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Abstract. We discuss balanced truncation model order reduction for large-scale quadratic-
bilinear (QB) systems. Balanced truncation for linear systems mainly involves the computation of
the Gramians of the system, namely reachability and observability Gramians. These Gramians are
extended to a general nonlinear setting in Scherpen (1993), where it is shown that Gramians for non-
linear systems are the solutions of state-dependent nonlinear Hamilton-Jacobi equations. Therefore,
they are not only difficult to compute for large-scale systems but also hard to utilize in the model
reduction framework. In this paper, we propose algebraic Gramians for QB systems based on the
underlying Volterra series representation of QB systems and their Hilbert adjoint systems. We then
show their relations with a certain type of generalized quadratic Lyapunov equation. Furthermore,
we present how these algebraic Gramians and energy functionals relate to each other. Moreover,
we characterize the reachability and observability of QB systems based on the proposed algebraic
Gramians. This allows us to find those states that are hard to control and hard to observe via
an appropriate transformation based on the Gramians. Truncating such states yields reduced-order
systems. Additionally, we present a truncated version of the Gramians for QB systems and discuss
their advantages in the model reduction framework. We also investigate the Lyapunov stability of
the reduced-order systems. We finally illustrate the efficiency of the proposed balancing-type model
reduction for QB systems by means of various semi-discretized nonlinear partial differential equations
and show its competitiveness with the existing moment-matching methods for QB systems.
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calculus, Lyapunov stability, energy functionals.
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1. Introduction. Numerical simulations are considered to be a primary tool
in studying dynamical systems, e.g., in prediction and control studies. High-fidelity
modeling is an essential step to gain deep insight into the behavior of complex dynam-
ical systems. Even though computational resources have been developing extensively
over the last few decades, fast numerical simulations of such high-fidelity systems,
whose number of state variables can easily be of order O(105)−O(106), are still a
huge computational burden. This makes the usage of these large-scale systems very
difficult and inefficient, for instance, in optimization and control design. One approach
to mitigate this problem is model order reduction (MOR). MOR seeks to substitute
these large-scale dynamical systems by low-dimensional (reduced-order) systems such
that the input-output behaviors of both original and reduced-order systems are close
enough, and the reduced-order systems preserve some important properties, for in-
stance, stability and passivity of the original system.

MOR techniques and strategies for linear systems are well-established and are
widely applied in various application areas, see, e.g., [2, 12, 42]. In many applications,
where the dynamics are governed by nonlinear PDEs, such as Navier-Stokes equations,
Burgers’ equations, a linear system can also be obtained via linearization of the system
around a suitable expansion point, e.g., the steady-state solution. Notwithstanding
the linearized system captures the dynamics very well locally. However, as it moves
away from the expansion point, the linearized system might not be able to capture the
system dynamics accurately. Therefore, there is a general need to take nonlinear terms
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into consideration, thus resulting in a more accurate system. Consider a nonlinear
system of the form

(1.1)
ẋ(t) = f(x(t)) + g(x(t), u(t)),

y(t) = h(x(t), u(t)), x(0) = x0,

where f : Rn → Rn, g : Rn × Rm → Rn and h : Rn × Rm → Rp are nonlinear state-
input evolution functions, and x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp denote the state,
input and output vectors of the system at time t, respectively. Also, we consider
a fixed initial condition x0 of the system. However, without loss of generality, we
assume the zero initial condition, i.e., x(0) = 0. In case x(0) 6= 0, one can transform
the system by defining new appropriate state variables as x̃(t) = x(t)−x0 to ensure a
zero initial condition of the transformed system, e.g., see [6]. The main goal of MOR
is to construct a low-dimensional system, having a similar form as the system (1.1)

(1.2)
˙̂x(t) = f̂(x̂(t)) + ĝ(x̂(t), u(t)),

ŷ(t) = ĥ(x̂(t), u(t)), x̂(0) = 0,

in which f̂ : Rn̂ → Rn̂, ĝ : Rn̂ × Rm → Rn̂ and ĥ : Rn̂ × Rm → Rp with n̂ � n that
fulfills our desired requirements.

MOR techniques for general nonlinear systems, namely trajectory-based MOR
techniques, have been widely applied in the literature to determine reduced-order
systems for nonlinear systems; see, e.g., [3, 17, 32]. The proper orthogonal decom-
position (POD) method is a very powerful trajectory-based MOR technique, which
depends on a Galerkin projection P = V V T , where V is a projection matrix such that
x(t) ≈ V x̂(t). The nonlinear functions f̂(x̂) can be given as f̂(x̂(t)) = V T f(V x̂(t)),

and similar expressions can also be derived for ĝ(x̂(t), u(t)) and ĥ(x̂(t), u(t)). This
method preserves the structure of the original system in the reduced-order system,
but still, the reduced-order system requires the computation of the nonlinear functions
on the full grid. This may obstruct the success of MOR; however, there are many
new advanced methodologies such as the empirical interpolation method (EIM), the
discrete empirical interpolation method (DEIM), the best point interpolation method
(BPIM), to perform the computation of the nonlinear functions cheaply and quite
accurately. For details, we refer to [5, 17, 21, 28].

Another popular trajectory-based MOR technique is based on trajectory piece-
wise linearization (TPWL) [37], where nonlinear functions are replaced by a weighted
combination of linear systems. These linear systems can then be reduced by applying
well-established MOR techniques for linear systems such as balanced truncation or
the interpolation-based iterative method (IRKA); see, e.g., [2, 30]. In recent years,
reduced basis methods have been successfully applied to nonlinear systems to ob-
tain reduced-order systems [5, 28]. In spite of all these, the trajectory-based MOR
techniques have the drawback of being input dependent. This makes the obtained
reduced-order systems inadequate to control applications, where the input function
may vary significantly from any used training input.

In this article, we consider a certain class of nonlinear control systems, namely
quadratic-bilinear (QB) control systems. The advantage of considering this special
class of nonlinear systems is that systems, containing smooth mono-variate nonlinear-
ities such as exponentials, polynomials, trigonometric functions, can also be rewritten
in the QB form by introducing some new variables in the state vector [29]. Note that
this transformation is exact, i.e., it requires no approximation and does not introduce
any error, but this transformation may not be unique.
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Related to MOR for QB systems, the idea of one-sided moment-matching has been
extended from linear or bilinear systems to QB systems; see, e.g., [4, 22, 29, 34, 36],
where a reduced system is determined by capturing the input-output behavior of
the original system, given by generalized transfer functions. More recently, this has
been extended to two-sided moment-matching in [8], ensuring more moments to be
matched, for a given order of the reduced system. Despite these methods have evolved
as an effective MOR technique for nonlinear systems in recent times, shortcomings of
these methods are: how to choose an appropriate order of the reduced system and
how to select good interpolation points. Moreover, the applicability of the two-sided
moment-matching method [8] is limited to single-input single-output QB systems, and
also the stability of the obtained reduced-order system is a major issue in this method.

In this article, our focus rather lies on balancing-type MOR techniques for QB
systems. This technique mainly depends on controllability and observability energy
functionals, or in other words, Gramians of the system. This method is presented for
linear systems, e.g., in [2, 35], and later on, a theory of balancing for general nonlin-
ear systems is developed in a sequence of papers [23, 27, 39, 40, 41]. In the general
nonlinear case, the balancing requires the solutions of the state-dependent nonlinear
Hamilton-Jacobi equation which are, firstly, very expensive to solve for large-scale
dynamical systems; secondly, it is not straightforward to use them in the MOR con-
text. Along with these, it may happen that the reduced-order systems, obtained from
nonlinear balancing, do not preserve the structure of the nonlinearities in the system.
However, for some weakly nonlinear systems, the so-called bilinear systems, reacha-
bility and observability Gramians have been studied in [1, 9, 10, 18, 25], which are
solutions to generalized algebraic Lyapunov equations. Moreover, these Gramians,
when used to define appropriate quadratic forms, approximate energy functionals of
bilinear systems (in the neighborhood of the origin), see [9, 10]

Moving in the direction of balancing-type MOR for QB systems, our first goal is
to come up with reachability and observability Gramians for these systems, which are
state-independent matrices and suitable for the MOR purpose. In addition to this, we
need to show how the Gramians relate to the energy functionals of the QB systems and
provide interpretations of reachability and observability of the system with respect to
these Gramians. To this end, in the subsequent section, we review background mate-
rial associated with energy functionals and a duality of the nonlinear systems, which
serves as the basis for the rest of the paper. In Section 3, we propose the reachability
Gramian and its truncated version for QB systems based on the underlying Volterra
series of the system. Additionally, we determine the observability Gramian and its
truncated version based on the dual system associate to the QB system. Furthermore,
we establish relations between the solutions of a certain type of quadratic Lyapunov
equations and these Gramians. In Section 4, we develop the connection between the
proposed Gramians and the energy functionals of the QB systems and reveal their re-
lations to reachability and observability of the system. Consequently, we utilize these
Gramians for balancing of QB systems, allowing us to determine those states that are
hard to control as well as hard to observe. Truncation of such states leads to reduced
systems. In Section 5, we discuss the related computational issues and advantages of
the truncated version of Gramians in the MOR framework. We further discuss the
stability of these reduced systems. In Section 6, we test the efficiency of the proposed
balanced truncation MOR technique for various semi-discretized nonlinear PDEs and
compare it with the existing moment-matching techniques for the QB systems.
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2. Preliminaries. We begin with recapitulation of energy functionals for non-
linear systems.

2.1. Energy functionals for nonlinear systems. In this subsection, we give
a brief overview of energy functionals, namely controllability and observability energy
functionals for nonlinear systems. For this, let us consider the following smooth, for
example, C∞, nonlinear asymptotically stable input-affine nonlinear system of the
form

(2.1)
ẋ(t) = f(x) + g(x)u(t),

y(t) = h(x), x(0) = 0,

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp are the state, input and output vectors
of the system, respectively, and also f(x) : Rn → Rn, g(x) : Rn → Rn×m and
h(x) : Rn → Rp are smooth nonlinear functions. Without loss of generality, we assume
that 0 is an equilibrium of the system (2.1). The controllability and observability
energy functionals for the general nonlinear systems first have been studied in the
literature in [39]. In the following, we state the definitions of controllability and
observability energy functionals for the system (2.1).

Definition 2.1. [39] The controllability energy functional is defined as the min-
imum amount of energy required to steer the system from x(−∞) = 0 to x(0) = x0:

Lc(x0) = min
u∈Lm2 (−∞,0]

x(−∞)=0, x(0)=x0

1

2

∫ 0

−∞
‖u(t)‖2dt.

Definition 2.2. [39] The observability energy functional can be defined as the
energy generated by the nonzero initial condition x(0) = x0 with zero control input:

Lo(x0) =
1

2

∫ ∞

0

‖y(t)‖2dt.

