NullP , are unreachable, and similarly, the states, lying
in NullQ are unobservable once the unreachable states are removed. In addition to
this, note that the reachability Gramian P is defined by inspecting the integral-kernels
of the underlying Volterra series, see Subsection 2.1. The Gramian P encodes the
information about all infinite integral-kernels, thus also has the information about the
subspace of the state x . Consequently, the dominant reachable subspaces of the infinite
integral-kernels can be determined by the dominant singular vectors of Gramian P .
Likewise also holds for the dominant observable subspaces, which can be determined
by the dominant singular values of Q. These align with the concept of balanced
truncation, which aims to identify the dominant reachable and observable subspaces
and remove the less dominant reachable and observable subspaces. To find the states,
which are simultaneously dominant reachable and observable, we utilize the balancing
tools similar to the linear case; see, e.g., [1, 28]. For this, one needs to determine the
Cholesky factors of the Gramians as P =: ST S and Q =: RT R, and compute the

SVD of SRT =: U�V T , resulting in a transformation matrix T = STU�
− 1
2 . Using

the matrix T , we obtain an equivalent QB system

˙̃x(t) = ˜Ax̃(t) + ˜Hx̃(t) ⊗ x̃(t) +
m
∑

k=1

˜Nk x̃(t)uk(t) + ˜Bu(t),

y(t) = ˜Cx̃(t), x̃(0) = 0,

(31)

with

˜A = T−1AT , ˜H = T−1H(T ⊗ T ), ˜Nk = T−1NkT , ˜B = T−1B, ˜C = CT .
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Then, the above transformed system (31) is balanced, as the Gramians ˜P and ˜Q
of the system (31) are equal and diagonal, i.e., ˜P = ˜Q = diag(σ1, σ2, . . . , σn).
The attractiveness of the balanced system is that it allows finding state components
corresponding to small singular values of both ˜P and ˜Q. If σ1 � σn̂+1, for some
n̂ ∈ N, then in analogy to the linear case, we interpret those as hard to reach and
hard to observe simultaneously; hence, they can be eliminated. In order to determine

a reduced system of order n̂, we partition T = [

T1 T2
]

and T−1 = [

ST1 ST2
]T
, where

T1, ST1 ∈ R
n×n̂ , and define the reduced-order system’s realization as follows:

̂A = S1AT1, ̂H = S1H(T1 ⊗ T1), ̂Nk = S1NkT1, ̂B = S1B, ̂C = CT1, (32)

which is generally a locally good approximation of the original system. It is not a
straightforward task to estimate the error occurring due to the truncation of the QB
system, unlike in the case of linear systems. Still, we can consider the sum of truncated
singular values as an error indicator.

Remark 3 Similar to linear and bilinear systems, it would be interesting to establish a
connection between energy functional and a quadratic form of the Gramians. In this
direction, an attempt has been made in [33, 41], but it requires further investigation to
make these connections and arguments concrete.

4 Further analysis and remarks

In this section, we provide some analysis related to the existence of Gramians, and
the computational advantages of considering the truncated Gramians in the MOR
framework. Towards the end, we analyze a local Lyapunov stability of the reduced-
order systems obtained by using the truncated Gramians.

4.1 Existence of Gramians

We have shown that the reachability and observability Gramians satisfy (9) and (20),
respectively, provided the sumof the infinite series definingGramians converge.Begin-
ning with the reachability Gramian, we discuss a iterative type of scheme to obtain
a solution of (9) and satisfy also the sum of the underlying infinite sum. A simple
scheme can be designed based on fixed-point iteration method, as follows:

A˜P1 + ˜P1A
T + BBT = 0,

A˜Pg + ˜Pg A
T + H

(

˜Pg−1 ⊗ ˜Pg−1
)

HT

+
m
∑

k=1

Nk ˜Pg−1N
T
k + BBT = 0, for g ≥ 2.

(33)

If the above fixed-point iteration converges, then it leads to a solution of (9). More-
over, with analytic calculations, we can also show that limg→∞ ˜Pg can be cast as an
infinite sum which will match with (8).
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Similarly, if we define the following fixed-point iteration:

AT
˜Q1 + ˜Q1A + CTC = 0,

AT
˜Qg + ˜Qg A + H(2) (

˜P∞ ⊗ ˜Qg−1
)

+
m
∑

k=1

NT
k
˜Qg−1Nk + CTC = 0, for g ≥ 2,

(34)

then it gives the solution of (20). Next, we discuss sufficient conditions under which
the fixed point iterations that are given in (33) and (34) converge. This would also
imply the existence of Gramians.

