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Low-Rank Eigenvector Compression of Posterior Covariance Matrices
for Linear Gaussian Inverse Problems∗
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Abstract. We consider the problem of efficient computations of the covariance matrix of the posterior proba-
bility density for linear Gaussian Bayesian inverse problems. When the probability density of the
noise and the prior are Gaussian, the solution of such a statistical inverse problem is also Gaussian.
Therefore, the underlying solution is characterized by the mean and covariance matrix of the poste-
rior probability density. However, the covariance matrix of the posterior probability density is dense
and large. Hence, the computation of such a matrix is impossible for large dimensional parameter
spaces as is the case for discretized PDEs. Low-rank approximations to the posterior covariance
matrix were recently introduced as promising tools. Nevertheless, for transient problems the result-
ing approximation suffers from an increased dimensionality. We here exploit the structure of the
discretized equations in such a way that spatial and temporal components can be separated and the
growing complexity is dramatically reduced. In particular, the storage for an eigenvector low-rank
approximation up to now was dominated by the computation and storage complexity of O(nxnt),
where nx is the dimension of the spatial domain and nt is the dimension of the time domain. We
develop a new approach that utilizes a low-rank in time algorithm together with the low-rank Hessian
method. We reduce both the computational complexity and storage requirement from O(nxnt) to
O(nx + nt). We use numerical experiments to illustrate the advantages of our approach.
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preconditioning, matrix equations

AMS subject classifications. 65F15, 65F10, 65F50, 93C20, 62F15

DOI. 10.1137/17M1121342

1. Introduction. Computational mathematicians dealing with simulations of large-scale
discretizations describing physical phenomena have had tremendous success over the last
decades. This has enabled scientists from various areas of engineering, chemistry, geophysics,
etc., to ask more relevant and complex questions. One area that has seen a dramatic increase

∗Received by the editors March 16, 2017; accepted for publication (in revised form) April 30, 2018; published
electronically June 28, 2018.

http://www.siam.org/journals/juq/6-2/M112134.html
Funding: This work was supported by the European Regional Development Fund (ERDF/EFRE:

ZS/2016/04/78156) within the Research Center “Dynamic Systems: Systems Engineering” (CDS). The work was
performed while the third author was at the Max Planck Institute for Dynamics of Complex Technical Systems.
†Computational Methods in Systems and Control Theory Group, Max Planck Institute for Dynamics of Complex

Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany (benner@mpi-magdeburg.mpg.de).
‡Corresponding author. Computational Methods in Systems and Control Theory Group, Max Planck Institute for

Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany (qiu@mpi-magdeburg.mpg.de,
y.qiu@gmx.us).
§Numerical Linear Algebra for Dynamical Systems Group, Max Planck Institute for Dynamics of Complex Tech-

nical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany (stollm@mpi-magdeburg.mpg.de), and Professorship
of Scientific Computing, Faculty of Mathematics, Technische Universität Chemnitz, 09107 Chemnitz, Germany,
(martin.stoll@mathematik.tu-chemnitz.de).

965

D
ow

nl
oa

de
d 

07
/1

7/
18

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.siam.org/journals/juq/6-2/M112134.html
mailto:benner@mpi-magdeburg.mpg.de
mailto:qiu@mpi-magdeburg.mpg.de
mailto:y.qiu@gmx.us
mailto:stollm@mpi-magdeburg.mpg.de
mailto:martin.stoll@mathematik.tu-chemnitz.de


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

966 PETER BENNER, YUE QIU, AND MARTIN STOLL

in the number of published results is the field of statistical inverse problems [38, 22, 8]. In
particular, the consideration of partial differential equations (PDEs) as models in statistical
inverse problems dramatically increases the problem complexity as a refinement of the model
in space and time and results in an exponential increase in the problem degrees of freedom.
By this we mean that a discretized problem is typically represented by a spatial system matrix
A ∈ Rnx,nx , where the number of degrees of freedom nx is typically O( 1

hd
) with d being the

spatial dimension, and h is the mesh size. It is easily seen that halving the mesh size h means
the matrix size will grow by a factor of 2, 4, 8, . . . depending on the spatial dimension. This
complexity is further increased when the temporal dimension is incorporated.

While numerical analysis has provided many techniques that allow the efficient handling
of such problems, e.g., Krylov methods [29] and multigrid techniques [17], we are faced with
an even steeper challenge when uncertainty in the parameters of the model is incorporated.
For this we consider the approach of Bayesian inverse problems where the goal is to infer pos-
terior mean or posterior by using the prior knowledge combining a set of measured/observed
data. While computing the posterior mean typically corresponds to a problem formulation
frequently encountered in PDE-constrained optimization [39, 19, 6], the problem of computing
the posterior covariance matrix is much more challenging as this matrix is dense and involves
the inverse of high-dimensional discretized PDE problems. In [14, 35] and subsequent works,
the authors proposed a low-rank approximation of the posterior covariance matrix. This al-
ready very efficient approach is based on a low-rank approximation of a space-time matrix,
but the individual columns of this low-rank approximation of such a space-time matrix still
suffer from the complexity growth, regarding refinement in space and time. Our approach
is built on top of this approach by further approximating the space-time eigenvectors in a
low-rank form. For this to be applicable, we require an all-at-once1 discretization, which is
feasible for all linear PDEs. This approach extends results in [37] and typically reduces the
complexity from O(nxnt) to O(nx + nt).

Example 1.1. Consider the matrix A to be the finite difference discretization of a two-
dimensional Laplacian with appropriate boundary conditions. It is well known this matrix
can be written as A = Iz ⊗ Dy + Dz ⊗ Iy ∈ Rnzny ,nzny with I and D the one-dimensional
identity and difference discretizations, respectively.

The solution of an eigenvalue problem with A from Example 1.1 can utilize the particular
structure, i.e., the Kronecker products, and therefore allows a much more dramatic reduction
of the computation time and storage cost than if we would only consider A without such a
Kronecker product structure. Our methodology developed here will proceed in the same way
and we will rely on structures that are similar to that of A.

The paper is therefore organized as follows. We first derive the basic problem following [14].
This is followed by the presentation of a low-rank technique that we previously introduced for
PDE-constrained optimization. We then use this to establish a low-rank eigenvalue method
based on the classical Lanczos procedure [25] or Arnoldi procedure [30]. After introducing dif-
ferent choices of covariance matrices, we show that our approach can be theoretically justified.
We then illustrate the applicability of our proposed methodology to a diffusion problem and

1Discretization in space and time simultaneously.D
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LOW-RANK COMPUTATION IN BAYESIAN INVERSE PROBLEMS 967

a convection diffusion problem, and we present numerical results illustrating the performance
of the scheme.