We assume that the system (2.1) is controllable and observable. This implies that
the system (2.1) can always be steered from x(0) = 0 to x0 by using appropriate
inputs. To define the observability energy functional (Definition 2.2), it is assumed
that the nonlinear system (2.1) is a zero-state observable. It means that if u(t) = 0
and y(t) = 0 for t ≥ 0, then x(t) = 0 ∀t ≥ 0. However, as discussed in [26], for a
nonlinear system such a condition can be very strong. As a result, therein, it is shown
how this condition can be relaxed in the context of general input balancing, and a
new definition for the observability functionals was proposed as follows:

Definition 2.3. [26] The observability energy functional can be defined as the
energy generated by the nonzero initial condition x(0) = x0 and by applying an Lm2 -
bounded input:

Lo(x0) = max
u∈Lm2 [0,∞),‖u‖L2

≤α

x(0)=x0,x(∞)=0

1

2

∫ ∞

0

‖y(t)‖2dt.

In an abstract way, the main idea of introducing Definition 2.3 to find the state
component that contributes less from a state-to-output point of view for all possible
L2-bounded inputs. The connections between these energy functionals and the solu-
tions of the partial differential equations are established in [26, 39], which are outlined
in the following theorem.
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Theorem 2.4. [26, 39] Consider the nonlinear system (2.1), having x = 0 as
an asymptotically stable equilibrium of the system in a neighborhood Wo of 0. Then,
for all x ∈ Wo, the observability energy functional Lo(x) can be determined by the
following partial differential equation:

(2.2)
∂Lo
∂x

f(x) +
1

2
hT (x)h(x)− 1

2
µ−1 ∂Lo

∂x
g(x)g(x)T

∂TLo
∂x

= 0, Lo(0) = −1

2
µ,

assuming that there exists a smooth solution L̄o on W , and 0 is an asymptotically

stable equilibrium of f̄ := (f − µ−1ggT ∂
T L̄o
∂x ) on W with a negative real number

µ := −‖gT (φ)∂
T L̄o
∂x (φ)‖L2

, and φ̇ = f̄(φ) with φ(0) = x. Moreover, for all x ∈ Wc,
the controllability energy functional Lc(x) is a unique smooth solution of the following
Hamilton-Jacobi equation:

(2.3)
∂Lc
∂x

f(x) + f(x)
∂Lc
∂x

+
∂Lc
∂x

g(x)g(x)T
∂TLc
∂x

= 0, Lc(0) = 0

under the assumption that (2.3) has a smooth solution L̄c on Wc, and 0 is an asymp-

totically stable equilibrium of −
(
f(x) + g(x)g(x)T ∂L̄c(x)

∂x

T
)

on Wc.

Note that in Definition 2.3, the zero-state observable condition is relaxed by
considering L2-bounded inputs. However, an alternative way to relax the zero-state
observable condition by considering not only L2-bounded inputs but also L∞ bounded
inputs. We thus propose a new definition of the observability energy functional as
follows:

Definition 2.5. The observability energy functional can be defined as the energy
generated by the nonzero initial condition x(0) = x0 and by applying an L2-bounded
and L∞-bounded input:

Lo(x0) = max
u∈B(α,β)

x(0)=x0,x(∞)=0

1

2

∫ ∞

0

‖y(t)‖2dt,

where B(α,β)
def
= {u ∈ Lm2 [0,∞), ‖u‖L2

≤ α, ‖u‖L∞ ≤ β}. In this paper, we use the
above definition to characterize the observability energy functional for QB systems.

2.2. Hilbert adjoint operator for nonlinear systems. The importance of
the adjoint operator (dual system) can be seen, particularly, in the computation of the
observability energy functional or Gramian. For general nonlinear systems, a duality
between controllability and observability energy functionals is shown in [24] with the
help of state-space realizations for nonlinear adjoint operators. In what follows, we
briefly outline the state-space realizations for nonlinear adjoint operators of nonlinear
systems. For this, we consider a nonlinear system of the form

(2.4) Σ :=

{
ẋ(t) = A(x, u, t)x(t) + B(x, u, t)u(t),

y(t) = C(x, u, t)x(t) +D(x, u, t)u(t), x(0) = 0

in which x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp are the state, input and output
vectors of the system, respectively, and A(x, u, t), B(x, u, t), C(x, u, t) and D(x, u, t)
are appropriate size matrices. Also, we assume that the origin is a stable equilibrium
of the system. The Hilbert adjoint operators for the general nonlinear systems have
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been investigated in [24]. Therein, a connection between the state-space realization of
the adjoint operators and port-control Hamiltonian systems is also discussed, leading
to the state-space characterization of the nonlinear Hilbert adjoint operators of Σ :
Lm2 (Ω) → Lp2(Ω). In the following lemma, we summarize the state-space realization
of the Hilbert adjoint operator of the nonlinear system.

Lemma 2.6. [24] Consider the system (2.4) with the initial condition x(0) = 0,
and assume that the input-output mapping u → y is denoted by the operator Σ :
Lm2 (Ω) → Lp2(Ω). Then, the state-space realization of the nonlinear Hilbert adjoint
operator Σ∗ : Lm+p

2 (Ω)→ Lm2 (Ω) is given by

(2.5) Σ∗(ud, u) :=





ẋ(t) = A(x, u, t)x(t) + B(x, u, t)u(t), x(0) = 0,

ẋd(t) = −A(x, u, t)xd(t)− CT (x, u, t)ud(t), xd(∞) = 0,

yd(t) = BT (x, u, t)xd(t) +DT (x, u, t)ud(t),

where xd ∈ Rn, ud ∈ Rp and yd ∈ Rm can be interpreted as the dual state, dual input
and dual output vectors of the system, respectively.

We will see in the subsequent section the importance of the dual system in determining
the observability energy functional or observability Gramian for a QB system because
a duality of the energy functionality holds.

3. Gramians for QB Systems. This section is devoted to determine algebraic
Gramians for QB systems, which are also related to the energy functionals of the
quadratic-bilinear systems as welI. Let us consider QB systems of the form

ẋ(t) = Ax(t) +H x(t)⊗ x(t) +

m∑

k=1

Nkx(t)uk(t) +Bu(t),(3.1a)

y(t) = Cx(t), x(0) = 0,(3.1b)

where A,Nk ∈ Rn×n, H ∈ Rn×n2

, B ∈ Rn×m and C ∈ Rp×n. Furthermore, x(t) ∈ Rn,
u(t) ∈ Rm and y(t) ∈ Rp denote the state, input and output vectors of the system,
respectively. Since the system (3.1) has a quadratic nonlinearity in the state vector
x(t) and also includes bilinear terms Nkx(t)uk(t), which are products of the state
vector and inputs, the system is called a quadratic-bilinear (QB) system. We begin
by deriving the reachability Gramian of the QB system and its connection with a
certain type of quadratic Lyapunov equation.

3.1. Reachability Gramian for QB systems. In order to derive the reacha-
bility Gramian, we first formulate the Volterra series for the QB system (3.1). Before
we proceed further, for ease we define the following short-hand notation:

u(k)
σ1,...,σl

(t) := uk(t− σ1 · · · − σl) and xσ1,...,σl(t) := x(t− σ1 · · · − σl).

We integrate both sides of the differential equation (3.1a) in the state variables with
respect to time to obtain

(3.2) x(t) =

∫ t

0

eAσ1Buσ1
(t)dσ1 +

m∑

k=1

∫ t

0

eAσ1Nkxσ1
(t)u(k)

σ1
(t)dσ1

+

∫ t

0

eAσ1H (xσ1
(t)⊗ xσ1

(t)) dσ1.
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Based on the above equation, we obtain an expression for xσ1
(t) as follows:

xσ1
(t) =

t−σ1∫

0

eAσ2Buσ1,σ2
(t)dσ2 +

m∑

k=1

t−σ1∫

0

eAσ2Nkxσ1,σ2
(t)u(k)

σ1,σ2
(t)dσ2

+

t−σ1∫

0

eAσ2H (xσ1,σ2
(t)⊗ xσ1,σ2

(t)) dσ2

and substitute it in (3.2) to have

x(t) =

t∫

0

eAσ1Buσ1(t)dσ1 +

m∑

k=1

t∫

0

t−σ1∫

0

eAσ1Nke
Aσ2Bu(k)

σ1
(t)uσ1,σ2

(t)dσ1dσ2

+

t∫

0

t−σ1∫

0

t−σ1∫

0

eAσ1H(eAσ2B ⊗ eAσ3B) (uσ1,σ2
(t)⊗ uσ1,σ3

(t)) dσ1dσ2dσ3 + · · · .

Repeating this process by repeatedly substituting for the state yields the Volterra
series for the QB system [38]. Having carefully analyzed the kernels of the Volterra
series for the system, we define the reachability mapping P̄ as follows:

(3.3) P̄ = [P̄1, P̄2, P̄3, . . . ],

where the P̄i’s are:
(3.4)

P̄1(t1) = eAt1B,

P̄2(t1, t2) = eAt2
[
N1, . . . , Nm

] (
Im ⊗ P̄1(t1)

)
,

...
...

P̄i(t1, . . . , ti) = eAti
[
H
[
P̄1(t1)⊗ P̄i−2(t2, . . . , ti−1), P̄2(t1, t2)⊗ P̄i−3(t3, . . . , ti−1),

. . . , P̄i−2(t1, . . . , ti−2)⊗ P̄1(ti−1)
]
,

[
N1, . . . , Nm

] (
Im ⊗ P̄i−1(t1, . . . , ti−1)

) ]
,∀ i ≥ 3.

Using the mapping P̄ (3.3), we define the reachability Gramian P as

(3.5) P =

∞∑

i=1

Pi with Pi =

∞∫

0

· · ·
∞∫

0

P̄i(t1, . . . , ti)P̄
T
i (t1, . . . , ti)dt1 · · · dti.

In what follows, we show the equivalence between the above proposed reachability
Gramian and the solution of a certain type of quadratic Lyapunov equation.

Theorem 3.1. Consider the QB system (3.1) with a stable matrix A. If the
reachability Gramian P of the system defined as in (3.5) exists, then the Gramian P
satisfies the generalized quadratic Lyapunov equation, given by

(3.6) AP + PAT +H(P ⊗ P )HT +

m∑

k=1

NkPN
T
k +BBT = 0.
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Proof. We begin by considering the first term in the summation (3.5). This is,

P1 =

∫ ∞

0

P̄1P̄
T
1 dt1 =

∫ ∞

0

eAt1BBT eA
T t1dt1.

As shown, e.g., in [2], P1 satisfies the following Lyapunov equation, provided A is
stable:

(3.7) AP1 + P1A
T +BBT = 0.

Next, we consider the second term in the summation (3.5):

P2 =

∫ ∞

0

∫ ∞

0

P̄2P̄
T
2 dt1dt2

=

∞∫

0

∞∫

0

eAt2
[
N1, . . . , Nm

] (
Im ⊗

(
eAt1BBT eA

T t1
)) [

N1, . . . Nm
]T
eA

T t2dt1dt2

=

m∑

k=1

∫ ∞

0

eAt2Nk

(∫ ∞

0

eAt1BBT eA
T t1dt1

)
NT
k e

AT t2dt1dt2

=

m∑

k=1

∫ ∞

0

eAt2NkP1N
T
k e

AT t2dt2.

Again using the integral representation of the solution to Lyapunov equations [2], we
see that P2 is the solution of the following Lyapunov equation:

(3.8) AP2 + P2A
T +

m∑

k=1

NkP1N
T
k = 0.

