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RANGE-SEPARATED TENSOR FORMAT FOR MANY-PARTICLE
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Abstract. We introduce and analyze the new range-separated (RS) canonical/Tucker tensor
format which aims for numerical modeling of the 3D long-range interaction potentials in multiparticle
systems. The main idea of the RS tensor format is the independent grid-based low-rank represen-
tation of the localized and global parts in the target tensor, which allows the efficient numerical
approximation of N -particle interaction potentials. The single-particle reference potential, described
by the radial basis function p(‖x‖), x ∈ Rd, say p(‖x‖) = 1/‖x‖ for d = 3, is split into a sum of
localized and long-range low-rank canonical tensors represented on a fine 3D n×n×n Cartesian grid.
The smoothed long-range contribution to the total potential sum is represented on the 3D grid in
O(n) storage via the low-rank canonical/Tucker tensor. We prove that the Tucker rank parameters
depend only logarithmically on the number of particles N and the grid size n. Agglomeration of
the short-range part in the sum is reduced to an independent treatment of N localized terms with
almost disjoint effective supports, calculated in O(N) operations. Thus, the cumulated sum of short-
range clusters is parametrized by a single low-rank canonical reference tensor with local support,
accomplished by a list of particle coordinates and their charges. The RS canonical/Tucker tensor
representations defined on the fine n× n× n Cartesian grid reduce the cost of multilinear algebraic
operations on the 3D potential sums, arising in modeling of the multidimensional data by radial
basis functions. For instance, computation of the electrostatic potential of a large biomolecule and
the interaction energy of a many-particle system, 3D integration and convolution transforms as well
as low-parametric fitting of multidimensional scattered data all are reduced to 1D calculations.
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1. Introduction. Numerical treatment of long-range potentials is a challenging
task in the computer modeling of multiparticle systems, for example, in molecular
dynamic simulations of large solvated biological systems such as proteins, in the anal-
ysis of periodic Coulombic systems or scattered data in geosciences, and in Monte
Carlo sampling, and so on [50, 19, 30, 53, 46, 23]. For a given nonlocal generating
kernel p(‖x‖), x ∈ R3, the calculation of a weighted sum of interaction potentials in
the large N -particle system, with the particle locations at xν ∈ R3, ν = 1, . . . , N ,

(1.1) P (x) =
∑N

ν=1
zν p(‖x− xν‖), zν ∈ R, xν , x ∈ Ω = [−b, b]3,

leads to a computationally intensive numerical task. Indeed, the generating radial
basis function p(‖x‖) is allowed to have a slow polynomial decay in 1/‖x‖ as ‖x‖ → ∞
so that each individual term in (1.1) contributes essentially to the total potential at
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RANGE-SEPARATED TENSOR FORMAT A1035

each point in the computational domain Ω, thus predicting the O(N) complexity for
the straightforward summation at every fixed target x ∈ R3. Moreover, in general, the
function p(‖x‖) has a singularity or a cusp at the origin, x = 0, making its full-grid
representation problematic. Typical examples of the radial basis functions p(‖x‖) are
given by the Newton 1/‖x‖, Slater e−λ‖x‖, Yukawa/Helmholtz e−λ‖x‖/‖x‖, and other
Green’s kernels (see examples in section 4.1).

The traditional approaches based on the Ewald summation method [22] combined
with the fast Fourier transform (FFT) usually apply to calculations of the interaction
energy or the interparticle forces of a system ofN particles with periodic closure, which
reduces the complexity scaling in the particle number from O(N2) to O(N logN)
[19, 20]. These approaches need meshing up the result of Ewald sums over a 3D
Cartesian grid for the charge assignment onto an nm×nm×nm mesh. Generation of
the smoothed charge distribution on the right-hand side of the arising Poisson equation
is the main complexity limitation, since it requires N -term summation of the grid
functions of size O(n3

m), presuming the dominating cost O(n3
mN). This procedure

is accomplished by the cheap FFT solver with periodic boundary conditions that
amounts to O(n3

m log nm) operations. The mesh implementation approaches trace
back to the original so-called particle-particle-particle-mesh (P3M) methods [29].

The fast multipole expansion [25] method allows the computation of some char-
acteristics of the multiparticle potential, say, the interaction energy, at the expense
O(N logN) by evaluation of the potential only at N sampling points xν .