2. Bayesian inverse problems. We refer to [22, 38] for excellent introductions to the
subject of statistical inverse problems. We follow [14, 7] in the derivation of our model setup
and start with the parameter-to-observable map g : Rn × Rk → Rm defined as

(2.1) Y = g(U,E),

where U, Y,E are vectors of random variables. Note that here, u, our model parameter to
be recovered, is a realization of U, the error e is a realization of E, y is a realization of the
observables Y , and yobs contains the observed values. As discussed in [7], even when using
the “true” model parameters u, the observables y will differ from the measurements yobs due
to measurement noise and the inadequacy of the underlying PDE model.

In a typical application such as the one discussed later, evaluating g(.) requires the solution
of a PDE potentially coupled to an observation operator representing a domain of interest.

The Bayes’ theorem, which plays a key role in the Bayesian inference, is written as

(2.2) πpost := π(u|yobs) ∝ πprior(u)π(yobs|u),

where we used the prior probability density function (PDF) πprior(x), the likelihood function
π(yobs|u), and the data yobs. The function πpost : Rn → R is the posterior PDF and it is
specified by the prior PDF and the likelihood function given the observed data. To arrive at
a computable expression, we derive the likelihood under the assumption of additive noise

(2.3) Y = f(U) + E,

where f : Rn → Rm and E is the additive noise. Following [22] we assume that E and U are
mutually independent, which means that the known probability density of E when conditioned
on U = u is unchanged. Then it holds that Y conditioned on U = u is distributed like E,

π(yobs|u) = πnoise(yobs − f(u)).

Therefore, Bayes’ theorem can be written as

(2.4) πpost ∝ π(u|yobs) ∝ πprior(u)π(yobs|u) = πprior(u)πnoise(yobs − f(u)).

Assuming that both PDFs for U and E are Gaussian, we can rewrite the PDFs in the form

πprior(u) ∝ exp

(
−1

2
(u− ūprior)

T Γ−1
prior (u− ūprior)

)
,

πnoise(e) ∝ exp

(
−1

2
eTΓ−1

noisee

)
,

(2.5)

where ūprior ∈ Rn is the mean of the model parameter prior PDF. We further have the two
covariance matrices Γprior ∈ Rn,n for the prior and Γnoise ∈ Rm,m for the noise. Here weD
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968 PETER BENNER, YUE QIU, AND MARTIN STOLL

assume that the variables ūprior, Γprior, and Γnoise are all known. The Gaussian assumption
allows us to rewrite Bayes’ theorem further to get

πpost ∝ exp

(
−1

2
(u− ūprior)

T Γ−1
prior (u− ūprior)−

1

2
eTΓ−1

noisee

)
= exp

(
−1

2
‖u− ūprior‖2Γ−1

prior
− 1

2
‖e‖2

Γ−1
noise

)
.

(2.6)

Let us further assume that the parameter-to-observable map g(U, Y ) is given as in (2.3) with
f(U) = AU . The matrix A ∈ Rm,n represents a linear map from the parameters u to the
observables y. We will later see that often this matrix involves the inverse of a discretized
representation of a PDE operator. Therefore, it will typically be dense and very large. We
arrive now at a restated version of the Bayes’ theorem (2.3):

πpost ∝ exp

(
−1

2
‖u− ūprior‖2Γ−1

prior
− 1

2
‖yobs −Au‖2Γ−1

noise

)
.(2.7)

From this relation we can express several relevant statistical quantities. For example, we can
compute the maximum a posterior point (MAP), which is defined via

(2.8) ūpost = argmaxuπpost(u),

and to compute it, one can solve the following optimization problem:

ūpost = argminu

(
1

2
‖u− ūprior‖2Γ−1

prior
+

1

2
‖yobs −Au‖2Γ−1

noise

)
.

Note that this problem is a deterministic inverse problem and resembles the structure one
finds in PDE-constrained optimization problems [39, 21]. For this, many efficient strategies
to solve this problem are known. An infinite-dimensional discussion of the above problem is
given in [7, 38] and we only refer to the infinite-dimensional setup when needed. Our goal
in this paper will not be the solution of the MAP problem. The goal of devising low-rank
methods for this case has recently been established in [37] and the techniques there are likely
to be applicable as the only difference is the use of the weighting matrices Γnoise and Γprior,
which are for the classical PDE-constrained optimization problem mass matrices or matrices
involving mass matrices. The more challenging question lies in the approximation of the
posterior covariance matrix

(2.9) Γpost =
(
ATΓ−1

noiseA+ Γ−1
prior

)−1
.

The approximation of Γpost is in general very costly and, without further approximation,
intractable. The approach presented in [14, 7] computes a low-rank approximation to this
matrix using the following relation:

Γpost =
(
ATΓ−1

noiseA+ Γ−1
prior

)−1

= Γ
1/2
prior

(
Γ

1/2
priorA

TΓ−1
noiseAΓ

1/2
prior + I

)−1
Γ

1/2
prior.

(2.10)
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LOW-RANK COMPUTATION IN BAYESIAN INVERSE PROBLEMS 969

The authors in [14, 7] then compute a low-rank approximation to the so-called prior-pre-
conditioned Hessian of the data misfit H̃mis ∈ Rn,n

(2.11) H̃mis = Γ
1/2
priorA

TΓ−1
noiseAΓ

1/2
prior

with the approximation

(2.12) H̃mis ≈ V ΛV T ,

where V and Λ represent the dominant eigenvectors and eigenvalues, respectively. Using
this approximation and the Sherman–Morrison–Woodbury formula [15] one obtains for the
prior-preconditioned system