Finally, we consider the ith term, for i ≥ 3, which is

Pi =

∫ ∞

0

· · ·
∫ ∞

0

P̄iP̄
T
i dt1 · · · dti

=

∞∫

0

eAti


H



∞∫

0

F
(
P̄1(t1)

)
dt1 ⊗

∞∫

0

· · ·
∞∫

0

F
(
P̄i−2(t2, . . . , ti−1)

)
dt2 · · · dti−1

+ · · ·+
∞∫

0

· · ·
∞∫

0

F
(
P̄i−2(t1, . . . , ti−2)

)
dt1 · · · dti−2 ⊗

∞∫

0

F
(
P̄1(ti−1)

)
dti−1


 HT

+

m∑

k=1

Nk

(∫ ∞

0

· · ·
∫ ∞

0

F
(
P̄i−1(t1, . . . , ti−1)

))
NT
k

]
eA

T tidti,

where we use the shorthand F(A) := AAT . Thus, we have

Pi =

∫ ∞

0

eAti
[
H(P1 ⊗ Pi−2 + · · ·+ Pi−2 ⊗ P1)HT +

m∑

k=1

NkPi−1N
T
k

]
eA

T tidti.

Similar to P1 and P2, we can show that Pi satisfies the following Lyapunov equation,
given in terms of the preceding Pk, for k = 1, . . . , i− 1:

(3.9) APi + PiA
T +H(P1 ⊗ Pi−2 + · · ·+ Pi−2 ⊗ P1)HT +

m∑

k=1

NkPi−1N
T
k = 0.
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To the end, adding (3.7), (3.8) and (3.9) yields

A

∞∑

i=1

Pi +

∞∑

i=1

Pi A
T +H

( ∞∑

i=1

Pi ⊗
∞∑

i=1

Pi

)
HT +

m∑

k=1

Nk

( ∞∑

i=1

Pi

)
NT
k +BBT = 0.

This implies that P =
∑∞
i=1 Pi solves the generalized quadratic Lyapunov equation

given by (3.6).

3.2. Dual system and observability Gramian for QB system. We first
derive the dual system for the QB system; the dual system plays an important role
in determining the observability Gramian for the QB system (3.1), and we aim at
determining the observability Gramian in a similar fashion as done for the reachability
Gramian in the preceding subsection. From linear and bilinear systems, we know that
the observability Gramian of the dual system is the same as the reachability Gramian;
here, we also consider the same analogy. If we compare the system (3.1) with the
general nonlinear system as shown in (2.4), it turns out that for the system (3.1)

A(x, u, t) = A+H(x⊗ I) +

m∑

k=1

Nkuk, B(x, u, t) = B and C(x, u, t) = C.

Using Lemma 2.6, we can write down the state-space realization of the adjoint operator
of the QB system as follows:

ẋ(t) = Ax(t) +H(x(t)⊗ x(t)) +

m∑

k=1

Nkx(t)uk(t) +Bu(t), x(0) = 0,(3.10a)

ż(t) = −AT z(t)− (x(t)T ⊗ I)HT z(t)−
m∑

k=1

NT
k z(t)uk(t)− CTud(t),(3.10b)

z(∞) = 0,

yd(t) = BT z(t),(3.10c)

where z(t) ∈ Rn, ud(t) ∈ R and yd ∈ R can be interpreted as the dual state, dual
input and dual output vectors of the system, respectively. Next, we attempt to utilize
the existing knowledge for the tensor multiplications and matricization to simplify the
term (x(t)T ⊗ I)HT z(t) in the system (3.10) and to write it in the form of x(t)⊗ z(t).

For this, we review some of the basic properties of tensor theory. Following [33],
the fiber of a 3-dimensional tensor H can be defined by fixing each index except one,
e.g., H(:, j, k),H(j, :, k) and H(j, k, :). From the computational point of view, it is ad-
vantageous to consider the matrices associated with the tensor, which can be obtained
via unfolding a tensor into a matrix. The process of unfolding a tensor into a matrix
is called matricization, and the mode-µ matricization of the tensor H is denoted by
H(µ). For an l-dimensional tensor, there are l different possible ways to unfold the
tensor into a matrix. We refer to [8, 33] for more detailed insights into matricization.
Similar to matrix multiplications, one can carry out tensor multiplication using ma-
tricization of the tensor [33]. For instance, the mode-µ product of H and a matrix
X ∈ Rn×s gives a tensor F ∈ Rs×n×n, satisfying

F = H×µ X ⇔ F (µ) = XH(µ).

Analogously, if we define a tensor-matrices product as:

F = H×1 X ×2 Y ×3 Z,
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where F ∈ Rq1×q2×q3 , X ∈ Rn×q1 and Y ∈ Rn×q2 and Z ∈ Rn×q3 , then the following
relations are fulfilled:

F (1) = XTH(1)(Y ⊗ Z),(3.11a)

F (2) = ZTH(2)(Y ⊗X),(3.11b)

F (3) = Y TH(3)(Z ⊗X).(3.11c)

Coming back to the QB system, the matrix H ∈ Rn×n2

in the system denotes a
Hessian, which can be seen as an unfolding of a 3-dimensional tensor H ∈ Rn×n×n.
Here, we choose the tensor H ∈ Rn×n×n such that its mode-1 matricization is the
same as the Hessian H, i.e., H = H(1). Next, let us consider a tensor T ∈ R1×n×1,
whose mode-1 matricization T (1) is given by

T (1) = z(t)TH(x(t)⊗ I) = z(t)TH(1)(x(t)⊗ I).

We then observe that the mode-1 matricization of the tensor T is a transpose of the

mode-2 matricization, i.e., T (1) =
(
T (2)

)T
, leading to

T (1) =
(
T (2)

)T
= (x(t)⊗ z(t))T (H(2))T .

Therefore, we can rewrite the system (3.10) as:

ẋ(t) = Ax(t) +H(x(t)⊗ x(t)) +

m∑

k=1

Nkx(t)uk(t) +Bu(t), x(0) = 0,(3.12a)

ż(t) = −AT z(t)−H(2)x(t)⊗ z(t)−
m∑

k=1

NT
k uk(t)z(t)− CTud(t), z(∞) = 0,(3.12b)

yd(t) = BT z(t).

(3.12c)

In the meantime, we like to point out that there are two possibilities to defineA(x, u, t)
in the case of a QB system. One is A(x, u, t) = A + H(x ⊗ I) +

∑m
k=1Nkuk, which

we have used in the above discussion; however, there is another possibility to define
A(x, u, t) as Ã(x, u, t) = A+H(I ⊗x) +

∑m
k=1Nkuk, leading to the nonlinear Hilbert

adjoint operator whose state-space realization is given as:

ẋ(t) = Ax(t) +H(x(t)⊗ x(t)) +

m∑

k=1

Nkx(t)uk(t) +Bu(t), x(0) = 0,(3.13a)

ż(t) = −AT z(t)−H(3)x(t)⊗ z(t)−
m∑

k=1

NT
k uk(t)z(t)− CTud(t), z(∞) = 0,(3.13b)

yd(t) = BT z(t).

(3.13c)

It can be noticed that the realizations (3.12) and (3.13) are the same, except the
appearance of H(2) in (3.12) instead of H(3) in (3.13). Nonetheless, if one assumes
that the Hessian H is symmetric, i.e., H(u ⊗ v) = H(v ⊗ u) for u, v ∈ Rn, then the
mode-2 and mode-3 matricizations coincide, i.e., H(2) = H(3). However, the Hessian
H, obtained after discretization of the governing equations, may not be symmetric;
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but as shown in [8] the Hessian can be modified in such a way that it becomes
symmetric without any change in the system dynamics. Therefore, in the rest of the
paper, without loss of generality, we assume that the Hessian H is symmetric.

Now, we turn our attention towards determining the observability Gramian for the
QB system by utilizing the state-space realization of the Hilbert adjoint operator (dual
system). For this, we follow the same steps as used for determining the reachability
Gramian. Using the dual system (3.12), one can write the dual state z(t) of the dual
system at time t as follows:

z(t) =

∫ t

∞
e−A

T (t−σ1)CTud(σ1)dσ1 +

m∑

k=1

∫ t

∞
e−A

T (t−σ1)NT
k z(σ1)uk(σ1)dσ1,

+

∫ t

∞
e−A

T (t−σ1)H(2) (x(σ1)⊗ z(σ1)) dσ1,

which after an appropriate change of variable leads to
(3.14)

z(t) =

∫ 0

∞
eA

Tσ1CTu(d)(t+ σ1)dσ1 +

m∑

k=1

∫ 0

∞
eA

Tσ1NT
k z(t+ σ1)uk(t+ σ1)dσ1

+

∫ 0

∞
eA

Tσ1H(2)
(
x(t+ σ1)⊗ z(t+ σ1)

)
dσ1.

Equation (3.13a) gives the expression for x(t+ σ1). This is

x(t+ σ1) =

∫ t+σ1

0

eAσ2Bu(t+ σ1 − σ2)dσ2 +

m∑

k=1

∫ t+σ1

0

(
eAσ2Nkx(t+ σ1 − σ2)

× uk(t+ σ1 − σ2)
)
dσ2 +

t+σ1∫

0

eAσ2H(x(t+ σ1 − σ2)⊗ x(t+ σ1 − σ2))dσ2.

We substitute for x(t+σ1) using the above equation, and z(t+σ1) using (3.14), which
gives rise to the following expression:
(3.15)

z(t) =

∫ 0

∞
eA

Tσ1CTud(t+ σ1)dσ1 +

m∑

k=1

∫ 0

∞

∫ 0

∞
eA

Tσ1NT
k

× eATσ2CTud(t+ σ1 + σ2)uk(t+ σ1)dσ1dσ2 +

∫ 0

∞

∫ t+σ1

0

∫ 0

∞
eA

Tσ1

×H(2)
(
eAσ2B ⊗ eATσ3CT

)
u(t+ σ1 − σ2)ud(t+ σ1 + σ3)dσ1dσ2dσ3 + · · · .

By repeatedly substituting for the state x and the dual state z, we derive the Volterra
series for the dual system, although the notation becomes much more complicated.
Carefully inspecting the kernels of the Volterra series of the dual system, we define
the observability mapping Q̄, similar to the reachability mapping, as follows:

(3.16) Q̄ = [Q̄1, Q̄2, Q̄3, . . .],
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in which

Q̄1(t1) = eA
T t1CT ,

Q̄2(t1, t2) = eA
T t2
[
NT

1 , · · ·NT
m

] (
Im ⊗ Q̄1(t1)

)
,

...
...

Q̄i(t1, . . . , ti) = eA
T ti
[
H(2)

[
P̄1(t1)⊗ Q̄i−2(t2, . . . , ti−1),

. . . , P̄i−2(t1, . . . , ti−2)⊗ Q̄1(ti−1)
]
,

[
NT

1 , . . . , N
T
m

] (
Im ⊗ Q̄i−1(t1, . . . , ti−1)

) ]
,∀ i ≥ 3.

where P̄i(t1, . . . , ti) are defined in (3.4). Based on the above observability mapping,
we define the observability Gramian Q of the QB system as

(3.17) Q =

∞∑

i=1

Qi with Qi =

∫ ∞

0

· · ·
∫ ∞

0

Q̄iQ̄
T
i dt1 · · · dti.

Analogous to the reachability Gramian, we next show a relation between the observ-
ability Gramian and the solution of a generalized Lyapunov equation.