Theorem 4 Consider a QB system as defined in (3) and let P and Q be its reachability
and observability Gramians, respectively, and assume their existence. Further, assume
that the Gramians P and Q are determined using fixed point iterations as shown in
(33) and (34), respectively. These iterations converge if

(i) A is stable, i.e., there exist 0 < α ≤ −max(Re (λi (A))) and β > 0 such that
‖eAt‖ ≤ βe−αt .

(ii)
β2�N

2α
< 1, where �N := ∑m

k=1 ‖Nk‖2.

(iii) 1 > D2 − β2�H

α

β2�B

α
> 0, where D := 1 − β2�N

2α
, and �B := ‖BBT ‖,

�H := ‖H‖2.
Moreover, the norm lim

g→∞ ‖˜Pg‖ =: ˜P∞ is bounded by

‖˜P∞‖ ≤ 2α

β2�H

⎛

⎝D −
√

D2 − 4
β2�H

2α

β2�B

2α

⎞

⎠ =: ˜P∞. (35)

Furthermore, the iteration for ˜Qg also converges to a positive semidefinite solution
Q of the linear matrix equation (20) if in addition to the above conditions i–iii, the
following condition is satisfied:

β2

2α

(

�N +˜�HP∞
)

< 1, (36)

where˜�H := ‖H(2)‖2. Moreover, limg→∞ ‖Qg‖ =: ˜Q∞ is bounded by

‖˜Q∞‖ ≤ β2

2α
�C

(

1 − β2

2α

(

�N +˜�HP∞
)

)−1

, (37)

where �C := ‖CTC‖.
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Proof Let us first consider the equation corresponding to ˜P1:

A˜P1 + ˜P1A
T + BBT = 0. (38)

Alternatively, if A is stable, we can write ˜P1 in the integral form as

˜P1 =
∫ ∞

0
eAt BBT eA

T tdt, (39)

implying

‖˜P1‖ ≤ β2‖BBT ‖
∫ ∞

0
e−2αtdt = β2�B

2α
, (40)

where �B := ‖BBT ‖. Next, we look at the equation corresponding to ˜Pg , which is
given in terms of ˜Pg−1:

A˜Pg + ˜Pg A
T + H(˜Pg−1 ⊗ ˜Pg−1)H

T +
m
∑

k=1

Nk ˜Pg−1Nk + BBT = 0. (41)

We can also write ˜Pg in an integral form, provided A is stable:

˜Pg =
∫ ∞

0
eAt

(

H(˜Pg−1 ⊗ ˜Pg−1)H
T +

m
∑

k=1

Nk ˜Pg−1Nk + BBT

)

eA
T tdt

≤ β2
(

�H‖˜Pg−1‖2 + �N‖˜Pg−1‖ + �B

)

∫ ∞

0
e−2αtdt

≤ β2

(

�H‖˜Pg−1‖2 + �N‖˜Pg−1‖ + �B
)

2α
,

where �H := ‖H‖2 and �N := ∑m
k=1 ‖Nk‖2. If we consider an upper bound for the

norm of ˜Pg−1 in order to provide an upper bound for ˜Pg and apply Appendix A, then
we know that lim

g→∞ ‖˜Pg‖ is bounded if

1 > D2 − 4
β2�H

2α

β2�B

2α
≥ 0, where D := 1 − β2�N

2α
and

β2�N

2α
< 1,

and lim
g→∞ ‖˜Pg‖ is bounded by

lim
g→∞ ‖Pg‖ ≤ 2α

β2�H

⎛

⎝D −
√

D2 − 4
β2�H

2α

β2�B

2α

⎞

⎠ =: P∞.

Moreover, since ‖˜Pg‖ is a non-decreasing function, the fixed-point iteration (33) also
converges [42, Chap. 9].
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Next, we consider the equation corresponding to ˜Q1:

AT
˜Q1 + ˜Q1A + CTC = 0,

which again can be rewritten as:

˜Q1 =
∫ ∞

0
eA

T tCTCeAtdt

if A is stable. This implies

‖˜Q1‖ ≤ β2�C

∫ ∞

0
e−2αtdt = β2�C

2α
,

where �c := ‖CTC‖. Next, we look at the equation corresponding to Qg , that is,

AT
˜Qg + Qg˜A + H(2)(˜P∞ ⊗ ˜Qg−1)

(

H(2)
)T +

m
∑

k=1

NT
k Qg−1Nk + CTC = 0.