(2.13)
(

Γ
1/2
priorA

TΓ−1
noiseAΓ

1/2
prior + I

)−1
≈
(
V ΛV T + I

)−1
= I − V Λ̃V T ,

where Λ̃ = diag( λi
λi+1), and λi is the ith diagonal entry of Λ. In case Γ

1/2
prior cannot be com-

puted, a low-rank approximation ATΓ−1
noiseA ≈ V ΛV T can be used for the computations of

the posterior covariance matrix in (2.9), given by(
ATΓ−1

noiseA+ Γ−1
prior

)−1
≈
(
V ΛV T + Γprior

)−1

= Γ−1
prior − Γ−1

priorV
(

Λ−1 + V TΓ−1
priorV

)−1
V TΓ−1

prior,

(2.14)

and becomes a feasible alternative if (Λ−1 + V TΓ−1
priorV )−1, typically much smaller than the

original matrix, can be evaluated in reasonable time.
The approximation H̃mis ≈ V ΛV T is already of low-rank form and very effective in reduc-

ing the typically infeasible amount of storage. It is very efficient in reducing the complexity
of storing only the matrices Λ and V , where the columns of V are dominant eigenvectors of a
certain matrix from the discretization a transient problem, and Λ is a diagonal matrix whose
diagonal entries are the dominant eigenvalues. For a transient problem, the eigenvectors are
still of very large dimension. Other low-rank techniques have been considered recently, e.g.,
in [9] the authors assume that parameters-to-observable operator is not known and has to be
approximated in a fashion similar to (2.12). Follow-up results are found in [10, 35, 34]. Our
main goal of this paper is the derivation of an efficient scheme to additionally approximate the
matrix V from the low-rank approximation to the misfit Hessian. For this to be applicable,
it is important to be able to utilize the structure of the discretized PDE operator and the re-
sulting Kronecker-product form (cf. Example 1.1). Before introducing our solution approach,
we need to introduce an idea that becomes instrumental in realizing this and is motivated by
a PDE-constrained optimization problem.

Since our main focus is on further reducing the computational and storage cost of the
approximation shown in (2.14), we currently do not consider the optimality of the approx-
imation of the prior-preconditioned data-misfit Hessian shown in (2.14). For the details of
optimality, we refer to [35] for further reference.D
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970 PETER BENNER, YUE QIU, AND MARTIN STOLL

3. A low-rank technique for PDE-constrained optimization. In order to better under-
stand the stochastic inverse problem, we investigate it in relation to a PDE-constrained opti-
mization problem. We start the derivation of the low-rank in time method by considering an
often used model problem in PDE-constrained optimization (see [20, 21, 39]), minimization of

(3.1) min
y,u

1

2
‖y − yobs‖2Q +

β

2
‖u‖2P ,

with P and Q space-time cylinders. The constraint linking state y and control u of this
problem is given by the heat equation with a distributed control term

yt −∇2y = u in Ω,

y = f on ∂Ω.

Here Ω denotes the domain and ∂Ω corresponds to the boundary of the domain. For a more
detailed discussion on the well-posedness, existence of solutions, discretization, etc., we refer
the interested reader to [20, 21, 39]. The solution of such an optimization problem is obtained
using a Lagrangian approach and considering the first order conditions, which for our problem
results in a linear system of the form D1 ⊗ τM1 0 −

(
Int ⊗ L+ CT ⊗M

)
0 D2 ⊗ βτM2 D3 ⊗ τNT

− (Int ⊗ L+ C ⊗M) D3 ⊗ τN 0


︸ ︷︷ ︸

A

yu
p



=

D1 ⊗ τM1yobs

0
d

,
(3.2)

where D1 = D2 = D3 = Int come from the discretization of the temporal parts of the objective
function or the right-hand side of the PDE-constraint (cf. [5, 28, 36]). These matrices do not
necessarily coincide as this depends on the chosen discretization of the objective function and
also on the possibly different terms included in it. The matrices M1 and M2 are mass matrices
corresponding to observation and control domain. The matrix N is essentially representing the
incorporation of the control into the constraint, i.e., N is a mass matrix in the above example.
The matrix C represents the all-at-once discretization of the time-derivative in the PDE and
L the discretized Laplacian. Here, the state, control, and adjoint state are represented by the
following space-time vectors:

y =

 y1
...

ynt

 ,u =

 u1
...

unt

 , and p =

 p1
...

pnt

 .
We point out again that the Kronecker product is defined as

W ⊗ V =

 w11V . . . w1mV
...

. . .
...

wn1V . . . wnmV
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LOW-RANK COMPUTATION IN BAYESIAN INVERSE PROBLEMS 971

and remind the reader of the definition of the vec () operator via

vec (W ) =


w11

...
wn1

...
wnm


as well as the relation (

W T ⊗ V
)

vec (Y ) = vec (V YW ) .

In [37], it was shown that the solution to the PDE-constrained optimization problem can be
computed in low-rank form,

Y =
[
y1,y2, . . . ,ynt

]
≈WY V

T
Y with WY ∈ Rn1,k1 , VY ∈ Rnt,k1 ,

U =
[
u1,u2, . . . ,unt

]
≈WUV

T
U with WU ∈ Rn2,k2 , VU ∈ Rnt,k2 ,

P =
[
p1,p2, . . . ,pnt

]
≈WPV

T
P with WP ∈ Rn1,k3 , VP ∈ Rnt,k3 ,

(3.3)

where the ki are small in comparison to the spatial and temporal dimensions. The authors
in [37] illustrated that the low-rank structure of a right-hand side is maintained throughout
a Krylov subspace iteration and the above described representation. Low-rank techniques for
Krylov subspace methods have recently received much attention and we refer the reader to
[23, 24, 1] and for tensor structured equations [16, 27, 11, 12].

We obtain a significant storage reduction if we can base our approximation of the solution
using such low-rank factors. It is easily seen that due to the low-rank nature of the factors,
we have to perform fewer multiplications with the submatrices by also maintaining smaller
storage requirements.

There are several similarities to the problem (3.1) and the statistical inverse problem
presented earlier. It is clear that with the choice

(3.4) Γprior = (D2 ⊗ βτM2)−1 and Γnoise = (D1 ⊗ τM1)−1 ,

the PDE-constrained optimization problem can be interpreted as a statistical inverse problem
and the posterior covariance matrix Γpost is given by eliminating both state and adjoint state
from the system matrix (3.2) to obtain a reduced Hessian system. Furthermore, it is clear
that for many choices of prior and noise covariance, we can utilize the tensor structure to
compute low-rank solutions. For this we state the posterior covariance matrix of the PDE
optimization problem

Γpost =
[
(D2 ⊗ βτM2) +

(
D3 ⊗ τNT

) (
Int ⊗ L+ CT ⊗M

)−1

(D1 ⊗ τM1) (Int ⊗ L+ C ⊗M)−1 (D3 ⊗ τN)
]−1(3.5)

and the misfit Hessian

H̃mis =
[
(D2 ⊗ βτM2)1/2 (D3 ⊗ τNT

) (
Int ⊗ L+ CT ⊗M

)−1

(D1 ⊗ τM1) (Int ⊗ L+ C ⊗M)−1 (D3 ⊗ τN) (D2 ⊗ βτM2)1/2
]
.