Theorem 3.2. Consider the QB system (3.1) with a stable matrix A, and let Q,
defined in (3.17), be the observability Gramian of the system and assume it exists.
Then, the Gramian Q satisfies the following Lyapunov equation:

(3.18) ATQ+QA+H(2)(P ⊗Q)(H(2))T +

m∑

k=1

NT
k QNk + CTC = 0,

where P is the reachability Gramian of the system, i.e., the solution of the generalized
quadratic Lyapunov equation (3.5).

Proof. The proof of the above theorem is analogous to the proof of Theorem 3.1;
therefore, we skip it for the brevity of the paper.

Remark 3.3. As one would expect, the Gramians for QB systems reduce to the
Gramians for bilinear systems [9] if the quadratic term is zero, i.e., H = 0.

Furthermore, it will also be interesting to look at a truncated version of the
Gramians of the QB system based on the leading kernels of the Volterra series. We
call a truncated version of the Gramians truncated Gramians of QB systems. For this,
let us consider approximate reachability and observability mappings as follows:

P̃T =
[
P̃1, P̃2, P̃3

]
, Q̃T =

[
Q̃1, Q̃2, Q̃3

]
,

where

P̃1(t1) = eAt1B, Q̃1(t1) = eA
T t1CT ,

P̃2(t1, t2) = eAt2
[
N1, . . . , Nm

] (
Im ⊗ P̃1(t1)

)
,

Q̃2(t1, t2) = eA
T t2
[
NT

1 , . . . , N
T
m

] (
Im ⊗ Q̃1(t1)

)
,

P̃3(t1, t2, t3) = eAt3H(P̃1(t1)⊗ P̃1(t2)),

Q̃3(t1, t2, t3) = eA
T t3H(2)(P̃1(t1)⊗ Q̃1(t2)).
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Then, one can define the truncated reachability and observability Gramians in the
similar fashion as the Gramians of the system:

PT =

3∑

i=1

P̂i, where P̂i =

∫ ∞

0

P̃i(t1, . . . , ti)P̃
T
i (t1, . . . , ti)dt1 · · · dti,(3.19a)

QT =

3∑

i=1

Q̂i, where Q̂i =

∫ ∞

0

Q̃i(t1, . . . , ti)Q̃
T
i (t1, . . . , ti)dt1 · · · dti,(3.19b)

respectively. Similar to the Gramians P and Q, in the following we derive the relation
between these truncated Gramians and the solutions of the Lyapunov equations.

Corollary 3.4. Let PT and QT be the truncated Gramians of the QB system
as defined in (3.19). Then, PT and QT satisfy the following Lyapunov equations:

APT + PT A
T +H(P̂1 ⊗ P̂1)HT +

m∑

k=1

NkP̂1N
T
k +BBT = 0, and(3.20a)

ATQT +QT A+H(2)(P̂1 ⊗ Q̂1)(H(2))T +

m∑

k=1

NT
k Q̂1Nk + CTC = 0,(3.20b)

respectively, where P1 and Q1 are solutions to the following Lyapunov equations:

AP̂1 + P̂1A
T +BBT = 0, and(3.21)

AT Q̂1 + Q̂1A+ CTC = 0, respectively.(3.22)

Proof. We begin by showing the relation between the truncated reachability
Gramian PT and the solution of the Lyapunov equation. First, note that the first two
terms of the reachability Gramian P (3.19a) and the truncated reachability Gramian

PT (3.5) are the same, i.e., P̂1 = P1 and P̂2 = P2, and P̂1 and P̂2 are the unique
solutions of the following Lyapunov equations for a stable matrix A:

AP̂1 + P̂1A
T +BBT = 0, and(3.23)

AP̂2 + P̂2A
T +

m∑

k=1

NkP̂1N
T
k = 0.(3.24)

Now, we consider the third term in the summation (3.19a). This is

P3 =

∫ ∞

0

∫ ∞

0

∫ ∞

0

P̃3(t1, t2, t3)P̃T3 (t1, t2, t3)dt1dt2dt3

=

∫ ∞

0

∫ ∞

0

∫ ∞

0

eAt3H(P̃1(t1)P̃T (t1)⊗ P̃1(t2)P̃T (t2))HT eA
T t3dt1dt2dt3

=

∫ ∞

0

eAt3H

((∫ ∞

0

P̃1(t1)P̃T (t1)dt1

)
⊗
(∫ ∞

0

P̃1(t2)P̃T (t2)dt2

))
HT eA

T t3dt3

=

∫ ∞

0

eAt3H
(
P̂1 ⊗ P̂1

)
HT eA

T t3dt3.

Furthermore, we use the relation between the above integral representation and the
solution of Lyapunov equation to show that P̂3 solves:

(3.25) AP̂3 + P̂3A
T +H(P̂1 ⊗ P̂1)HT = 0.
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Summing (3.23), (3.24) and (3.25) yields

(3.26) APT + PT AT +H(P̂1 ⊗ P̂1) +

m∑

k=1

NkP̂1Nk +BBT = 0.

Analogously, we can show that QT solves (3.20b), thus concluding the proof.

We will investigate the advantages of these truncated Gramians in the model
reduction framework in the later part of the paper.

Next, we study the connection between the proposed Gramians for the QB system
and energy functionals. Also, we show how the definiteness of the Gramians is related
to reachability and observability of the QB systems. These all suggest us how to
determine the state components that are hard to control as well as hard to observe.

4. Energy Functionals and MOR for QB systems. We start by establishing
the conditions under which the Gramians approximate the energy functionals of the
QB system, in the quadratic forms.

4.1. Comparison of energy functionals with Gramians. By using Theo-
rem 2.4, we obtain the following nonlinear partial differential equation, whose solution
gives the controllability energy functional for the QB system:
(4.1)

∂Lc
∂x

(Ax+H x⊗ x) + (Ax+H x⊗ x)T
∂Lc
∂x

T

+
∂Lc
∂x

([
N1, . . . , Nm

]
(Im ⊗ x) +B

) ([
N1, . . . , Nm

]
(Im ⊗ x) +B

)T ∂Lc
∂x

T

= 0.

Unlike in the case of linear systems, the controllability energy functional Lc(x) for
nonlinear systems cannot be expressed as a simple quadratic form, i.e., Lc(x) =

xT P̃−1x, where P̃ is a constant matrix.
For nonlinear systems, the energy functionals are rather complicated nonlinear

functions, depending on the state vector. Thus, we aim at providing some bounds
between the quadratic form of the proposed Gramians for QB systems and energy
functionals. For the controllability energy functional, we extend the reasoning given
in [9, 10] for bilinear systems.

Theorem 4.1. Consider a controllable QB system (3.1) with a stable matrix A.
Let P > 0 be its reachability Gramian which is the unique definite solution of the
quadratic Lyapunov equation (3.6), and Lc(x) denote the controllability energy func-
tional of the QB system, solving (4.1). Then, there exists a neighborhood W of 0 such
that

Lc(x) ≥ 1

2
xTP−1x, where x ∈W (0).

Proof. Consider a state x0 and let a control input u = u0 : (−∞, 0]→ Rm, which
minimizes the input energy in the definition of Lo(x0) and steers the system from 0 to
x0. Now, we consider the time-varying homogeneous nonlinear differential equation

(4.2) φ̇ =

(
A+H(φ⊗ I) +

m∑

k=1

Nkuk(t)

)
φ =: Auφ(t),

and its fundamental solution Φu(t, τ). The system (4.2) can thus be interpreted as
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a time-varying system. The reachability Gramian of the time-varying control sys-
tem [45, 47] ẋ = Aux(t) +Bu(t) is given by

Pu =

∫ 0

−∞
Φ(0, τ)BBTΦ(0, τ)T dτ.

The input u also steers the time-varying system from 0 to x0; therefore, we have

‖u‖2L2
≥ 1

2
xTP−1

u x.

An alternative way to determine Pu can be given by

Pu =

∫ ∞

0

Φ̃(t, 0)TBBT Φ̃(t, 0)dt,

where Φ̃ is the fundamental solution of the following differential equation

(4.3)
˙̃
Φ =

(
AT +H(2)(x(−t)⊗ I) +

m∑

k=1

NT
k uk(−t)

)
Φ̃ with Φ(t, t) = I,

and x(t) is the solution of

ẋ(t) = Ax(t) +H(x⊗ x) +

m∑

k=1

Nkx(t)uk(t) +Bu(t).

Then, we define η(t), satisfying η(t) = Φ̃(t, 0)x0. Since it is assumed that the QB
system is controllable, the state x0 can be reached by using a finite input energy, i.e.,
‖u‖L2 < ∞. Hence, the input u(t) is a square-integrable function over t ∈ (−∞, 0]
and so is x(t). This implies that lim

t→∞
η(t)→ 0, provided A is stable. Thus, we have

xT0 Px0 = −
∫ ∞

0

d

dt

(
η(t)TPη(t)

)
dt

= −
∫ ∞

0

η(t)T

((
A+H(x(−t)⊗ I) +

m∑

k=1

Nkuk(−t)
)
P

+P

(
AT +H(2)(x(−t)⊗ I) +

m∑

k=1

NT
k uk(−t)

))
η(t)dt

= −
∫ ∞

0

η(t)T

(
AP + PAT +H(P ⊗ P )HT +

m∑

k=1

NkPN
T
k

)
η(t)

+

(
H(P ⊗ P )HT −H(x(−t)⊗ I)P − PH(2)(x(−t)⊗ I)

+

m∑

k=1

(
NkPNk − PNT

k uk(−t)−NT
k Puk(−t)

)
)
η(t)dt.
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Now, we have

−
∫ ∞

0

η(t)T

(
AP + PAT +H(P ⊗ P )HT +

m∑

k=1

NkPN
T
k

)
η(t)

=

∫ ∞

0

η(t)TBBT η(t) = xT0 Pux0.

Hence, if

(4.4)

∫ ∞

0

η(t)T
(
H(P ⊗ P )HT −H(x(−t)⊗ I)P − PH(2)(x(−t)⊗ I)

+

m∑

k=1

(
NkPNk − PNT

k uk(−t)−NT
k Puk(−t)

))
η(t)dt ≥ 0,

then xT0 Px0 ≥ xT0 Pux0. Further, if x0 lies in a small ball W in the neighborhood of
the origin, i.e., x0 ∈W (0), then a small input u is sufficient to steer the system from
0 to x0 and x(t) ∈ W (0) for t ∈ (−∞, 0] which ensures that the relation (4.4) holds
for all x0 ∈W (0). Therefore, we have xT0 P

−1x0 ≤ xT0 P−1
u x0 if x0 ∈W (0).

Similarly, we next show an upper bound for the observability energy functional for
the QB system in terms of the observability Gramian (in the quadratic form).

Theorem 4.2. Consider the QB system (3.1) with B ≡ 0 and an initial condition
x0, and let Lo be the observability energy functional. Let P > 0 and Q ≥ 0 be
solutions to the generalized Lyapunov equations (3.6) and (3.18), respectively. Then,

there exists a neighborhood W̃ of the origin such that

Lo(x0) ≤ 1

2
xTQx, where x ∈ W̃ (0).