Computation of long-range interaction potentials of large many-particle systems
is discussed, for example, in [15, 43, 50], and in [29, 1, 19, 20, 56, 23] using grid-
based approaches. Ewald-type splitting of the Coulomb interaction into long- and
short-range components is applied in density functional theory calculations in [55].

In this paper, we introduce and analyze the new range-separated (RS) canoni-
cal/Tucker tensor format which aims for the efficient numerical treatment of 3D long-
range interaction potentials in a system of generally distributed particles. The main
idea of the RS format is the independent grid-based low-rank tensor representation
to the long- and short-range parts in the total sum of single-particle (say, electro-
static) potentials in (1.1) discretized on a fine 3D n × n × n Cartesian grid Ωn in
the computational box Ω ∈ R3. Such a representation is based on the splitting of a
single reference potential e.g., p(‖x‖) = 1/‖x‖, into a sum of localized and long-range,
low-rank canonical tensors that are both represented on the computational grid Ωn.

The main advantage of the RS format is the efficient representation of the long-
range contributions to the total potential sum in (1.1) by using the multigrid accel-
erated canonical-to-Tucker transform [39], which returns this part in the form of a
low-rank canonical/Tucker tensor at the asymptotical cost O(N n). In Theorem 3.1,
we prove that the corresponding tensor rank only weakly (logarithmically) depends
on the number of particles N . Hence, the long-range contribution to the target sum
is represented via the low-rank global canonical/Tucker tensor defined on the fine
n×n×n grid Ωn in the O(n) storage. These features are demonstrated by numerical
tests for the large 3D clusters of generally distributed particles.

In turn, the short-range contribution to the total sum is constructed by using
a single reference low-rank tensor of local support selected from the “short-range”
canonical vectors in the tensor decomposition of p(‖x‖). To that end, the whole set
of N short-range clusters is represented by replication and rescaling of the small-size
localized canonical tensor defined on an ns×ns×ns Cartesian grid with ns � n, thus
reducing the storage to the O(1)-parametrization of the reference canonical tensor and
the list of coordinates and charges of particles. Summation of the short-range part
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A1036 P. BENNER, V. KHOROMSKAIA, AND B. N. KHOROMSKIJ

over an n× n× n grid needs O(N ns) computational work for an N -particle system.
Such a cumulated sum of the short-range components allows local operations in the
RS canonical format, making it particularly efficient for tensor multilinear algebra.

The particular benefit of the RS approach is the low-parametric representation of
the collective interaction potential on a large 3D Cartesian grid in the whole computa-
tional domain Ω at the linear cost O(n), thus outperforming the traditional grid-based
summation techniques based on the full-grid O(n3)-representation in the volume. Both
global and local summation schemes are quite easy in program implementation. The
prototype algorithms in MATLAB applied on a laptop enable computation of the
RS-tensor representation of electrostatic potentials for large many-particle systems
on fine grids of size up to n3 = 1012.

The efficient numerical realization of RS formats can be achieved by a trade-off
between the rank parameters in the long-range part and the effective support of the lo-
cal subtensors. Indeed, the range separation step can be realized adaptively by simple
tuning of the splitting rank parameters in the reference tensor based on an ε-tolerance
threshold in estimating the effective local support. The low-rank RS canonical/Tucker
tensor representation simplifies further operations on the resultant interaction poten-
tial (for example, 3D integration, computation of gradients and forces, and evaluation
of the interaction energy of a system) by reducing all of them to 1D calculations.

As one of many possible applications of the RS tensor format, we propose a new
numerical scheme for calculating the free interaction energy of proteins. We also
demonstrate that the RS tensor formats can be useful for the numerical modeling of
multidimensional scattered data by means of the efficient data sparse approximation
to the “inter-distance” matrix via the short-term sum of Kronecker product matrices
with “univariate” factors.

The RS tensor format was motivated by the recent method for efficient summation
of the long-range electrostatic potentials on large lattices with defects, which uses
the assembled canonical and Tucker tensors [32, 34] which provides a competitive
alternative to the Ewald summation schemes [22]. In the case of 3D finite lattice
systems, the grid-based tensor summation technique yields asymptotic complexity
O(N1/3) in the number of particles N , and almost linear complexity in the univariate
grid size n.