(3.6)
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972 PETER BENNER, YUE QIU, AND MARTIN STOLL

We keep this example in mind when we now discuss a low-rank technique to approximate
the eigenvectors of the posterior covariance matrix in low-rank form. For this we propose a
low-rank Krylov subspace method to compute the dominating eigenvectors and eigenvalues.

Before discussing the eigenvalue approximation strategy, we want to comment on the
scaling of the PDE-constrained optimization problem in relation to the statistical inverse
problem discussed in [14]. The authors there consider

min
y,u

βnoise

2
‖y − yobs‖2Q +

βprior

2
‖u‖2P ,(3.7)

which in the simple case of full observations and control leads to the following rescaling of (3.4):

(3.8) Γprior = (D2 ⊗ βpriorτM2)−1 and Γnoise = (D1 ⊗ τβnoiseM1)−1 .

Assuming that M ≈ hdI and Di = I we get

(3.9) Γ−1
prior = βpriorτh

dI and Γ−1
noise = βnoiseτh

dI.

In PDE-constrained optimization one typically reduces β in (3.1) to allow for a more expensive
control that drives the state closer to the desired state. This would mean that in the statistical
inverse setting βnoise = 1 and decreasing the value of βprior, which implies that in (2.9) the
role of the prior covariance gets diminished and most contributions are coming from the noise.
We have similar settings and observations for stochastic inverse problems in this manuscript.
These will be shown by the analysis in section 5 and numerical experiments in section 6. The
right choice of βprior and βnoise depends on the underlying application and we refer to [8] for
a discussion of the roles of βprior and βnoise as regularization parameters.

4. Low-rank Lanczos/Arnoldi method. We recall that our goal is to find a low-rank
approximation of the eigenvectors of the posterior covariance matrix. The goal is to compute
an approximation to H̃mis ≈ V ΛV T with V = [v1, v2, . . . , vk] and k much smaller than the
dimension of H̃mis. For the PDE-constrained optimization problem H̃mis ∈ Rnxnt,nxnt .

Our main assumption at this point is that storing each vj and especially a number of such
space-time vectors can pose serious problems. Additionally, in order to perform the matrix
vector multiplication with H̃mis, a large number of PDE-solutions need to be computed. For
this we point out that in order to apply the matrix H̃mis in an Arnoldi procedure, we need to
solve the spatial system over the whole time domain. A major advantage of our approach is
motivated by the fact that

vj = vec (Vj) ∀j = 1, . . . , k with Vj ∈ Rnx,nt ,

which we assume is well approximated via

(4.1) Vj ≈Wj,1W
T
j,2

with Wj,1 ∈ Rnx,rj Wj,2 ∈ Rnt,rj with rj � min {nx, nt}. If the Arnoldi or Lanczos vectors
are of this form, then the application of the matrix H̃mis to such vectors requires fewer PDE
solves than in the full case.D
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Note that we need to compute the dominant eigenvectors of the prior-preconditioned
data misfit Hessian H̃mis (2.11). Therefore the Lanczos method can be used. At the jth
Lanczos iteration, we need to perform H̃misvj−1 using the low-rank approach to get a form
like (4.1). Here vj−1 is the (j − 1)th Lanczos vector. Due to the low-rank approximation, the
orthogonality of Lanczos vectors is lost. Reorthogonalization should be used to orthogonalize
Lanczos vectors. Meanwhile, the symmetric property of H̃mis cannot be preserved for the
low-rank form of the matrix-vector product. Therefore, we make use of the more general
Arnoldi method to compute the dominant eigenvectors of H̃mis. We also observe that when
applying the Arnoldi method with the truncation error appropriately chosen we still get real
eigenvalues. This will be shown in section 6.

We now briefly recall the Arnoldi method, which is the more general procedure. We refer
to [15] for details. We recall that the Arnoldi process for a matrix B can be written as

BVk = Vk+1Hk+1,k,

where Vk consists of orthornormal columns and Hk+1,k ∈ R(k+1)×k is a Hessenberg matrix.
The iterative build-up of the columns of V is captured by the recursion

(4.2) ṽk+1 = Bvk −
k∑
i=1

hi,kvi,

where hi,k = vTi Avk. The vector ṽk+1 is then normalized using the scalar hk+1,k. While this
is well-known our goal here is to illustrate how this method is amenable to the use within a
low-rank framework. For the Arnoldi process considered in this manuscript, B = H̃mis and
the application of B to vk results in a low-rank matrix, i.e.,

Bvk = vec
(
W1,BW

T
2,B

)
with small rank. This is because B is related with the inverse of a PDE operator in space
and time, which has shown in [37] that applying such an operator to a low-rank vector again
gives a low-rank vector. We can then write the right-hand side of (4.2) as

(4.3) vec
(
W1,BW

T
2,B

)
− αk vec

(
W1,kW

T
2,k

)
− βk vec

(
W1,k−1W

T
2,k−1

)
and write the last expression as

vec
(

[W1,B,−αkW1,k,−βkWk−1,B] [W2,B,W2,k,W2,k−1]T
)
.

The size of the matrix

[W1,B,−αkW1,k,−βkWk−1,B] ∈ Rnx,rB+rk+rk−1

is increased to rB + rk + rk−1. Using truncation techniques this can typically be controlled.
For example, one could achieve the truncation by utilizing skinny QR factorization [23] or
truncated singular value decomposition [37].D
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We apply the more expensive but stable Arnoldi process in our manuscript, where we
orthogonalize with respect to all previous Arnoldi vectors. This full reorthogonalization also
demands more storage than in the Lanczos case. This is another advantage of our approach.
With full reorthogonalization, the storage costs are increasing for both full and low-rank
schemes but in the low-rank framework stay significantly below the full scheme. Here, we give
the low-rank Arnoldi method in Algorithm 4.1.

Algorithm 4.1. Low-rank Arnoldi method.

1: Input: maximal Arnoldi steps ma, unit vector v1, truncation tolerance ε0

2: for j = 1 : ma do
3: perform low-rank matrix vector product w = H̃misvj up to the truncation tolerance ε0

4: for i=1: j do
5: perform low-rank dot product Hi, j = wHvi
6: update w ← w −Hi,jvi
7: end for
8: Hj+1, j =

√
wHw

9: if j < ma then
10: vj+1 = 1/Hj+1, jw
11: end if
12: end for
13: Output: low-rank Arnoldi vectors vj , and Hessenberg matrix H

We note that the biggest challenge for the low-rank Arnoldi method is to perform the
low-rank matrix vector product in line 3 of Algorithm 4.1 since H̃mis is large and dense. We
propose the tensor-train (TT) format in section 6 to perform such computations efficiently.
The full orthogonalization procedure in lines 4–7 of Algorithm 4.1 is also performed with the
TT format.