Proof. Using the definition of the observability energy functional, see Defini-
tion 2.5, we have

(4.5) Lo(x0) = max
u∈B(α,β)

x(0)=x0,x(∞)=0

1

2

∫ ∞

0

L̃o(x0, u)dt,

where B(α,β)
def
= {u ∈ Lm2 [0,∞), ‖u‖L2

≤ α, ‖u‖L∞ ≤ β} and L̃o(x0, u) := ‖y(t)‖2.
Thus, we have

L̃o(x0, u) = ‖y(t)‖2 = ‖Cx(t)‖2 = x(t)TCTCx(t).

Substituting for CTC from (3.18), we obtain

L̃o(x0, u) = −2x(t)TQAx(t)− x(t)TH(2)P ⊗Q
(
H(2)

)T
x(t)−

m∑

k=1

x(t)TNT
k QNkx(t).

Next, we substitute for Ax from (3.1) (with B = 0) to have

L̃o(x0, u) = −2x(t)TQẋ(t) + 2x(t)TQHx(t)⊗ x(t) + 2

m∑

k=1

x(t)TQNkx(t)uk(t)

− x(t)TH(2) (P ⊗Q)
(
H(2)

)T
x(t)−

m∑

k=1

x(t)TNT
k QNkx(t)
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= − d

dt
(x(t)TQx(t)) + x(t)T

(
QH(I ⊗ x(t)) +QH(x(t)⊗ I)

+

m∑

k=1

(QNk +NT
k Q)uk(t)−H(2)(P ⊗Q)

(
H(2)

)T −
m∑

k=1

NT
k QNk

)
x(t).

This gives

Lo(x0) = max
u∈B(α,β)

x(0)=x0,x(∞)=0

1

2

∫ ∞

0

L̃o(x0, u)dt,

=
1

2
xT0 Qx0 + max

u∈B(α,β)

x(0)=x0,x(∞)=0

1

2

∫ ∞

0

x(t)T

(
RH(x, u) +

m∑

k=1

RNk(x, u)

)
x(t)dt,

where

RH(x, u) := QH(I ⊗ x) +QH(x⊗ I)−H(2)(P ⊗Q)
(
H2
)T
,

RNk(x, u) :=
(
QNkuk +NT

k Quk −NT
k QNk

)
.

First, note that if for a vector v, vTNT
k QNkv = 0, then QNkv = 0. Therefore, there

exist inputs u for which ‖u‖L∞ is small, ensuring RNk(x, u) is a negative semidefinite.

Similarly, if for a vector w, wTH(2)(P ⊗ Q)
(
H2
)T
w = 0 and P > 0, then (I ⊗

Q)
(
H2
)T
w = 0. Using (3.11), it can be shown that QH(w ⊗ I) = QH(I ⊗ w) = 0.

Now, we consider an initial condition x0 lies in the small neighborhood of the origin
and u ∈ B(α,β) ensuring that the resulting trajectory x(t) for all time t is such that
RH(x, u) is a negative semi-definite. Finally, we get

Lo(x0)− 1

2
xT0 Qx0 ≤ 0,

for x0 lies in the neighborhood of the origin and for the inputs u, having small L2 and
L∞ norms and x0 ∈ W̃ (0) This concludes the proof.

Until this point, we have proven that in the neighborhood of the origin, the energy
functionals of the QB system can be approximated by the Gramians in the quadratic
form. However, one can also prove similar bounds for the energy functionals using
the truncated Gramians for QB systems (defined in Corollary 3.4). We summarize
this in the following corollary.

Corollary 4.3. Consider the system (3.1), having a stable matrix A, to be lo-
cally reachable and observable. Let Lc(x) and Lo(x) be controllability and observability
energy functionals of the system, respectively, and the truncated Gramians PT > 0
and QT > 0 be solutions to the Lyapunov equations as shown in Corollary 3.4. Then,

(i) there exists a neighborhood WT of the origin such that

Lc(x) ≥ 1

2
xTP−1

T x, where x ∈WT (0).

(ii) Moreover, there also exists a neighborhood W̃T of the origin, where

Lo(x) ≤ 1

2
xTQT x, where x ∈ W̃T (0).
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(a) Comparison of the controllability energy
functional and its approximations.
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(b) Comparison of the observability energy
functional and its approximations.

Figure 4.1: Comparison of exact energy functionals with approximated energy func-
tionals via the Gramians and truncated Gramians.

In what follows, we illustrate the above bounds using Gramians and truncated Grami-
ans by considering a scalar dynamical system, where A,H,N,B,C are scalars, and
are denoted by a, h, n, b, c, respectively.

Example 4.4. Consider a scalar system (a, h, n, b, c), where a < 0 (stability) and
nonzero h, b, c. For simplicity, we take n = 0 so that we can easily obtain analytic
expressions for the controllability and observability energy functionals, denoted by
Lc(x) and Lo(x), respectively. Assume that the system is reachable on R. Then,
Lc(x) and Lo(x) can be determined via solving partial differential equations (2.2)
and (2.3) (with g(x) = 0), respectively. These are:

Lc(x) = −
(
ax2 + 2

3hx
3
) 1

b2
, Lo(x) = − c

2

2h

(
x− a

h
log

(
a+ hx

a

))
,

respectively. The quadratic approximations of these energy functionals by using the
Gramians, are:

L̂c(x) =
x2

2P
with P = −−a−

√
a2 − h2b2

h2
,

L̂o(x) =
Qx2

2
with Q = − c2

2a+ h2P
,

and the approximations in terms of the truncated Gramians are:

L̂(T )

c (x) =
x2

2PT
with PT = −h

2b4 + 4a2b2

8a3
,

L̂(T )

o (x) =
QT x2

2
with QT = −h

2b2c2 + 4a2c2

8a3
.

In order to compare these functionals, we set a = −2, b = c = 2 and h = 1 and plot
the resulting energy functionals in Figure 4.1.

Clearly, Figure 4.1 illustrates the lower and upper bounds for the controllability
and observability energy functionals, respectively at least locally. Moreover, we observe
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that the bounds for the energy functionals, given in terms of truncated Gramians are
closer to the actual energy functionals of the system in the small neighborhood of the
origin.

So far, we have shown the bounds for the energy functionals in terms of the
Gramians of the QB system. In order to prove those bounds, it is assumed that P
is a positive definite. However, this assumption might not be fulfilled for many QB
systems, especially arising from semi-discretization of nonlinear PDEs. Therefore, our
next objective is to provide another interpretation of the proposed Gramians and trun-
cated Gramians, that is, the connection of Gramians and truncated Gramians with
reachability and observability of the system. For the observability energy functional,
we consider the output y of the following homogeneous QB system:

(4.6)
ẋ(t) = Ax+Hx(t)⊗ x(t) +

m∑

k=1

Nkx(t)uk(t),

y(t) = Cx(t), x(0) = x0,

as considered for bilinear systems in [9, 25]. However, it might also be possible to
consider an inhomogeneous system by setting the control input u completely zero,
as shown in [39]. We first investigate how the proposed Gramians are related to
reachability and observability of the QB systems, analogues to derivation for bilinear
systems in [9].

Theorem 4.5.
(a) Consider the QB system (3.1), and assume the reachability Gramian P to be

the solution of (3.6). If the system is steered from 0 to x0, where x0 6∈ ImP ,
then Lc(x0) =∞ for all input functions u.

(b) Furthermore, consider the homogeneous QB system (4.6) and assume P > 0
and Q to be the reachability and observability Gramians of the QB system
which are solutions of (3.6) and (3.18), respectively. If the initial state sat-
isfies x0 ∈ KerQ, then Lo(x0) = 0.

Proof.
(a) By assumption, P satisfies

(4.7) AP + PAT +H(P ⊗ P )HT +

m∑

k=1

NkPN
T
k +BBT = 0.

Next, we consider a vector v ∈ KerP and multiply the above equation from
the left and right with vT and v, respectively to obtain

0 = vTAPv + vTPAT v + vTH(P ⊗ P )HT v +

m∑

k=1

vTNkPN
T
k v + vTBBT v

= vTH(P ⊗ P )HT v +

m∑

k=1

vTNkPN
T
k v + vTBBT v.

This implies BT v = 0, PNT
k v = 0 and (P ⊗P )HT v = 0. From (4.7), we thus

obtain PAT v = 0. Now we consider an arbitrary state vector x(t), which is
the solution of (3.1) at time t for any given input function u. If x(t) ∈ ImP
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for some t, then we have

ẋ(t)T v = x(t)TAT v+(x(t)⊗ x(t))
T
HT v+

m∑

k=1

uk(t)x(t)TNT
k v+u(t)BT v = 0.

The above relation indicates that ẋ(t) ⊥ v if v ∈ KerP and x(t) ∈ ImP .
It shows that ImP is invariant under the dynamics of the system. Since the
initial condition 0 lies in ImP , x(t) ∈ ImP for all t ≥ 0. This reveals that if the
final state x0 6∈ ImP , then it cannot be reached from 0; hence, Lc(x0) =∞.

(b) Following the above discussion, we can show that (I ⊗Q)
(
H(2)

)T
KerQ = 0,

QNkKerQ = 0, QAKerQ = 0, and CKerQ = 0. Let x(t) denote the solution
of the homogeneous system at time t. If x(t) ∈ KerQ and a vector ṽ ∈ ImQ,
then we have

ṽT ẋ(t) = ṽAx(t)︸ ︷︷ ︸
=0

+ṽTH(x(t)⊗ x(t))) +

m∑

k=1

ṽTNkx(t)uk(t)︸ ︷︷ ︸
=0

= x(t)TH(2)(x(t)⊗ ṽ) = x(t)TH(2)(I ⊗ ṽ)︸ ︷︷ ︸
=0

x(t) = 0.

This implies that if x(t) ∈ KerQ, then ẋ(t) ∈ KerQ. Therefore, if the initial
condition x0 ∈ KerQ, then x(t) ∈ KerQ for all t ≥ 0, resulting in y(t) =
C x(t)︸︷︷︸
∈KerQ

= 0; hence, Lo(x0) = 0.

The above theorem suggests that the state components, belonging to KerP or
KerQ, do not play a major role as far as the system dynamics are concerned. This
shows that the states which belong to KerP, are uncontrollable, and similarly, the
states, lying in KerQ are unobservable once the uncontrollable states are removed.
Furthermore, we have shown in Theorems 4.1 and 4.2 the lower and upper bounds
for the controllability and observability energy functions in the quadratic form of the
Gramians P and Q of QB systems (at least in the neighborhood of the origin). This
coincides with the concept of balanced truncation model reduction which aims at
eliminating weakly controllable and weakly observable state components. Such states
are corresponding to zero or small singular values of P and Q. In order to find these
states simultaneously, we utilize the balancing tools similar to the linear case; see,
e.g., [1, 2]. For this, one needs to determine the Cholesky factors of the Gramians as
P =: STS and Q =: RTR, and compute the SVD of SRT =: UΣV T , resulting in a

transformation matrix T = STUΣ−
1
2 . Using the matrix T , we obtain an equivalent

QB system

(4.8)
˙̃x(t) = Ãx̃(t) + H̃x̃(t)⊗ x̃(t) +

m∑

k=1

Ñkx̃(t)uk(t) + B̃u(t),

y(t) = C̃x̃(t), x̃(0) = 0

with

Ã = T−1AT, H̃ = T−1H(T ⊗ T ), Ñk = T−1NkT, B̃ = T−1B, C̃ = CT.