A similar analysis for ‖Qg‖ yields

‖Qg‖ ≤ β2

2α

((

�N +˜�H‖˜P∞‖) ˜Qg−1 + �C
) = β2

2α

((

�N +˜�HP∞
)

˜Qg−1 + �C
)

,

where˜�H := ‖H(2)‖. An additional sufficient condition under which the above recur-
rence formula in ‖Qg‖ converges is as follows:

β2

2α

(

�N +˜�HP∞
)

< 1,

and limg→∞ ‖˜Qg‖ is then bounded by

lim
g→∞ ‖˜Qg‖ ≤ β2

2α
�C

(

1 − β2

2α

(

�N +˜�HP∞
)

)−1

.

Additionally, ‖˜Qg‖ is a non-decreasing function; hence, the iterations also converge.
This concludes the proof. �

4.2 MOR using truncated Gramians

In Section 2, we have proposed the Gramians and have shown that the reachable
Gramian P satisfies a quadratic-type Lyapunovmatrix equations. There have been sev-
eral developments for solving linearmatrix equations [43, 44]; however, quadratic-type
matrix equations appear for the first time in this work, and new algorithm devel-
opments are required to solve such matrix equations efficiently. Furthermore, we
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Algorithm 1 Balanced truncation for QB systems (truncated version).
Input: System matrices A, H , Nk , B and C , and the order of the reduced system n̂.
Output: The reduced system’s matrices ̂A, ̂H , ̂Nk , ̂B, ̂C .

1: Determine low-rank approximations of the truncated Gramians PT ≈ RRT and QT ≈ SST .
2: Compute SVD of ST R:

ST R = U�V = [

U1 U2
]

diag (�1, �2)
[

V1 V2
]T ,

where �1 contains the n̂ largest singular values of ST R.
3: Construct the projection matrices V andW:

V = SU1�
− 1
2

1 andW = RV1�
− 1
2

1 .
4: Determine the reduced-order system’s realization:

̂A = WT AV, ̂H = WT H(V ⊗ V), ̂Nk = WT NkV, ̂B = WT B, ̂C = CV .

have discussed sufficient conditions in which these Gramians can be obtained using
fixed-point iterations. However, these conditions are very conservative for large-scale
models, particularly those coming from PDEs, and this is also what we observe in our
numerical examples. On the other hand, in order to compute the truncated Gramians,
there is no such convergence issue, and they capture information about the leading
three integral-kernels, see Section 2. For weakly nonlinear quadratic systems, one can
expect the a rapid convergence of the Volterra series, given in (5). In this case, the
leading integral-kernels would contain most information about the system dynam-
ics, and hence, a balancing scheme based on these truncated Gramians can already
provide information about information subspaces. Therefore, in this work, we utilize
the truncated Gramians to determine the reduced-order models, and we present the
square-root balanced truncation for QB systems based on these truncated Gramians
in Algorithm 1. Furthermore, we will see in Section 5 that these truncated Gramians
also yield very good qualitative reduced-order systems for QB systems.

4.3 Stability preservation

We now discuss the stability of the reduced-order systems obtained by using Algo-
rithm 1. For this, we consider only the autonomous part of the QB system as follows:

ẋ(t) = Ax(t) + H (x(t) ⊗ x(t)) , (42)

where xeq = 0 is a stable equilibrium.
In the following, we discuss Lyapunov stability of xeq . For this, we first note the

definition of local stability.

Definition 1 Consider a QB system with u ≡ 0 (42). If there exists a Lyapunov
function F : Rn → R such that

F(x(t)) > 0 and
d

dt
F(x(t)) > 0 ∀ x(t) ∈ B0,r\{0}, t ≥ 0

along the trajectory of x(t), and B0,r is a ball of radius r centered around 0, then
xeq = 0 is locally asymptotically stable.
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However, many other notions of the stability of nonlinear systems are available in
the literature, for instance, based on a certain dissipation inequality [45], which might
be difficult to apply in a large-scale setting. In this paper, we stick to the notion of
Lyapunov-based stability for reduced-order systems.