We use the standard Arnoldi method for low-rank eigenvector computations in Algo-
rithm 4.1. This is practical for the problems studied in this manuscript since we just need
to compute up to a few hundred Arnoldi vectors. Since the computational complexity of full
orthogonalization increases with the number of Arnoldi vectors, if more Arnoldi vectors are
needed, the restarted Arnoldi method can be implemented with a low-rank version [15].

5. Analysis of the eigenfunctions. The eigenfunction analysis for the general case pre-
sented above is not straightforward. Our goal in this section is to give a theoretical justification
for simple cases. We start with the case of a steady state problem involving the discretized
two-dimensional Poisson equation. For this we consider the misfit Hessian

H̃mis = Γ
1/2
priorA

TΓ−1
noiseAΓ

1/2
prior.

Assume for now that Γprior = βpriorId and Γnoise = βnoiseId are identity matrices of appropriate
dimensions, as chosen in [14]. We here assume that the uncertainty comes from the right-hand
side of the discretized steady-state Poisson equation and we also assume that the system statesD
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are fully observable. Then, we are left with

H̃mis =
βprior

βnoise
ATA.

Note that we do not assume for the data misfit Hessian to be defined in function space as
the identity operator in the infinite-dimensional setting does not give a probability measure
in nonseparable Hilbert spaces. The point here is to illustrate that the finite difference Lapla-
cian and the above defined covariance matrices define a discrete misfit Hessian with strong
decay properties. We consider A = K−1 to be the inverse of the finite difference discretized
Laplacian. The matrix K discretizes

−∆u = −uxx − uyy

and is defined as

K = − 1

h2


T I

I T
. . .

. . .
. . . I
I T

 with T = tridiag(1,−4, 1),

where we assume zero Dirichlet boundary conditions and thus the problem to be only defined
on the inner nodes. Note that for this problem AT = A. Assuming the domain to be the unit
square and the matrix to be of dimension n2, we have the eigenvalues of K given by

λi,j = λi + λj , 1 ≤ i, j ≤ n,

with

λl =
2

h2
(1− cos(lπh)) ∀l = 1, . . . , n

and
up,kij = sin(pπih) sin(kπjh) with 1 ≤ i, j ≤ n

as the eigenvector u(p,k) with 1 ≤ p, k ≤ n. From this expression it is clear that this vector
can be written as

u(p,k) = vp ⊗ wk,

which means u(p,k) is already separated into two components with separation rank 1 (cf. [18]).
Coming back to the misfit Hessian we can write this as

H̃mis =
βprior

βnoise
A2

with eigenfunctions as for the Laplacian and eigenvalues given by

µi,j =
βprior

βnoise
λ−2
i,j ,

where the decay of λ−2
i,j is quite rapid. This justifies the approximation of H̃mis by a small

number of eigenfunctions. For this case we have established the following lemma.D
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Lemma 5.1. The eigenfunctions of the misfit Hessian

H̃mis =
βprior

βnoise
A2

with A the inverse Laplacian with zero Dirichlet conditions defined on the unit square, are
separated and given by

up,kij = sin(pπih) sin(kπjh)

as above and hence are of separation rank one.

It is not so straightforward to establish similar results for more complicated equations.
For the space-time PDE-constrained optimization problem discussed earlier, we note that

V DV T ≈ α(h, τ, β)
(
Int ⊗ L+ CT ⊗ I

)−1
(Int ⊗ L+ C ⊗ I)−1 ,

where we used M ≈ hdI and collected all scalars in α(h, τ, β). Our aim is to establish
eigenvalue and eigenvector results for

(Int ⊗ L+ C ⊗ I)
(
Int ⊗ L+ CT ⊗ I

)
.

We note that this fits the well-known relation that the singular values of a matrix A ∈ Rm,m
are the square roots of the eigenvalues of the matrix ATA, which, assuming full rank of A, is
a symmetric and positive definite matrix. Now assuming the SVDs

C = UCΣCV
T
C and L = ULΣLV

T
L ,

we obtain(
Int ⊗ ULΣLV

T
L + VCΣCU

T
C ⊗ I

)︸ ︷︷ ︸
A

= (UL ⊗ VC)︸ ︷︷ ︸
U

(Int ⊗ ΣL + ΣC ⊗ I)︸ ︷︷ ︸
Σ

(
V T
L ⊗ UTC

)︸ ︷︷ ︸
V T

.

From this it follows that

ATA = V ΣUTUΣV T = V Σ2V T

is the eigen-decomposition of ATA, which has the same eigenvectors as A−1A−T . As the
eigenvalues of A−1A−T quickly decay to zero because of the compactness of the operator, we
only need a small number of columns of V . Our aim in this paper is to express each column

of V further in a low-rank fashion. For this we note that e
(nxnt)
1 = e

(nx)
1 ⊗ e(nt)

1 and ignoring
super indices we get

V e1 =
(
V T
L ⊗ UTC

)
(e1 ⊗ e1) = vT1,L ⊗ uT1,C

and hence a vector of rank one if the eigenvectors are all real. Complex eigenvectors would
further introduce a small rank increase and the consideration of M instead of hdI can with
a simultaneous diagonalization of the pencil (L,M) lead to small eigenvector ranks of the
overall system. This justifies our choice of approximating the eigenvectors in low-rank form.D
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6. Numerical results. In this section, we study the performance of the low-rank Lanczos
algorithm presented in section 4. The results presented in this section are based on an imple-
mentation of the above described algorithms within MATLAB. We perform the discretization
of the PDE-operators within the IFISS [31] framework using Q1 finite elements for the heat
equation and the streamline upwind Petrov–Galerkin (SUPG) method for the convection dif-
fusion equation. Our experiments are performed for a final time T = 1 with varying number
of time steps. As the domain Ω we consider the unit square but other domains are of course
possible. We specify the boundary conditions for each problem separately. Throughout the
results section we fixed the truncation at 10−8 for which we observed good results. Addition-
ally, we also performed not listed experiments with a tolerance of 10−10 for which we also
observed fast convergence. Larger tolerances should be combined with a deeper analysis of
the algorithms and a combination with flexible outer solvers. All results are performed on
a standard Ubuntu desktop Linux machine with an Intel Core i7-4790 CPU @ 3.60GHz and
8GB of RAM.