Then, the above transformed system (4.8) is a balanced system, as the Gramians P̃

and Q̃ of the system (4.8) are equal and diagonal, i.e., P̃ = Q̃ = diag(σ1, σ2, . . . , σn).
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The attractiveness of the balanced system is that it allows us to find state components
corresponding to small singular values of both P̃ and Q̃. If σn̂ > σn̂+1, for some n̂ ∈ N,
then it is easy to see that states related to {σn̂+1, . . . , σn} are not only hard to control
but also hard to observe; hence, they can be eliminated. In order to determine a

reduced system of order n̂, we partition T =
[
T1 T2

]
and T−1 =

[
ST1 ST2

]T
, where

T1, S
T
1 ∈ Rn×n̂, and define the reduced-order system’s realization as follows:

(4.9) Â = S1AT1, Ĥ = S1H(T1 ⊗ T1), N̂k = S1NkT1, B̂ = S1B, Ĉ = CT1,

which is generally a locally good approximate of the original system; though it is not
a straightforward task to estimate the error occurring due to the truncation of the
QB system unlike in the case of linear systems.

Based on the above discussions, we propose the following corollary, showing how
the truncated Gramians of a QB system relate to reachability and observability of the
system.

Corollary 4.6.
(a) Consider the QB system (3.1), and let PT and QT be the truncated Gramians

of the system, which are solutions of the Lyapunov equations as in (3.20). If
the system is steered from 0 to x0 where, x0 6∈ ImPT , then Lc(x0) = ∞ for
all input functions u.

(b) Assume the QB system (3.1) is locally controllable around the origin, i.e.,
(A,B) is controllable. Then, for the homogeneous QB system (4.6), if the
initial state x0 ∈ KerQT , then Lo(x0) = 0.

The above corollary can be proven, along of the lines of the proof for Theorem 4.5,
keeping in mind that if γ ∈ KerPT , then γ also belongs to KerP1, where P1 is the
solution to (3.21). Similarly, if ξ ∈ KerQT , then ξ also lies in KerQ1, where Q1 is
the solution to (3.22). This can easily be verified using simple linear algebra. Having
noted this, Corollary 4.6 also suggests that KerPT is uncontrollable, and KerQT is
also unobservable if the system is locally controllable. Moreover, these truncated
Gramians also bound the energy functions for QB systems in the quadratic form, see
Corollary 4.3. Based on these, we conclude that the truncated Gramians are also a
good candidate to use for balancing the system and to compute the reduced-order
systems.

5. Computational Issues and Advantages of Truncated Gramians. Up
to now, we have proposed the Gramians for the QB systems and showed their relations
to energy functionals of the system which allows us to determine the reduced-order
systems. Here, we discuss computational issues and the advantages of considering this
truncated Gramians in the MOR framework. Towards this end, we address stability
issues of the reduced-order systems, obtained by using the truncated Gramians.

5.1. Computational issues. One of the major concerns in applying balanced
truncation MOR is that it requires the solutions of two Lyapunov equations (3.6)
and (3.18). These equations are quadratic in nature, which are not trivial to solve,
and they appear to be computationally expensive. So far, it is not clear how to
solve these generalized quadratic Lyapunov equation efficiently; however, under some
assumptions, a fix point iteration scheme can be employed, which is based on the
theory of convergent splitting presented in [20, 43]. This has been studied for solving
generalized Lyapunov equation for bilinear systems in [19], wherein the proposed
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stationary method is as follows:

(5.1) L(Xi) = N (Xi−1)−BBT , i = 1, 2, . . . ,

with L(X) = AX + XAT and N (Xi) = −∑m
k=1NkXiN

T
k . To perform this station-

ary iteration, we require the solution of a conventional Lyapunov equation at each
iteration. Assuming σ(A) ⊂ C− and spectral radius of L−1N < 1, the iteration (5.1)
linearly converges to a positive semidefinite solution X of the generalized Lyapunov
equation for bilinear systems, which is

AX +XAT +

m∑

k=1

NkXN
T
k +BBT = 0.

Later on, the efficiency of this iterative method was improved in [44] by utilizing tools
for inexact solution of Ax = b. The main idea was to determine a low-rank factor of
N (Xi−1)−BBT by truncating the columns, corresponding to small singular values and
to increase the accuracy of the low-rank solution of the linear Lyapunov equation (5.1)
with each iteration. In total, this results in an efficient method to determine a low-rank
solution of the generalized Lyapunov equation for bilinear systems with the desired
tolerance. For detailed insights, we refer to [44].

One can utilize the same tools to determine the solutions of generalized quadratic-
type Lyapunov equations. We begin with the inexact form equation, which on con-
vergence gives the reachability Gramian; this is,

(5.2) L(Xi) = Π(Xi−1)−BBT , i = 1, 2, . . .

where L(X) = AX + XAT and Π(X) = −H(X ⊗ X)HT −∑m
k=1NkXN

T
k . Simi-

lar to the bilinear case, if σ(A) ⊂ C− and the spectral radius of L−1Π < 1, then
the iteration (5.2) converges to a positive semidefinite solution of the generalized
quadratic Lyapunov equation. Next, we determine a low-rank approximation of
Π(X) = −H(X⊗X)HT −∑m

k=1NkXN
T
k . For this, let us assume a low-rank product

X := FDFT , where F ∈ Rn×k and a QR decomposition of F := QFRF . We then per-
form an eigenvalue decomposition of the relatively small matrix RFDR

T
F := UΣUT ,

where Σ = diag (σ1, . . . , σk) with σj ≥ σj+1. Assuming there exists a scalar β such
that √

σ2
β+1 + · · ·+ σ2

k ≤ τ
√
σ2

1 + · · ·+ σ2
k,

where τ is a given tolerance, this gives us a low-rank approximation of X as:

X ≈ F̃ D̃F̃T ,
where F̃ = QF Ũ and D̃ = diag (σ1, . . . , σβ). Following the short-hand notation, we

denote Z̃ = Tτ (Z) which gives the low-rank approximation of ZZT with the tolerance

τ , i.e., ZZT ≈ Z̃Z̃T . Considering a low-rank factor of Xk−1 ≈ Zk−1Z
T
k−1, the right

side of (5.2)

Π(Xk−1)−BBT ≈ −[H(Zk−1 ⊗ Zk−1), [N1, . . . , Nm]Zk−1, B]

× [H(Zk−1 ⊗ Zk−1), [N1, . . . , Nm]Zk−1, B]T

can be replaced with its truncated version Tτ (Π(Xk−1) − BBT ) =: −FkFTk with
the desired tolerance. This indicates that we now need to solve the following linear
Lyapunov equation at each step:

(5.3) AXk +XkA = −FkFTk ,
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Algorithm 5.1 Iterative scheme to determine Gramians for QB systems.

Input: System matrices A,H,N1, . . . , Nm, B,C and tolerance τ .
Output: Low-rank factors of the Gramians: Zk (P ≈ ZkZ

T
k ) and Xk (Q ≈

XkX
T
k ).

1: Solve approximately AM +MAT +BBT = 0 for P1 ≈ Z1Z
T
1 .

2: Solve approximately ATG+GA+ CTC = 0 for Q1 ≈ X1X
T
1 .

3: for k = 2, 3, . . . do
4: Determine low-rank factors:

Bk = Tτ ([H(Zk−1 ⊗ Zk−1), N1Zk−1, . . . , NmZk−1, B]),
Ck = Tτ ([H(2)(Zk−1 ⊗Xk−1), NT

1 Xk−1, . . . , N
T
mXk−1, C

T ]).
5: Solve approximately AM +MAT + BkBTk = 0 for Pk ≈ ZkZTk .
6: Solve approximately ATG+GA+ CkCTk = 0 for Qk ≈ XkX

T
k .

7: if solutions are sufficiently accurate then stop.
8: end if
9: end for

which can be solved very efficiently by using any of the recently developed low-rank
solvers for Lyapunov equations; see, e.g., [13, 46]. In the following, we outline all the
necessary steps in Algorithm 5.1 to determine the Gramians by summarizing the all
above discussed ingredients.

Remark 5.1. At step 7 of Algorithm 5.1, one can check the accuracy of so-

lutions by measuring the relative changes in the solutions, i.e.,
‖Pk − Pk−1‖
‖Pk‖

and

‖Qk −Qk−1‖
‖Qk‖

. When these relative changes are smaller than a tolerance level, e.g.

the machine precision, then one can stop the iterations to have sufficiently accurate
solutions of the quadratic Lyapunov equations.

Remark 5.2. In order to employ Algorithm 5.1, the right side of the conventional
Lyapunov equation (see step 4) requires the computation of H(Zi ⊗ Zi) =: Γ at each
step, which is also computationally and memory-wise expensive. If Zi ∈ Rn×nz , then
the direct multiplication of Zi⊗Zi would have complexity of O(n2 ·n2

z), leading to an
unmanageable task for large-scale systems, even on modern computer architectures.
However, it is shown in [8] that Γ can be determined efficiently by making use of the
tensor multiplication properties, which are also reported in the previous section. In
the following, we provide the procedure to compute Γ efficiently:

• Determine Y ∈ Rnz×n×n such that Y(2) = ZTi H(2).
• Determine K ∈ Rn×nz×nz such that K(3) = ZTi Y(3).
• Then, Γ = K(1).

This way, we can avoid determining the full matrix Zi⊗Zi. Analogously, we can also
compute the term H(2)(Zi ⊗Xi).

Next, we discuss the existence of the solutions of quadratic type generalized Lya-
punov equations. As noted Algorithm 5.1, one can determine the solution of these
Lyapunov equations using fixed point iterations. In the following, we discuss sufficient
conditions under which these iterations converge to finite solutions.

Theorem 5.3. Consider a QB system as defined in (3.1) and let P and Q be its
reachability and observability Gramians, respectively. Assume that the Gramians P
and Q are determined using fixed point iterations as shown in Algorithm 5.1. Then,
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the Gramian P converges to a positive semidefinite solution if
(i) A is stable, i.e., there exist 0 < α ≤ −max(λi(A)) and β > 0 such that
‖eAt‖ ≤ βe−αt.

(ii)
β2ΓN

2α
< 1, where ΓN :=

∑m
k=1 ‖Nk‖2.

(iii) 1 > D2 − β2ΓH
α

β2ΓB
α

> 0, where D := 1 − β2ΓN
2α

, where ΓB := ‖BBT ‖,
ΓH := ‖H‖2.

and ‖P‖ is bounded by

(5.4) ‖P‖ ≤ 2α

β2ΓH

(
D −

√
D2 − 4

β2ΓH
2α

β2ΓB
2α

)
=: P∞.

Furthermore, the Gramian Q also converges to a positive semidefinite solution if in
addition to the above conditions (i)–(iii), the following condition satisfies

(5.5)
β2

2α

(
ΓN + Γ̃HP∞

)
< 1,

where Γ̃H := ‖H(2)‖2. Moreover, ‖Q‖ is bounded by

(5.6) ‖Q‖ ≤ β2

2α
ΓC

(
1− β2

2α

(
ΓN + Γ̃HP∞

))−1

,

where ΓC := ‖CTC‖.
Proof. Let us first consider the equation corresponding to P1:

(5.7) AP1 +AP1 +BBT = 0.