Theorem 5 Consider the QB system (3) with a stable matrix A. Let PT and QT
be its truncated reachability and observability Gramians, defined in Corollary 2.1,
respectively. If the reduced-order system is determined as shown in Algorithm 1, then
for the Lyapunov function F (̂x) = x̂ T�1 x̂ , we have

F (̂x) > 0, d
dt (F (̂x)) < 0 ∀ x̂ ∈ B0,r\{0},

along the trajectory of x(t), and r = σmin(VTGV)

2‖�1‖‖̂H‖ and

G = H(2)(P1 ⊗ Q1)
(

H(2)
)T +

m
∑

k=1

NT
k Q1Nk + CTC

with P1 and Q1 being the solutions of (23) and (24), respectively.

Proof First, we establish the relation betweenV ,W , QT , and�1. For this, we consider

W�1 = RV1�
1
2
1 = RV1

[

�1 0
]T

UTU1�
− 1
2

1 = RV�UTU1�
− 1
2

1

= RRT STU1�
− 1
2

1 = QT V.

Keeping in mind the above relation, we get

̂AT�1 + �1̂A + VTGV = VT ATW�1 + �1WT AV + VTGV (43)

= VT AT QT V + VT QT AV + VTGV = VT (AT QT + QT A + G)V = 0.

Since G is a positive semidefinite matrix and V has full column rank, VTGV is also
a positive semidefinite. This implies that η(̂A) ≤ 0, where η(·) denotes the spectral
abscissa of a matrix. Coming back to the Lyapunov function F (̂x) = x̂ T�1 x̂ , which
is always greater than 0 for all x̂ �= 0 due to �1 being a positive definite matrix, we
compute the derivative of the Lyapunov function as

d

dt
F (̂x) = ˙̂xT�1 x̂ + x̂ T�1 ˙̂x

= x̂ T ̂AT�1 x̂ + (̂xT ⊗ x̂ T )̂HT�1 x̂ + x̂ T�1̂Ax̂ + x̂ T�1 ̂H (̂x ⊗ x̂)

= x̂ T (̂AT�1 + �1̂A)̂x + (̂xT ⊗ x̂ T )̂HT�1 x̂ + x̂ T�1 ̂H (̂x ⊗ x̂).

Substituting ̂AT�1 + �1̂A = −VTGV from (43) in the above equation yields

d
dtF (̂x) = −x̂ TVTGV x̂ + 2x̂ T�1 ̂H (̂x ⊗ x̂). (44)
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As

x̂ TVTGV x̂ ≥ σmin(VTGV)‖x̂‖2,

implying

− x̂ TVTGVx ≤ −σmin(VTGV)‖x̂‖2,

inserting the above inequality in (44) leads to

d
dtF (̂x) ≤ −σmin(VTGV)‖x̂‖2 + 2‖x̂‖3‖�1‖‖̂H‖.

For local asymptotic stability of the reduced-order system, we require

d
dtF (̂x) ≤ −σmin(VTGV)‖x̂‖2 + 2‖x̂‖3‖�1‖‖̂H‖ < 0,

which gives rise to the following bound on ‖x̂‖:

‖x̂‖ <
σmin(VTGV)

2‖�1‖‖̂H‖ .

This concludes the proof. �

5 Numerical experiments

In this section, we consider the MOR of several QB control systems and evaluate
the efficiency of the proposed balanced truncation technique (Algorithm 1). For this,
we need to solve a number of conventional Lyapunov equations. In our numerical
experiments, we determine the low-rank factors of these Lyapunov equations by
using the ADI method as proposed in [46]. We compare the proposed methodology
with the existing moment-matching techniques for QB systems, namely one-sided
moment-matching [12] and its extension to two-sided moment-matching [20]. These
moment-matching methods aim at approximating the underlying generalized transfer
functions of the system. Moreover, we need interpolation points in order to apply
the moment-matching methods; thus, we choose l linear H2-optimal interpolation
points, determined by using IRKA [47] on the corresponding linear part. This leads to
a reduced QB system of order n̂ = 2l.

5.1 Nonlinear RC ladder

As a first example, we discuss a nonlinear RC ladder. It is a well-known example
and is used as one of the benchmark problems in the community of nonlinear model
reduction; see, e.g., [12, 13, 15, 16, 48]. A detailed description of the dynamics can be
found in the mentioned references; therefore, we omit it for the brevity of the paper.
However, we like to comment on the nonlinearity present in the RC ladder. The non-
linearity arises from the presence of the diode I-V characteristic iD := e40vD−vD−1,
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where vD denotes the voltage across the diode. As shown in [12], introducing some
appropriate new variables allows us to write the system dynamics in the QB form of
dimension n = 2k, where k is the number of capacitors in the ladder.