The mathematical model we consider in this section is given by the instationary PDE

∂

∂t
y + Ly = 0, Ω× (0, T ),

y = u, Ω× {t = 0},
y = 0, ∂ΩD × (0, T ),

Oy · n = 0, ∂ΩN × (0, T ),

(6.1)

where L is a PDE operator, and for the numerical experiments we consider the case of the
heat equation L = −∆ and the convection-diffusion equation L = −µ∆ + −→ω · O. For all
the numerical tests, the initial concentration u represents the unknown parameter u, and the
observation data yobs are collected by sensors, which are distributed in part of the domain Ω.

As stated in section 2, the statistical inverse problem with Gaussian noise and prior using
a Bayesian formulation is related to a weighted least squares problem. Here we use the same
functional as in [14], which is given by the functional

(6.2) min
u

(
βnoise

2

∫ T

0

∫
Ω

(y − yobs)
2 b(x, t)dxdt+

βprior

2

∫
Ω
u2dx

)
,

in which u satisfies the PDE model (6.1), b(x, t) is the observation operator, and u is the
uncertainty term, which is the initial condition for this numerical example. Here, we study
the sparse observation case, where b(x, t) is defined by

b(x, t) =
∑
j

δj .

Here δj is the regional function of sensors, δj = 1 at the region of the jth sensor and δj = 0
elsewhere.

Discretizing the functional (6.2) in turn gives

min
u

(
1

2
(y − yobs)

T BTΓ−1
noiseB(y − yobs) +

1

2
uTΓ−1

prioru

)
,(6.3)
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where B is the discretization of b(x, t), the variable y is the discrete variant of y in (6.1)
stacked in time, and it satisfies Ky = Cu. Here K and C come from the discretization of the
PDE model (6.1).

Discretization of the objective function gives that Γnoise = 1/βnoiseInt ⊗M , and Γprior =
1/βpriorM , where M is the mass matrix, and Int is an nt × nt identity matrix. Here, nt is the

number of time variables. Since we need to compute Γ
1/2
prior, we use Γprior ≈ 1/βpriorh−dInx .

Here, h is the mesh size, d is the spatial dimension, Inx is an nx × nx identity matrix, and nx
is the number of spatial variables. Other settings for the covariance operators/matrices are
given in [7], where the authors use a scaled diagonal matrix for Γ−1

noise and they choose as the
prior Γ−1

prior = A2 for a finite-dimensional parameter space. Here A = M−1K, where K stems
from the discretization of the weak formulation of

−α∆u+ αu = s(6.4)

for some s and Neumann boundary conditions, and M is the mass matrix from a finite element
discretization.

Note that both these choices fit perfectly into our framework. This means the low-rank
techniques can still be applied but the performance of the method could be different since the
low-rank nature is altered by the different prior and noise covariance matrices. This will be
illustrated later in section 6.2.

As analyzed in section 2, the posterior covariance matrix Γpost is given by the inverse of
the Hessian of (6.3). Therefore,

Γpost =
(
CTK−TBTΓ−1

noiseBK
−1C + Γ−1

prior

)−1
.(6.5)

Note that for different PDE models, K is also different after discretization. In this section,
we use two types of PDE models, i.e., the heat equation and the convection-diffusion equation,
to show the performance of our low-rank algorithm for the approximation of Γpost. We argue
that our low-rank algorithm also applies to other time-dependent PDE operators. Here we
apply our method to symmetric systems and unsymmetric systems.

We also point out that due to the uncertainty being given as the initial condition, the
posterior Hessian is only of spatial dimension. Nevertheless, the Arnoldi process applied to
this matrix requires the solution of space-time problems and the low-rank form of our approach
results in a much reduced number of spatial solves. The complexity reduction is even more
pronounced when the uncertainty is part of the system as a space-time variable such as the
right-hand side of the PDE.

6.1. Implementation details. According to (6.5), the prior-preconditioned data misfit
part after discretization of (6.2) is given by

H̃mis = Γ
1/2
priorC

TK−TBTΓ−1
noiseBK

−1CΓ1/2
prior.(6.6)

To apply the Lanczos iteration to (6.6), we need to solve the space-time discretized PDE K
and adjoint PDE KT . Here we take K as an example. This asks us to solve a linear system of
the following type:

(Int ⊗ L+ C ⊗M)x = f
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or

(Int ⊗ L+ C ⊗M) vec(X) = vec(F ).(6.7)

Here X and F are matrices/tensors of appropriate sizes. Numerical solutions of (6.7) have
been studied intensively from the matrix equation point of view; cf. [32, 2, 4] for an overview.

In this manuscript, we solve (6.7) based on its tensor structure and use the alternating
minimal energy (AMEn) approach [12] implemented in the TT toolbox [26] to solve the tensor
equation (6.7). At each AMEn iteration, either a left Galerkin projection or a right Galerkin
projection is applied to the system (6.7). Therefore, after Galerkin projection, we need to
solve a linear system of either the format

(6.8)
(
În ⊗ L+ Ĉ ⊗M

)
x = b̃

or

(6.9)
(
In ⊗ L̃+ C ⊗ M̃

)
x̃ = b̂.

Here Î, Ĉ, L̃, M̃ are matrices of appropriate dimensions after Galerkin projection (cf. [12] for
details).

After Galerkin projection, the size of the system (6.8) is still relatively large, while the size
of (6.9) is quite moderate. Therefore, Krylov solvers such as the generalized minimal residual
(GMRES) [29] method or the induced dimension reduction (IDR(s)) [33] method can be used
to solve (6.8), while a direct method can be used to solve (6.9).

To accelerate the convergence of the Krylov solver, we use the preconditioner

(6.10) P = diag(În)⊗ L+ diag(C)⊗M

to solve (6.8). Here diag(·) is an operation that extracts the diagonal entries of a matrix and
forms a diagonal matrix. One can use standard techniques such as multigrid methods [40]
or incomplete LU factorization [15] to approximate the preconditioner (6.10). Here we use
backslash implemented in MATLAB.

We also want to point out that there are many other methods to efficiently solve (6.7),
such as the low-rank factored alternating directions implicit (ADI) method (cf. [3]).

6.2. The heat equation. In this part, we use the 2D time-dependent heat equation in a
unit square as an example to study the performance of our low-rank algorithm for the heat
equation. Discretizing the equation in space using Q1 finite elements and in time using the
implicit Euler method gives us an nx × nt linear system, where nx is the number of spatial
variables while nt is the number of time steps. First we study spectral properties of the prior-
preconditioned data misfit part H̃mis and the posterior covariance matrix. Using a 64 × 64
grid to discretize the heat equation and set nt = 30, 60, 90, respectively, we plot the 50
largest eigenvalues of H̃mis in Figure 1. Here βnoise = 104βprior. Note that often our choices
for βnoise, βprior are somewhat arbitrary as the purpose of the experiments and our method is
to provide a tool that gives a robust performance in various if not all setups. The particular
choice of the parameters depends on the particular application, the given data, and so on.D
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Figure 1. Largest 50 eigenvalues of H̃mis computed using low-rank Arnoldi.