The RS tensor approach can be interpreted as the model reduction based on low-
rank tensor approximations (i.e., via a small number of representation parameters).
The model reduction techniques for PDEs and control problems have been described
in detail in [7, 51, 4].

In recent years, tensor numerical methods have been recognized as a powerful
tool in scientific computing for multidimensional problems; see, for example, [37, 24,
33, 6, 2] and [18, 17, 52, 42, 27, 13, 3]. In particular, the approximating properties
of tensor decompositions in the modeling of high-dimensional problems have been
addressed in [54, 11, 26, 14]. Here we notice that, in the case of higher dimensions,
the local canonical tensors can be combined with the global low-rank tensor train
(TT) representation [49], thus introducing the RS-TT format; see Remark 3.12.

The rest of the paper is organized as follows. In section 2, we recall the rank-
structured canonical and Tucker tensor formats, and discuss the representation of a
radial basis function by a canonical tensor approximation via sinc-quadratures for the
Laplace transform. Section 2.3 describes the principles of short- and long-range split-
ting of the generating kernel on example of the 3D electrostatic potential, which leads
to the new concept of the RS tensor format. In section 3, we introduce and analyze
range-separated (RS) tensor formats. Section 3.1 demonstrates that the long-range
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RANGE-SEPARATED TENSOR FORMAT A1037

part of the total potential sum of a large number of particles exhibits low canonical
rank. In particular, Theorem 3.1 proves that the Tucker rank of the long-range part
in the total potential sum only logarithmically depends on the number of particles
involved. The cumulated representation of the short-range part of the total potential
is described in section 3.3, where the RS canonical and Tucker tensor formats are
defined. In section 4, we discuss how the RS tensor formats can be utilized in the
numerical treatment of multidimensional scattered data, and in the calculation of the
free interaction energy of protein-type systems. We refer to the extended preprint
version of this paper [5], where further possible applications have been discussed.

2. Low-rank tensor splitting for multivariate generating kernels. In this
section, we introduce the RS low-rank tensor splitting for the multivariate radial basis
functions, which will be the important ingredient in the construction of the RS tensor
formats.

2.1. Rank-structured tensor formats. Here we recall the commonly used
rank-structured tensor formats1 utilized in this paper (see also the literature surveys
[41, 37, 24]). The traditional canonical and Tucker tensor representations have long
been employed in computer science for the quantitative analysis of correlations in
multidimensional data arising in image processing, chemometrics, psychometrics etc.;
see [16, 41] and references therein.

These classical tensor formats recently attracted attention in scientific comput-
ing when it was numerically demonstrated and rigorously proved that the class of
function-related tensors2 allows low-rank tensor-structured decomposition [35, 38]. In
particular, such tensor approximations proved to be efficient for real-space calculations
in computational quantum chemistry [32, 33].

A tensor of order d is defined as a multidimensional array over a d-tuple index set

A = [ai1,...,id ] ≡ [a(i1, . . . , id)] ∈ Rn1×···×nd with i` ∈ I` := {1, . . . , n`},

considered as an element of a linear vector space equipped with the Euclidean scalar
product. A tensor with all dimensions having equal size n` = n, ` = 1, . . . d, will be
called an n⊗d tensor. The required storage size scales exponentially in the dimension
nd, which results in the so-called “curse of dimensionality.”

To get rid of exponential scaling in the dimension, one can apply the rank-
structured separable representations (approximations) of multidimensional tensors.
The simplest separable element is given by the rank-1 tensor

U = u(1) ⊗ · · · ⊗ u(d) ∈ Rn1×···×nd

with entries ui1,...,id = u
(1)
i1
, . . . , u

(d)
id
, requiring only n1 + · · ·+ nd numbers to store it.

A tensor in the R-term canonical format is defined by a finite sum of rank-1 tensors

(2.1) U =
∑R

k=1
ξku

(1)
k ⊗ · · · ⊗ u

(d)
k , ξk ∈ R,

1The commonly used notion of rank-structured tensor formats for the compressed representation
of multidimensional data is usually understood in the sense of (nonlinear) parametrization by a
small number of parameters that allows for low storage costs, a simple representation of each entry
in the target data array, and efficient, “formatted” multilinear algebra via reduction to univariate
operations.