We consider 500 capacitors in the ladder, leading to aQB system of order n = 1000.
For this particular example, the matrix A is a semi-stable matrix, i.e., 0 ∈ σ(A). As
a result, the truncated Gramians of the system might not exist; therefore, we replace
the matrix A by As := A−0.05I , where I is the identity matrix, to determine these
Gramians. However, note that we project the original system with the matrix A to
compute a reduced-order system, but the projection matrices are computed using the
Gramians obtained via the shifted matrix As . In Fig. 1, we show the decay of the
singular values determined by the truncated Gramians (with the shifted A). We then
compute the reduced system of order n̂ = 10 by using balanced truncation. Also,
we determine 5 H2-optimal linear interpolation points and compute reduced-order
systems of order n̂ = 10 via one-sided and two-sided projection methods.

To compare the quality of these approximations, we simulate these systems for the
input signals u1(t) = 5 (sin(2π/10) + 1) and u2(t) = 10

(

t2 exp(−t/5)
)

. Figure 2
presents the transient responses and relative errors of the output for these input signals,
which shows that balanced truncation outperforms the one-sided interpolatorymethod;
on the other hand, we see that balanced truncation is competitive to the two-sided
interpolatory projection for this example.

Lastly, we present CPU time to simulate full-order and reduced-order models
obtained using BT and time to compute reduced-order models using BT. Note that
FOMsimulations are done using the original unlifted systems, andROMs are quadratic
models of the lifted quadratic systems. The result is reported in Table 1. We note that
the CPU time to compute reduced-order models using BT is much lower than even
a single FOM for a given control input, and the obtained reduced-order models are
significantly faster. For control design applications, where we are required to simulate
FOM for many control scenarios, the designing cycle can be sped up significantly.

5.2 One-dimensional Chafee-Infante equation

As a second example, we consider the one-dimensional Chafee-Infante (Allen-Cahn)
equation. This nonlinear system has beenwidely studied in the literature; see, e.g., [49,
50], and its model reduction related problem was recently considered in [20]. The

Fig. 1 ARC ladder: the decay of the normalized singular values based the truncatedGramians, and the dotted
lines show the normalized singular value for n̂ = 10 and the order of the reduced system corresponding to
the normalized singular value 1e−15
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Fig. 2 A RC ladder: comparison of reduced-order systems obtained by balanced truncation (BT) and
moment-matching methods for two arbitrary control inputs

governing equation, subject to initial conditions and boundary control, has a cubic
nonlinearity:

v̇ + v3 = vxx + v, (0, L) × (0, T ), v(0, ·) = u(t), (0, T ),

vx (L, ·) = 0, (0, T ), v(x, 0) = 0, (0, L).
(45)

Here, we make use of a finite difference scheme and consider k grid points in
the spatial domain, leading to a semi-discretized nonlinear ODE. As shown in [20],

Table 1 A RC ladder: A
comparison of CPU time to
simulate full-order and
reduced-order models

FOM ROM Speed up Time to
(factor) compute ROM

input u1(t) 7.74s 0.23s ∼33x 2.02s

input u2(t) 6.34s 0.11s ∼57x –
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the smooth nonlinear system can be transformed into a QB system by introducing
appropriate new state variables. Therefore, the system (45) with the cubic nonlinearity
can be rewritten in the QB form by defining new variables wi = v2i with derivate
ẇi = 2vi v̇i . We observe the response at the right boundary x = L . We use k = 500
grid points, which results in a QB system of dimension n = 2 ·500 = 1000 and set the
length L = 1. In Fig. 3, we show the decay of the normalized singular values based
on the truncated Gramians of the system.

We determine reduced-order systems of order n̂ = 20 by using balanced trun-
cation, and one-sided and two-sided interpolatory projection methods. To compare
the quality of these reduced-order systems, we observe the outputs of the original
and reduced-order systems for two arbitrary control inputs u(t) = 5t exp(−t) and
u(t) = 30(sin(π t) + 1) in Fig. 4.

Figure 4a shows that the reduced-order systems obtained via balanced truncation
and one-sided and two-sided interpolatory projection methods are almost of the same
quality for inputu1. But for the inputu2, the reduced-order systemobtained via the one-
sided interpolatory projection method fails to capture the dynamics of the system. In
contrast, balanced truncation and two-sided interpolatory projection can reproduce the
system dynamics with a slight advantage of two-sided projection regarding accuracy.