As shown in Figure 1, there are only a few dominant eigenvalues of H̃mis. For most
cases, a threshold of 10−1, or even 100, is acceptable to approximate H̃mis and to reduce the
uncertainty of the system, which will be shown later. Meanwhile, the number of time steps
does not influence the decay rate of H̃mis. This makes it possible to compute a fixed number
of Arnoldi vectors for even more time steps.

We should point out that the low-rank property H̃mis does not necessarily imply that
the eigenvalues of H̃mis should have a significant decay after a few eigenvalue indices and
the rest of the eigenvalues are much smaller in magnitude. It can also imply that H̃mis has
a few dominant eigenvalues that are much bigger in magnitude than the rest of eigenvalues
and the truncation after the first few eigenvalues does give acceptable results, or adding more
eigenspaces does not improve the accuracy of the results of interest to a big extent. Similar
low-rank properties and results are also observed in [7, 14]. Here we plot the maximum rank
used to compute the low-rank approximation of eigenvectors corresponding to the 50 largest
eigenvalues for nt = 30, 60, 90, respectively. In Figure 2, it is shown that the increase of time
steps keeps the rank bounded for the low-rank approximation of the eigenvectors of H̃mis. The
threshold for the low-rank approximation is set to be 10−8.

As illustrated in section 5, the eigenvector also admits a low-rank property. We perform
a low-rank approximation on each Arnoldi vector throughout the Arnoldi iteration. Since the
low-rank approximation is employed, the orthogonality of the basis of Arnoldi vectors is lost.
We just need to compute a few Arnoldi vectors in practice. Here, we use a modified Gram–
Schmidt method to perform the full reorthogonalization. Other types of reorthogonalization
such as selective orthogonalization [15] or periodic orthogonalization [14] are also possible.

Here we use examples discretized by a 32×32 grid, with 30 and 60 time steps to illustrate
the effectiveness of the low-rank Arnoldi method. First, we plot the largest 40 eigenvalues of
H̃mis computed using the low-rank Arnoldi method. Next, we compute H̃mis explicitly and use
eigs in MATLAB to compute its 40 largest eigenvalues. These results are shown in Figure 3.
It is clearly shown that the low-rank Arnoldi method can recover the eigenvalues exactly by
using reorthogonalization.D
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Figure 2. Maximum rank for eigenvectors of H̃mis.
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Figure 3. Eigenvalues of H̃mis computed using eigs and low-rank Arnoldi.

To illustrate that our method can also be applied to other settings for the prior, we choose
the prior covariance matrix given by equation (6.4), and we compute the 50 largest eigenvalues
of H̃mis for a 32× 32 mesh with nt = 30 and α = 1 using our low-rank method. We compare
with eigenvalues that are explicitly computed using the MATLAB built-in routine eigs. We
plot these results in Figure 4, which indicates the effectiveness of our method. The plots show
that our low-rank approach is applicable to different choices of the prior covariance.

As shown in Figure 1, the increase of time steps does not influence the decay rate of
the eigenvectors of H̃mis. Next we will show that an increase of the spatial parameters does
not influence the decay rate of eigenvalues of H̃mis either. We fix the number of time steps
nt to 30 and compute 60 largest eigenvalues of H̃mis; the results are shown in Figure 5(a).
The maximum rank used for the low-rank Arnoldi method with different numbers of spatial
parameters is shown in Figure 5(b).D
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Figure 4. Largest 50 eigenvalues of H̃mis computed using low-rank Arnoldi and eigs.
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Figure 5. Eigenvalues for H̃mis and maximum rank for low-rank Arnoldi method, nt = 30.

Figure 5(a) shows that the increase in number of parameters does not influence the decay
property of eigenvalues of H̃mis. It is expected that for different number of parameters, the
eigenvalues of H̃mis converge to the eigenvalues of the prior-preconditioned operator as long
as the discretization of parameter field is good enough. This is illustrated by the eigenvalues
shown in Figure 5(a). Meanwhile, maximum ranks used in the low-rank Arnoldi method are
also bounded by a constant with the increase of number of parameters, which is shown in
Figure 5(b).

As stated before, a threshold of 10−1 for the eigenvalue computations of H̃mis is enough
to reduce the uncertainty and to approximate the posterior covariance matrix. Next, we plot
the diagonal entries of the approximated posterior covariance matrix, i.e., the variance of the
points for a 64× 64 mesh with a different truncation threshold ε for eigenvalue computations
of H̃mis. We use nine sensors setting for the sparse observation inverse problem, where nineD
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Figure 6. Diagonal entries of Γpost, nt = 30, βnoise = 104βprior.

sensors are uniformly distributed inside the domain and the size of each sensor is 1/256 of the
domain. Here we set βnoise = 104βprior and the prior covariance matrix Γprior = 10I, where I
is an identity matrix with appropriate size.

For the sparse observation case, covariance updates are mostly clustered around the area
where data are observed, while the rest are dominated by the prior. Uncertainty can only be
reduced at areas around the location of sensors. This is clearly shown by Figures 6(a)–6(d),
where the dark colored areas are placed at the location of the sensors and have the lowest
variance. Decreasing the threshold ε, we observe that the variance is further reduced around
the location of sensors. For smaller values of ε no more reduction in the variance is achieved as
all essential information is already captured. Figure 6 shows that as long as the computations
of Γpost are convergent, using a threshold ε = 10−1 is enough to approximate the posterior
covariance matrix and to reduce the uncertainty.

As analyzed in section 5, the eigenvalues of H̃mis are related to βnoise
βprior

and this ratio gives

different updates of the posterior covariance matrix. Next, we use different βnoise
βprior

ratios to
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Figure 7. Diagonal entries of Γpost, nt = 30, βnoise = 106βprior.
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Figure 8. Diagonal entries of Γpost, nt = 30, βnoise = 108βprior.

plot the variance of the parameters. These results are shown in Figures 7 and 8. The prior
covariance matrix is set to be Γprior = 10I, where I is an identity matrix with appropriate
size. For the case βnoise = 106βprior, we need 72 Arnoldi iterations for ε = 100, while we need
163 Arnoldi iterations for ε = 10−1. With βnoise = 108βprior, we need 347 Arnoldi iterations
for ε = 100, while we need 470 Arnoldi iterations for ε = 10−1.