2Function-related tensors are obtained by sampling the multivariate function f = f(x1, . . . , xd)
defined on the hypercube f : [0, 1]d → R onto the tensor grid of size n1 × · · · × nd. As a result,
the function is approximated by the d-dimensional tensor array f ≈ F ∈ Rn1×···×nd . The target
function f can also be given as a large sum of separable functions, say Gaussians.
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A1038 P. BENNER, V. KHOROMSKAIA, AND B. N. KHOROMSKIJ

where u
(`)
k ∈ Rn` are normalized vectors, and R is called the canonical rank of a

tensor. Now the storage cost is bounded by dRn. For d ≥ 3, there are no algorithms
for the computation of the canonical rank of a tensor U, i.e., the minimal number R in
representation (2.1) and the respective decomposition with the polynomial cost in d.

We say that a tensor V is represented in the rank-r orthogonal Tucker format
with the rank parameter r = (r1, . . . , rd) if

(2.2) V =

r1∑
ν1=1

. . .

rd∑
νd=1

βν1,...,νd v
(1)
ν1 ⊗ · · · ⊗ v(d)

νd
≡ β ×1 V

(1) ×2 V
(2) · · · ×d V (d),

where {v(`)
ν` }r`ν`=1 ∈ Rn` represents a set of orthonormal vectors for ` = 1, . . . , d,

×` denotes the contraction along the mode ` with the orthogonal matrices V (`) =

[v
(`)
1 , . . . ,v

(`)
r` ] ∈ Rn`×r` , and β = [βν1,...,νd ] ∈ Rr1×···×rd is the Tucker core tensor.

The storage cost for the Tucker tensor is bounded by drn+rd with r = |r| := max` r`.
The representation (2.1) can be written as the rank-(R, . . . , R) (nonorthogonal)

Tucker tensor

(2.3) U = ξ ×1 U
(1) ×2 U

(2) · · · ×d U (d),

by introducing the so-called side matrices U (`) = [u
(`)
1 , . . . ,u

(`)
R ] ∈ Rn`×R, ` = 1, . . . , d,

obtained by concatenation of the canonical vectors u
(`)
k , k = 1, . . . , R, and the diagonal

Tucker core tensor ξ := diag{ξ1, . . . , ξR} ∈ RR×···×R such that ξν1,...,νd = 0 except
when ν1 = · · · = νd with ξν,...,ν = ξν (ν = 1, . . . , R).

In the case d = 2, the orthogonal Tucker decomposition is equivalent to the
singular value decomposition (SVD) of a rectangular matrix, while the canonical rep-
resentation corresponds to the rank-R skeleton decomposition of a matrix.

The exceptional properties of the Tucker decomposition for the approximation of
discretized multidimensional functions have been revealed in [35, 38], where it was
proven that for a class of function-related tensors the approximation error of the
Tucker decomposition decays exponentially in the Tucker rank.

Rank-structured tensor representations provide fast multilinear algebra with lin-
ear complexity scaling in the dimension d. For example, for given canonical tensors
(2.1), the Euclidean scalar product, the Hadamard product, and d-dimensional con-
volution can be computed by univariate tensor operations in 1D complexity [38]. In
tensor-structured numerical methods, calculation of the d-dimensional convolution
integrals is replaced by a sequence of 1D scalar and Hadamard products, and 1D
convolution transforms [39, 38], leading to O(dn log n) computational work instead of
O(nd). However, the multilinear tensor operations in the above-mentioned formats
necessarily lead to an increase of the tensor ranks, which can then be reduced by the
canonical-to-Tucker and Tucker-to-canonical algorithms introduced in [38, 39]; see the
extended preprint [5] for a detailed description.

2.2. Canonical tensor representation of the multivariate generating
kernel. Methods of separable approximation to the 3D Newton kernel (electrostatic
potential) using the Gaussian sums have been addressed in the chemical and math-
ematical literature since [10] and [54, 11, 26], respectively. The approach to tensor
decomposition for a class of lattice-structured interaction potentials p(‖x‖) was pre-
sented in [32, 34]. In this section, we recall the grid-based method for the low-rank
canonical representation of a spherically symmetric kernel function p(‖x‖), x ∈ Rd for
d = 2, 3, . . . , by its projection onto the set of piecewise constant basis functions; see
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RANGE-SEPARATED TENSOR FORMAT A1039

[8] for the case of Newton and Yukawa kernels p(‖x‖) = 1
‖x‖ and p(‖x‖) = e−λ‖x‖

‖x‖ for

x ∈ R3. The single reference potential, like 1/‖x‖, can be represented on a fine 3D
n× n× n Cartesian grid in the form of a low-rank canonical tensor [26, 8]. Further,
we confine ourselves to the case d = 3.