Next, like the previous example, we present CPU time to simulate full-order and
reduced-order models obtained using BT, and time to compute reduced-order models
using BT. Here again, FOM simulations are done using the original unlifted cubic
systems, which are efficient and fast, and ROMs are quadratic models of the lifted
quadratic systems. The result is reported in Table 2. We note that the CPU time to
compute reduced-order models using BT is similar to the FOM simulation for u2,
and the obtained reduced-order models are significantly faster. The designing cycle
can be sped up significantly for control design applications, where we are required to
simulate FOM for many control scenarios.

Lastly, for this example, we study the effect of reduced-order on the quality of
reduced-ordermodels, and the results are shown in Fig. 5.We notice that aswe increase
the order of the reduced-order system, the two-sided interpolatory projection method
tends to produce unstable reduced-order systems. This is reflected in Fig. 5 as themiss-
ing values for two-sided interpolatory method indicate the order for which we obtain
unstable reduced-order models. On the other hand, the accuracy of the reduced-order
systems obtained by balanced truncation and one-sided moment-matching increases
with the order of the reduced-order systems.

Fig. 3 Chafee-Infante equation: the decay of the normalized singular values based the truncated Gramians,
and the dotted line shows the normalized singular value for n̂ = 20 and the order of the reduced-order
system corresponding to the normalized singular value 1e−15

123



Balanced truncation for quadratic-bilinear control systems Page 25 of 31    88 

Fig. 4 Chafee-Infante equation: comparison of the reduced-order systems obtained via balanced truncation
and moment-matching methods for the inputs u1(t) = 5 (t exp(−t)) and u2(t) = 30 (sin(π t) + 1)

5.3 The FitzHugh-Nagumo (F-N) system

Lastly, we consider the F-N system, a simplified neuronmodel of the Hodgkin-Huxley
model, which describes the activation and deactivation dynamics of a spiking neuron.
This model has been considered in the framework of POD-based [7] and moment-
matching model reduction techniques [51]. The dynamics of the system is governed
by the following nonlinear coupled differential equations:

εvt (x, t) = ε2vxx (x, t) + f (v(x, t)) − w(x, t) + q,

wt (x, t) = hv(x, t) − γw(x, t) + q
(46)

Table 2 A RC ladder: A
comparison of CPU time to
simulate full-order and
reduced-order models

FOM ROM Speed up Time to
(factor) compute ROM

input u1(t) 4.52s 0.23s ∼20x 1.93s

input u2(t) 1.73s 0.09s ∼18x –
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Fig. 5 Chafee-Infante equation: Mean error with respect to different reduced models for two control inputs

with a nonlinear function f (v(x, t)) = v(v −0.1)(1−v) and the initial and boundary
conditions:

v(x, 0) = 0, w(x, 0) = 0, x ∈ [0, L],
vx (0, t) = i0(t), vx (1, t) = 0, t ≥ 0,

(47)

where ε = 0.015, h = 0.5, γ = 2, q = 0.05. We set the length L = 0.2. The
stimulus i0 acts as an actuator, taking the values i0(t) = 5 · 104t3 exp(−15t), and
the variables v and w denote the voltage and recovery voltage, respectively. We also
assume the same outputs of interest as considered in [51],which are v(0, t) andw(0, t).
These outputs describe nothing but the limit cyclic at the left boundary. Using a finite
difference discretization scheme, one can obtain a system with two inputs and two
outputs of dimension 2k with cubic nonlinearities, where k is the number of degrees
of freedom. Similar to the previous example, the F-H system can also be transformed
into a QB system of dimension n = 3k by introducing a new state variable zi = v2i .
We set k = 500, resulting in a QB system of order n = 1500. Figure 6 shows the
decay of the singular values based on the truncated Gramians for the QB system.