Figures 7 and 8 show that with the increase of the ratio between βnoise and βprior, the
diagonal entries of Γpost become smaller. This implies that to further reduce the posterior
variance, we need a bigger ratio between βnoise and βprior. This can be explained as follows:
The weight for the data misfit part in the optimization problem (6.2) is getting bigger for bigger
βnoise
βprior

. This means that the data misfit part is more strictly optimized than for smaller βnoise
βprior

.

Therefore the error between the estimation and observed data is getting smaller. However,D
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this yields a more ill-conditioned problem and more Arnoldi iterations are needed. Therefore,
a balance between covariance reduction and computational effort is needed with our approach
enabling the storage of many Arnoldi vectors due to the complexity reduction of the low-rank
approach.

6.3. Convection-diffusion equation. In this section, we study our low-rank approach for
a stochastic inverse convection-diffusion problem. Here, the convection-diffusion operator L
is given by

L = −ν∆u+−→ω · ∇u.
The computational domain is chosen as a square domain given by [0, 1] × [0, 1], −→ω =

(0, 1), and the inflow is posed on the down boundary, while the outflow is posed on the
upper boundary. Boundary conditions are prescribed according to the analytic solution of the
convection-diffusion equation, which is described as Example 3.3.1 in [13]. We use the SUPG
finite element method to discretize the convection-diffusion equation.

First, we show the eigenvalue decay of H̃mis for different settings of the viscosity parameter
ν. Here we set the number of time steps nt to be 30, and βnoise = 104βprior. We plot the 50
largest eigenvalues of H̃mis for different ν in Figure 9(a).

As shown by Figure 9(a), the eigenvalues of H̃mis decay rapidly for big ν, while this decay
rate slows down when ν gets smaller. Therefore, more Arnoldi iterations are needed to get a
satisfactory approximation of H̃mis. For smaller ν, the largest eigenvalue is also bigger than
that for bigger ν, as shown in Figure 9(a). The first few eigenvectors form a more dominant
subspace than for bigger ν. It is therefore possible to choose a larger truncation threshold for
smaller ν, which will be shown later.

The maximum rank for the low-rank Arnoldi iteration with different ν is shown in
Figure 9(b). It shows that the maximum rank does not increase with the decrease of ν
and is bounded by a small constant. Therefore, the complexity for both computations and
storage is O(nx + nt) for the low-rank Arnoldi approach.
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Figure 9. 50 largest eigenvalues of H̃mis and maximum ranks at each low-rank Arnoldi iteration with
different ν.D
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Figure 9(a) shows that the eigenvalues of H̃mis decay slower for smaller ν, and more Arnoldi
iterations are needed, which is due to the property of the problem. For such a problem with
smaller ν, our low-rank approach is much superior to the standard Arnoldi method introduced
in [14] since we need to compute and store more Arnoldi vectors. Note that this is doable
with the approach presented here.

Next, we set ν to be 10−2 and compute the 50 largest eigenvalues of H̃mis with different nt,
which are shown in Figure 10(a). We are also interested in the relation between the maximum
rank at each Arnoldi iteration and the number of time steps nt, which is shown in Figure 10(b).
Figure 10(a) shows that with the increase in the number of time steps, the eigenvalue decay
of H̃mis behaves similarly. Maximum ranks at each low-rank Arnoldi iteration with different
nt are bounded by a moderately small constant, which is independent of nt.

Figures 9(b) and 10(b) show that the maximum rank for each low-rank Arnoldi iteration
is almost invariant w.r.t. the number of time steps nt and the viscosity parameter ν. This
makes our low-rank Arnoldi method quite appealing for even complicated stochastic convection
dominated inverse problems over a long time horizon.

Next, we show the diagonal entries of Γpost for different settings of ν and the threshold
(ε) of eigenvalues truncation. Here we set the number of time steps nt to be 90, use a 32× 32
uniform grid to discretize the convection-diffusion equation, and βnoise = 104βprior. The results
are given by Figures 11 and 12.

For the case ν = 10−2, we need 17 Arnoldi iterations when we use a threshold ε = 101,
while we need 121 Arnoldi iterations for ε = 100. For the case ν = 10−3, we need 52 low-rank
Arnoldi iterations by setting ε = 101 and 131 low-rank Lanczos iterations when we use ε = 100.
Note that often a further reduction in the truncation parameter does not yield better results
as all the essential information is already captured. Figures 11(b) and 12(b) illustrate that
the uncertainty (variance of unknowns) is already reduced dramatically even if we choose a
relatively large threshold.
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Figure 10. 50 largest eigenvalues of H̃mis and maximum ranks at each low-rank Arnoldi iteration with
different nt.
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(b) ε = 100

Figure 11. Diagonal entries of Γpost, ν = 10−2.
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Figure 12. Diagonal entries of Γpost, ν = 10−3.

As shown in Figure 9(a), the smaller ν becomes, the bigger the largest eigenvalue of H̃mis

is going to be. Therefore, the first few eigenvectors for smaller ν form a more dominant
subspace. This in turn implies that the uncertainty is much reduced for smaller ν when we
use the same truncation threshold of eigenvalues. We observe this in Figures 11 and 12.

We can conclude that for the stochastic convection-diffusion inverse problem, our low-rank
Arnoldi approach is very flexible and efficient for different time horizon lengths and viscosity
parameters. It is even preferred for convection dominated stochastic inverse problems with
long time horizon.

7. Conclusions. In this manuscript, we propose a low-rank Arnoldi method to approx-
imate the posterior covariance matrix that appears in stochastic inverse problems. Com-
pared with the standard Arnoldi approach, our approach exploits the low-rank property of
each Arnoldi vector and makes a low-rank approximation of such a vector. This reduces theD

ow
nl

oa
de

d 
07

/1
7/

18
 to

 1
93

.1
75

.5
3.

21
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

988 PETER BENNER, YUE QIU, AND MARTIN STOLL

complexity for both computations and storage demand from O(nxnt) to O(nx + nt). Here nx
is the degree of freedom in space and nt is the degree of freedom in time. This makes solving
large-scale stochastic inverse problems possible.

Our low-rank approach introduced in this manuscript solves linear stochastic inverse prob-
lems that can be put into the Bayesian framework. The next step of our work is to extend
the low-rank approach introduced in this manuscript to nonlinear stochastic inverse problems,
which is still a big challenge.
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