Alternatively, if A is stable, we can write P1 in the integral form as

(5.8) P1 =

∫ ∞

0

eAtBBT eA
T tdt,

implying

(5.9) ‖P1‖ ≤ β2‖BBT ‖
∫ ∞

0

e−2αtdt =
β2ΓB

2α
,

where ΓB := ‖BBT ‖. Next, we look at the equation corresponding to Pk, which is
given in terms of Pk−1:

(5.10) APk + PkA
T +H(Pk−1 ⊗ Pk−1)HT +

m∑

k=1

NkPk−1Nk +BBT = 0.

We can also write Pk in an integral form, provided A is stable:

Pk =

∫ ∞

0

eAt

(
H(Pk−1 ⊗ Pk−1)HT +

m∑

k=1

NkPk−1Nk +BBT

)
eA

T tdt

≤ β2
(
ΓH‖Pk−1‖2 + ΓN‖Pk−1‖+ ΓB

) ∫ ∞

0

e−2αtdt

≤ β2

(
ΓH‖Pk−1‖2 + ΓN‖Pk−1‖+ ΓB

)

2α
,
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where ΓH := ‖H‖2 and ΓN :=
∑m
k=1 ‖Nk‖2. If we consider an upper bound for the

norm of Pk−1 in order to provide an upper bound for Pk and apply Lemma A.1, then
we know that limk→∞ ‖Pk‖ is bounded if

1 > D2 − 4
β2ΓH

2α

β2ΓB
2α

≥ 0, where D := 1− β2ΓN
2α

and
β2ΓN

2α
< 1,

and limk→∞ ‖Pk‖ is bounded by

lim
k→∞

‖Pk‖ ≤
2α

β2ΓH

(
D −

√
D2 − 4

β2ΓH
2α

β2ΓB
2α

)
=: P∞.

Now, we consider the equation corresponding to Q1:

ATQ1 +ATQ1 + CTC = 0,

which again can be rewritten as:

Q1 =

∫ ∞

0

eA
T tCTCeAtdt

if A is stable. This implies

‖Q1‖ ≤ β2ΓC

∫ ∞

0

e−2αtdt = β2 ΓC
2α

,

where Γc := ‖CTC‖. Next, we look at the equation corresponding to Qk, that is,

ATQk +QkA+H(2)(Pk−1 ⊗Qk−1)
(
H(2)

)T
+

m∑

k=1

NT
k Qk−1Nk + CTC = 0.

A similar analysis for Qk yields

‖Qk‖ ≤
β2

2α

((
ΓN + Γ̃H‖Pk−1‖

)
Qk−1 + ΓC

)
,

where Γ̃H := ‖H(2)‖. Since ‖Pk−1‖ ≤ P∞ for all k ≥ 1, we further have

‖Qk‖ ≤
β2

2α

((
ΓN + Γ̃HP∞

)
‖Qk−1‖+ ΓC

)
.

An additional sufficient condition under which the above recurrence formula in ‖Qk‖
converges is as follows:

β2

2α

(
ΓN + Γ̃HP∞

)
< 1,

and limk→∞ ‖Qk‖ is then bounded by

lim
k→∞

‖Qk‖ ≤
β2

2α
ΓC

(
1− β2

2α

(
ΓN + Γ̃HP∞

))−1

.

This concludes the proof.
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Algorithm 5.2 Balanced truncation for QB systems (truncated version).

Input: System matrices A,H,Nk, B and C, and the order of the reduced sys-
tem n̂.
Output: The reduced system’s matrices Â, Ĥ, N̂k, B̂, Ĉ.

1: Determine low-rank approximations of the truncated Gramians PT ≈ RRT and
QT ≈ SST .

2: Compute SVD of STR:

STR = UΣV =
[
U1 U2

]
diag (Σ1,Σ2)

[
V1 V2

]T
,

where Σ1 contains the n̂ largest singular values of STR.
3: Construct the projection matrices V and W:

V = SU1Σ
− 1

2
1 and W = RV1Σ

− 1
2

1 .
4: Determine the reduced-order system’s realization:

Â =WTAV, Ĥ =WTH(V ⊗ V), N̂k =WTNkV, B̂ =WTB, Ĉ = CV.

Remark 5.4. In Algorithm 5.1, we propose to determine the low-rank solutions
of the Lyapunov equation at each intermediate step with the same tolerance. However,
one can also consider to increase the tolerance adaptively for computing the low-rank
solution of the Lyapunov equation with each iteration which probably can speed up
even more, see [44] for the generalized Lyapunov equations for bilinear systems.

5.2. MOR using truncated Gramians. As noted in Section 4, the quadratic
forms of both actual Gramians and its truncated versions (truncated Gramians) im-
pose bounds for the energy functionals of QB systems, at least in the neighborhood
of the origin, and we also provide the interpretation of reachability and observabil-
ity of the system in terms of Gramians and truncated Gramians. We have seen in
the previous subsection that determining Gramians P and Q is very challenging task
for large-scale settings. Moreover, the convergence of Algorithm 5.1 highly depends
on the spectral radius condition L−1Π, which should be less than 1. This condition
might not be satisfied for large H and Nk; thus, Algorithm 5.1 may not convergence.
On the other hand, in order to compute the truncated Gramians, there is no such
convergence issue. Furthermore, it can also be observed that the bounds for energy
functionals using the truncated Gramains can be much better (in the neighborhood
of the origin), for example see Figure 4.1.

Additionally, if we remove those states that are completely uncontrollable and
completely unobservable, then the truncated Gramians may provide reduced systems
which are of smaller orders as compared to using the Gramians of QB systems. This
is due to the fact that P ≥ PT and Q ≥ QT . This motivates us to use the truncated
Gramians to determine the reduced-order models, and we present the square-root bal-
anced truncation for QB systems based on these truncated Gramians in Algorithm 5.2.
Furthermore, we will see in Section 6 as well that these truncated Gramians also yield
very good qualitative reduced-order systems for QB systems.

5.3. Stability Preservation. We now discuss the stability of the reduced-order
systems, obtained by using Algorithm 5.2. For this, we consider only the autonomous
part of the QB system as follows:

(5.11) ẋ(t) = Ax(t) +H x(t)⊗ x(t),

where xeq = 0 is a stable equilibrium. In the following, we discuss Lyapunov stability
of xeq. For this, we first note the definition of the latter stability.
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Definition 5.5. Consider a QB system with u ≡ 0 (5.11). If there exists a
Lyapunov function F : Rn → R such that

F(x) > 0 and
d

dt
F(x) < 0, ∀x ∈ B0,r\{0},

where B0,r is a ball of radius r centered around 0, then xeq = 0 is a locally asymptot-
ically stable.

However, many other notions of the stability of nonlinear systems are available in
the literature, for instance based on a certain dissipation inequality [14], which might
be difficult to apply in the large-scale setting. In this paper, we stick to the notion of
the Lyapunov-based stability for the reduced-order systems.

Theorem 5.6. Consider the QB system (3.1) with a stable matrix A. Let PT and
QT be its truncated reachability and observability Gramians, defined in Corollary 4.6,
respectively. If the reduced-order system is determined as shown in Algorithm 5.2,
then for a Lyapunov function F(x̂) = x̂TΣ1x̂, we have

F(x̂) > 0, d
dt (F(x̂)) < 0 ∀ x̂ ∈ B0,r\{0},

where r =
σmin(VTGV)

2‖Σ1‖‖Ĥ‖
and G = H(2)(P1 ⊗ Q1)

(
H(2)

)T
+
∑m
k=1N

T
k Q1Nk + CTC

with P1 and Q1 being the solutions of (3.21) and (3.22), respectively.

Proof. First, we establish the relation between V, W, QT and Σ1. For this, we
consider

WΣ1 = RV1Σ
1
2
1 = RV1

[
Σ1 0

]T
UTU1Σ

− 1
2

1 = RV ΣUTU1Σ
− 1

2
1

= RRTSTU1Σ
− 1

2
1 = QT V.

Keeping in mind the above relation, we get

(5.12)
ÂTΣ1 + Σ1Â+ VTGV = VTATWΣ1 + Σ1WTAV + VTGV

= VTATQT V + VTQT AV + VTGV = VT (ATQT +QT A+ G)V = 0.

Since G is a positive semidefinite matrix and V has full column rank, VTGV is also
positive semidefinite. This implies that η(Â) ≤ 0, where η(·) denotes the spectral
abscissa of a matrix. Coming back to the Lyapunov function F(x̂) = x̂TΣ1x̂, which
is always greater than 0 for all x̂ 6= 0 due to Σ1 being a positive definite matrix, we
compute the derivative of the Lyapunov function as

d

dt
F(x̂) = ˙̂x

T
Σ1x̂+ x̂TΣ1

˙̂x

= x̂T ÂTΣ1x̂+ (x̂T ⊗ x̂T )ĤTΣ1x̂+ x̂TΣ1Âx̂+ x̂TΣ1Ĥ(x̂⊗ x̂)

= x̂T (ÂTΣ1 + Σ1Â)x̂+ (x̂T ⊗ x̂T )ĤTΣ1x̂+ x̂TΣ1Ĥ(x̂⊗ x̂).

Substituting ÂTΣ1 + Σ1Â = −VTGV from (5.12) in the above equation yields

d
dtF(x̂) = −x̂TVTGVx̂+ 2x̂TΣ1Ĥ(x̂⊗ x̂).(5.13)
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As

x̂TVTGVx̂ ≥ σmin(VTGV)‖x̂‖2,

implying

− x̂TVTGVx ≤ −σmin(VTGV)‖x̂‖2,

inserting the above inequality in (5.13) leads to

d
dtF(x̂) ≤ −σmin(VTGV)‖x̂‖2 + 2‖x̂‖3‖Σ1‖‖Ĥ‖.

For locally asymptotic stability of the reduced-order system, we require

d
dtF(x̂) ≤ −σmin(VTGV)‖x̂‖2 + 2‖x̂‖3‖Σ1‖‖Ĥ‖ < 0,

which gives rise to the following bound on ‖x̂‖:

‖x̂‖ < σmin(VTGV)

2‖Σ1‖‖Ĥ‖
.

This concludes the proof.

6. Numerical Experiments. In this section, we consider MOR of several QB
control systems and evaluate the efficiency of the proposed balanced truncation tech-
nique (Algorithm 5.2). For this, we need to solve a number of conventional Lyapunov
equations. In our numerical experiments, we determine low-rank factors of these Lya-
punov equations by using the ADI method as proposed in [11]. We compare the
proposed methodology with the existing moment-matching techniques for QB sys-
tems, namely one-sided moment-matching [29] and its recent extension to two-sided
moment-matching [8]. These moment-matching methods aim at approximating the
underlying generalized transfer functions of the system. Moreover, we need interpola-
tion points in order to apply the moment-matching methods; thus, we choose l linear
H2-optimal interpolation points, determined by using IRKA [30] on the corresponding
linear part. This leads to a reduced QB system of order n̂ = 2l. All the simulations
are done on MATLAB® Version 8.0.0.783(R2012b)64-bit(glnxa64) on a board with
4 Intel® Xeon® E7-8837 CPUs with a 2.67-GHz clock speed, 8 Cores each and 1TB
of total RAM, openSUSE Linux 12.04.