Furthermore, we determine reduced-order systems of order n̂ = 20 by using bal-
anced truncation and moment-matching methods. We observe that the reduced-order
systems, obtained via the moment-matching methods with linearH2-optimal interpo-
lations, both one-sided and two-sided, fail to capture the dynamics and limit cycles.
We made several attempts to adjust the order of the reduced-order systems, but, we
were unable to determine a stable reduced-order system via these methods with linear
H2-optimal points which could replicate the dynamics. Contrary to these methods,

Fig. 6 xDecay of the normalized singular values based on the truncated Gramians of the system for the
F-N example, and the dotted lines show the normalized singular value for n̂ = 20 and the order of the
reduced-order system corresponding to the normalized singular value 1e−15
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Fig. 7 FitzHugh-Nagumo system: comparison of the response at the left boundary and the limit cycle
behavior of the original system and the reduced-order (balanced truncation) system. The reduced-order
systems determined by moment-matching methods could not produce these limit cycles

balanced truncation replicates the dynamics of the system faithfully, as can be seen in
Fig. 7a. Note that the reduced-order model reported in [51] was obtained using higher-
order moments in a trial-and-error fashion but cannot be reproduced by an automated
algorithm. As the dynamics of the system produce limit cycles for each spatial variable
x , we, therefore, plot the solutions v and w over the spatial domain x , which is also
captured by the reduced-order system very well.

Remark 4 Note that the proposed balanced truncation and POD were already com-
pared to a H2-quasi-optimal scheme for QB systems in [21]. We do not repeat these
experiments here but note that balanced truncation andH2-quasi-optimal scheme per-
form very similarly and outperform POD for inputs different from the training inputs
used to produce the snapshots for POD.

6 Conclusions

In this paper, we have investigated balanced truncation for quadratic-bilinear (QB)
control systems. We have proposed reachability and observability Gramians for QB
systems based on the integral-kernels of their underlying Volterra series. Additionally,
we have also introduced a truncated version of the Gramians. Furthermore, we inves-
tigated the connection between the Gramians and the reachability/observability of QB
systems. We also discussed sufficient conditions for the existence of the Gramians.
Also, we have discussed the advantages of the truncated version of the Gramians in the
model reduction framework and studied the local Lyapunov stability of the reduced-
order systems obtained via the square-root variant of balanced truncation. Bymeans of
various semi-discretized nonlinear PDEs, we have demonstrated the efficiency of the
proposed balanced truncation method for QB systems and compared it with the exist-
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ing moment-matching techniques. We have observed that balanced truncation yields
more stable reduced-order models than the two-sided interpolation method. Another
important advantage of balanced truncation is that we do not need to choose the order
of the reduced model a priori. Additionally, for BT, a suitable order can be found by
analyzing the decay of singular values. On the other hand, one-sided and two-sided
interpolation methods require the number of interpolation points as an input, which
fixes the order of reduced models, which is hard to know a priori.

Appendix A A convergence result

Lemma 1 Consider a recurrence formula as follows:

xk+1 = F(xk), ∀ k ≥ 1, (A1)

where F(x) = ax2 + bx + c and a, b, c are real positive scaler numbers. Moreover,
assume that x1 = c. Then limk→∞ xk =: x∗ is finite if

b < 1, and (A2a)

1 > (b − 1)2 − 4ac > 0. (A2b)

Furthermore, x∗ is given by the smaller root of the the following quadratic equation:

ax2 + (b − 1)x + c = 0, i.e.,

x∗ = −(b − 1) −√

(b − 1)2 − 4ac

2a
. (A3)

Proof First, note that the sequence (A1) contains only real positive numbers. Thus, the
equilibrium point must also be a real positive number. Furthermore, the equilibrium
points solve the quadratic equation F(x) − x = 0, and we denote these equilibrium
points by x (1) and x (2) with x (1) ≤ x (2). Since a, b and c all are positive, both
equilibrium points either can be positive or negative depending on the value of b. To
ensure the equilibrium points being positive, the minima of F(x) − x must lie in the
right half plane; thus, b − 1 < 0, leading to the condition (A2a).

Furthermore, we consider the derivative of F(x), that is, F ′(x) := 2ax + b. Since
F ′(x) is an increasing function and F ′(x) ≥ 0∀x ∈ [c, x (1)], we have for y ∈ [c, x (1)]:

F ′(y) ≤ F ′(x (1))

≤ 2ax (1) + b = 2a

(

−(b − 1) −√

(b − 1)2 − 4ac

2a

)

+ b ≤ 1 −
√

(b − 1)2 − 4ac.

Assuming 1 > (b − 1)2 − 4ac > 0, we have F ′(y) < 1, ∀y ∈ [c, x (1)]. Thus, by
the Banach fix-point theorem, F(x) is a contraction on [c, x (1)], and the fixed point is
given by x (1). �
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