In the computational domain Ω = [−b, b]3, let us introduce the uniform n×n×n
rectangular Cartesian grid Ωn with mesh size h = 2b/n (n even). Let {ψi} be a

set of tensor-product piecewise constant basis functions, ψi(x) =
∏3
`=1 ψ

(`)
i`

(x`), for
the 3-tuple index i = (i1, i2, i3), i` ∈ I` = {1, . . . , n}, ` = 1, 2, 3. The generating
kernel p(‖x‖) is discretized by its projection onto the basis set {ψi} in the form of a
third-order tensor of size n× n× n, defined entrywise as

(2.4) P := [pi] ∈ Rn×n×n, pi =

∫
R3

ψi(x)p(‖x‖) dx.

The low-rank canonical decomposition of the third-order tensor P is based on
the use of exponentially convergent sinc-quadratures for approximating the Laplace–
Gauss transform to the analytic function p(z), z ∈ C, specified by a certain weight
a(t) > 0:

p(z) =

∫
R+

a(t)e−t
2z2 dt ≈

M∑
k=−M

ake
−t2kz

2

for |z| > 0, z ∈ R,(2.5)

where the quadrature points and weights are given by

(2.6) tk = khM , ak = a(tk)hM , hM = C0 log(M)/M, C0 > 0.

Under the assumption 0 < a ≤ |z| < ∞, this quadrature can be proven to provide
an exponential convergence rate in M for a class of analytic functions p(z). The
sinc–quadrature based approximation to the generating function by using the short-
term Gaussian sums in (2.5), (2.6) is applicable to the class of analytic functions in a
certain strip |z| ≤ D of the complex plane, such that on the real axis these functions
decay polynomially or exponentially. We refer to basic results in [54, 11, 26], where
the exponential convergence of the sinc-approximation in the number of terms (i.e.,
the canonical rank) was analyzed.

Now, for any fixed x = (x1, x2, x3) ∈ R3 such that ‖x‖ > a > 0, we apply the
sinc-quadrature approximation (2.5), (2.6) to obtain the separable expansion

(2.7) p(‖x‖) =

∫
R+

a(t)e−t
2‖x‖2 dt ≈

M∑
k=−M

ake
−t2k‖x‖

2

=

M∑
k=−M

ak

3∏
`=1

e−t
2
kx

2
` ,

providing an exponential convergence rate in M :

(2.8)

∣∣∣∣∣p(‖x‖)−
M∑

k=−M

ake
−t2k‖x‖

2

∣∣∣∣∣ ≤ C

a
e−β
√
M with some C, β > 0.

Combining (2.4) and (2.7), and taking into account the separability of the Gaussian
basis functions, we arrive at the low-rank approximation to each entry of the tensor P:

pi ≈
M∑

k=−M

ak

∫
R3

ψi(x)e−t
2
k‖x‖

2

dx =

M∑
k=−M

ak

3∏
`=1

∫
R
ψ

(`)
i`

(x`)e
−t2kx

2
`dx`.
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Define the vector (recall that ak > 0)

p
(`)
k = a

1/3
k

[
b
(`)
i`

(tk)
]n`
i`=1
∈ Rn` with b

(`)
i`

(tk) =

∫
R
ψ

(`)
i`

(x`)e
−t2kx

2
`dx`;

then the third-order tensor P can be approximated by the R-term (R = 2M + 1)
canonical representation

(2.9) P ≈ PR =

M∑
k=−M

ak

3⊗
`=1

b(`)(tk) =

M∑
k=−M

p
(1)
k ⊗ p

(2)
k ⊗ p

(3)
k ∈ Rn×n×n,

where p
(`)
k ∈ Rn. Given a threshold ε > 0, M can be chosen as the minimal number

such that in the max-norm,

‖P−PR‖ ≤ ε‖P‖.