6.1. Nonlinear RC ladder. As a first example, we discuss a nonlinear RC
ladder. It is a well-known example and is used as one of the benchmark problems in
the community of nonlinear model reduction; see, e.g., [4, 15, 29, 34, 36]. A detailed
description of the dynamics can be found in the mentioned references; therefore, we
omit it for the brevity of the paper. However, we like to comment on the nonlinearity
present in the RC ladder. The nonlinearity arises from the presence of the diode I-V
characteristic iD := e40vD−vD−1, where vD denotes the voltage across the diode.
As shown in [29], introducing some appropriate new variables allows us to write the
system dynamics in the QB form of dimension n = 2k, where k is the number of
capacitors in the ladder.

We consider 500 capacitors in the ladder, leading to a QB system of order n =
1000. For this particular example, the matrix A is a semi-stable matrix, i.e., 0 ⊂ σ(A).
As a result, the truncated Gramians of the system might not exist; therefore, we
replace the matrix A by As := A−0.05I, where I is the identity matrix, to determine
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Figure 6.1: A RC ladder: decay of the normalized singular values based the truncated
Gramians, and the dotted lines show the normalized singular value for n̂ = 10 and the
order of the reduced system corresponding to the normalized singular value 1e−15.

these Gramians. However, note that we project the original system with the matrix
A to compute a reduced-order system but the projection matrices are computed using
the Gramians obtained via the shifted matrix As. In Figure 6.1, we show the decay
of the singular values, determined by the truncated Gramians (with the shifted A).
We then compute the reduced system of order n̂ = 10 by using balanced truncation.
Also, we determine 5 H2-optimal linear interpolation points and compute reduced-
order systems of order n̂ = 10 via one-sided and two-sided projection methods.

To compare the quality of these approximations, we simulate these systems for
the input signals u1(t) = 5 (sin(2π/10) + 1) and u2(t) = 10

(
t2 exp(−t/5)

)
. Figure 6.2

presents the transient responses and relative errors of the output for these input
signals, which shows that balanced truncation outperforms the one-sided interpolatory
method; on the other hand, we see that balanced truncation is competitive to the two-
sided interpolatory projection for this example.

6.2. One-dimensional Chafee-Infante equation. As a second example, we
consider the one-dimensional Chafee-Infante (Allen-Cahn) equation. This nonlinear
system has been widely studied in the literature; see, e.g., [16, 31], and its model
reduction related problem was recently considered in [8]. The governing equation,
subject to initial conditions and boundary control, have a cubic nonlinearity:

(6.1)
v̇ + v3 = vxx + v, (0, L)× (0, T ), v(0, ·) = u(t), (0, T ),

vx(L, ·) = 0, (0, T ), v(x, 0) = 0, (0, L).

Here, we make use of a finite difference scheme and consider k grid points in the spatial
domain, leading to a semi-discretized nonlinear ODE. As shown in [8], the smooth
nonlinear system can be transformed into a QB system by introducing appropriate
new state variables. Therefore, the system (6.1) with the cubic nonlinearity can be
rewritten in the QB form by defining new variables wi = v2

i with derivate ẇi = 2viv̇i.
We observe the response at the right boundary at x = L. We use the number of grid
points k = 500, which results in a QB system of dimension n = 2 · 500 = 1000 and set
the length L = 1. In Figure 6.3, we show the decay of the normalized singular values
based on the truncated Gramians of the system.

We determine reduced systems of order n̂ = 20 by using balanced truncation, and
one-sided and two-sided interpolatory projection methods. To compare the quality of
these reduced-order systems, we observe the outputs of the original and reduced-order
systems for two arbitrary control inputs u(t) = 5t exp(−t) and u(t) = 30(sin(πt) + 1)
in Figure 6.4.
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Original sys. BT One-sided proj. Two-sided proj.
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(a) Comparison of the original and the reduced-order systems for u1(t) = 5 (sin(2π/10) + 1).
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(b) Comparison of the original and the reduced-order systems for u2(t) = 10
(
t2 exp(−t/5)

)
.

Figure 6.2: A RC ladder: comparison of reduced-order systems obtained by balanced
truncation (BT) and moment-matching methods for two arbitrary control inputs.

Figure 6.4a shows that the reduced systems obtained via balanced truncation
and one-sided and two-sided interpolatory projection methods are almost of the same
quality for input u1. But for the input u2, the reduced system obtained via the one-
sided interpolatory projection method completely fails to capture the dynamics of the
system, while balanced truncation and two-sided interpolatory projection can repro-
duce the system dynamics with a slight advantage of two-sided projection regarding
accuracy.

However, it is worthwhile to mention that as we increase the order of the reduced
system, the two-sided interpolatory projection method tends to produce unstable
reduced-order systems. On the other hand, the accuracies of the reduced-order sys-
tems obtained by balanced truncation and one-sided moment-matching increase with
the order of the reduced systems.
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Figure 6.3: Chafee-Infante equation: decay of the normalized singular values based
the truncated Gramians, and dotted line shows the normalized singular value for
n̂ = 20 and the order of the reduced-order system corresponding to the normalized
singular value 1e−15.

6.3. The FitzHugh-Nagumo (F-N) system. Lastly, we consider the F-N
system, a simplified neuron model of the Hodgkin-Huxley model, which describes
activation and deactivation dynamics of a spiking neuron. This model has been con-
sidered in the framework of POD-based [17] and moment-matching model reduction
techniques [7]. The dynamics of the system is governed by the following nonlinear
coupled differential equations:

(6.2)
εvt(x, t) = ε2vxx(x, t) + f(v(x, t))− w(x, t) + q,

wt(x, t) = hv(x, t)− γw(x, t) + q

with a nonlinear function f(v(x, t)) = v(v − 0.1)(1− v) and the initial and boundary
conditions:

(6.3)
v(x, 0) = 0, w(x, 0) = 0, x ∈ [0, L],

vx(0, t) = i0(t), vx(1, t) = 0, t ≥ 0,

where ε = 0.015, h = 0.5, γ = 2, q = 0.05. We set the length L = 0.2. The stimulus
i0 acts as an actuator, taking the values i0(t) = 5·104t3 exp(−15t), and the variables v
and w denote the voltage and recovery voltage, respectively. We also assume the same
outputs of interest as considered in [7], which are v(0, t) and w(0, t). These outputs
describe nothing but the limit cyclic at the left boundary. Using a finite difference
discretization scheme, one can obtain a system with two inputs and two outputs of
dimension 2k with cubic nonlinearities, where k is the number of degrees of freedom.
Similar to the previous example, the F-H system can also be transformed into a QB
system of dimension n = 3k by introducing a new state variable zi = v2

i . We set
k = 500, resulting in a QB system of order n = 1500. Figure 6.5 shows the decay of
the singular values based on the truncated Gramians for the QB system.

Furthermore, we determine reduced-order systems of order n̂ = 20 by using bal-
anced truncation and moment-matching methods. We observe that the reduced-order
systems, obtained via the moment-matching methods with linear H2-optimal interpo-
lations, both one-sided and two-sided, fail to capture the dynamics and limit cycles.
We made several attempts to adjust the order of the reduced systems; but, we were
unable to determine a stable reduced-order system via these methods with linear H2-
optimal points which could replicate the dynamics. Contrary to these methods, the
balanced truncation replicates the dynamics of the system faithfully as can be seen
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(a) Comparison of the original and the reduced-order systems for u1(t) = 5 t exp(−t) .
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(b) Comparison of the original and the reduced-order systems for u2(t) = 30 (sin(πt) + 1).

Figure 6.4: Chafee-Infante equation: comparison of the reduced-order systems ob-
tained via balanced truncation and moment-matching methods for the inputs u1(t) =
5 (t exp(−t)) and u2(t) = 30 (sin(πt) + 1).

in Figure 6.6a. Note that the reduced-order model reported in [7] was obtained using
higher-order moments in a trial-and-error fashion but cannot be reproduced by an
automated algorithm. As the dynamics of the system produces limit cycles for each
spatial variable x, we, therefore, plot the solutions v and w over the spatial domain
x, which is also captured by the reduced-order system very well.

7. Conclusions. In this paper, we have investigated balanced truncation model
reduction for QB control systems. We have proposed reachability and observability
Gramians for QB systems based on the kernels of their underlying Volterra series.
Additionally, we have also introduced a truncated version of the Gramians. We,
furthermore, have compared the controllability and observability energy functionals of
the QB system with the quadratic forms of the proposed Gramians for the system and
also investigated the connection between the Gramians and reachability/observability
of the QB system. Also, we have discussed the advantages of the truncated version
of Gramians in the MOR framework and studied local Lyapunov stability of the
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Figure 6.5: Decay of the normalized singular values based the truncated Gramians of
the system for the F-N example, and the dotted lines show the normalized singular
value for n̂ = 20 and the order of the reduced system corresponding to the normalized
singular value 1e−15.
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(a) The response v(t) and w(t) at the left
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Figure 6.6: FitzHugh-Nagumo system: comparison of the response at the left bound-
ary and the limit cycle behavior of the original system and the reduced-order (balanced
truncation) system. The reduced-order systems determined by moment-matching
methods were unable to produce these limit cycles.

reduced-order systems, obtained via the square-root balanced truncation. By means
of various semi-discretized nonlinear PDEs, we have demonstrated the efficiency of
the proposed balanced truncation methods for QB systems and compared it with the
existing moment-matching techniques.
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Appendix A. A Convergence Result.

Lemma A.1. Consider a recurrence formula as follows:

(A.1) xk+1 = F (xk), ∀ k ≥ 1,

where F (x) = ax2 + bx + c and a, b, c are real positive scaler numbers. Moreover,
assume that x1 = c. Then, limk→∞ xk =: x∗ is finite if

b < 1, and(A.2a)

1 > (b− 1)2 − 4ac > 0.(A.2b)

Furthermore, x∗ is given by the smaller root of the the following quadratic equation:

ax2 + (b− 1)x+ c = 0, i.e.,

(A.3) x∗ =
−(b− 1)−

√
(b− 1)2 − 4ac

2a
.
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Proof. First, note that the sequence (A.1) contains only real positive numbers.
Thus, the equilibrium point must also be a real positive number. Furthermore, the
equilibrium points solve the quadratic equation F (x) − x = 0, and we denote these
equilibrium points by x(1) and x(2) with x(1) ≤ x(2). Since a, b and c all are positive,
both equilibrium points either can be positive or negative depending on the value of
b. To ensure the equilibrium points being positive, the minima of F (x) − x must lie
in the right half plane; thus, b− 1 < 0, leading to the condition (A.2a).

Furthermore, we consider the derivative of F (x), that is, F ′(x) := 2ax+ b. Since
F ′(x) is an increasing function and F ′(x) ≥ 0 ∀x ∈ [c, x(1)], we have for y ∈ [c, x(1)]:

F ′(y) ≤ F ′(x(1))

≤ 2ax(1) + b = 2a

(
−(b− 1)−

√
(b− 1)2 − 4ac

2a

)
+ b ≤ 1−

√
(b− 1)2 − 4ac.

Assuming 1 > (b− 1)2 − 4ac > 0, we have F ′(y) < 1, ∀y ∈ [c, x(1)]. Thus, by Banach
fix-point theorem, F (x) is a contraction on [c, x(1)], and the fixed point is given by
x(1).
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