The skeleton vectors can be renumerated by k 7→ q = k + M + 1, p
(`)
k 7→ p

(`)
q

(q = 1, . . . , R), ` = 1, 2, 3. The canonical tensor PR in (2.9) approximates the 3D

symmetric kernel function p(‖x‖), x ∈ Ω, centered at the origin such that p
(1)
q =

p
(2)
q = p

(3)
q (q = 1, . . . , R).

In the case of the Newton kernel, we have p(z) = 1/z, and the Laplace–Gauss
transform representation takes the form

1

z
=

2√
π

∫
R+

e−z
2t2dt, where z =

√
x2

1 + x2
2 + x2

3.

In this case, the term p
(`)
k equals p

(`)
−k, and the sum (2.9) reduces to k = 0, 1, . . . ,M ,

implying R = M + 1. Figure 1 displays the canonical vectors in the symmetric tensor

representation (2.9) for the Newton kernel along the x-axis from a set {p(1)
q }Rq=1. It can

be clearly seen that there are canonical vectors representing the long- and short-range
contributions to the total electrostatic potential. This interesting feature was also
recognized for the rank-structured tensors representing a lattice sum of electrostatic
potentials [32, 34].

2.3. Tensor splitting of the kernel into long- and short-range parts.
From the definition of the quadrature (2.9), (2.6), we can easily observe that the
full set of approximating Gaussians includes two classes of functions: those with
small “effective support” and the long-range functions. Consequently, functions from
different classes may require different tensor-based schemes for efficient numerical

-20 -15 -10 -5 0 5 10 15 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fig. 1. Vectors of the canonical tensor representation {p(1)
q }Rq=1 for the Newton kernel displayed

along the x-axis: n = 1024, R = 20.
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RANGE-SEPARATED TENSOR FORMAT A1041

treatment. Hence, the idea of the new approach is the constructive implementation
of a range separation scheme that allows the independent efficient treatment of both
the long- and short-range parts in each summand in (1.1).

In what follows, without loss of generality, we confine ourselves to the case of
the Newton kernel, so that the sum in (2.9) reduces to k = 0, 1, . . . ,M (due to the
symmetry argument). From (2.6) we observe that the sequence of quadrature points
{tk} can be split into two subsequences T := {tk|k = 0, 1, . . . ,M} = Tl ∪ Ts with

(2.10) Tl := {tk |k = 0, 1, . . . , Rl} and Ts := {tk |k = Rl + 1, . . . ,M}.

Here Tl includes quadrature points tk condensed “near” zero, hence generating the
long-range Gaussians (low-pass filters), and Ts accumulates the increasing in M →∞
sequence of “large” sampling points tk with the upper bound C2

0 log2(M), corre-
sponding to the short-range Gaussians (high-pass filters). Notice that the quasi-
optimal choice of the constant C0 ≈ 3 was determined in [8]. We futher denote
Kl := {k |k = 0, 1, . . . , Rl} and Ks := {k |k = Rl + 1, . . . ,M}.

Splitting (2.10) generates the additive decomposition of the canonical tensor PR
onto the short- and long-range parts,

PR = PRs + PRl ,

where

(2.11) PRs =
∑
tk∈Ts

p
(1)
k ⊗ p

(2)
k ⊗ p

(3)
k , PRl =

∑
tk∈Tl

p
(1)
k ⊗ p

(2)
k ⊗ p

(3)
k .

The choice of the critical number Rl = #Tl − 1 (or, equivalently, Rs = #Ts =
M − Rl) that specifies the splitting T = Tl ∪ Ts is determined by the active support
of the short-range components, such that one can cut off the functions pk(x), tk ∈ Ts
outside of the sphere Bσ of the radius σ > 0 subject to a certain threshold δ > 0. For
fixed δ > 0, the choice of Rs is uniquely defined by the (small) parameter σ and vice
versa. Given σ, the following two basic criteria, corresponding to (A) the max-norm
and (B) the L1-norm estimates, can be applied:

(2.12) (A) Ts = {tk : ake
−t2kσ

2

≤ δ} ⇔ Rl = min k : ake
−t2kσ

2

≤ δ,

(2.13)

(B) Ts :=

{
tk : ak

∫
Bσ

e−t
2
kx

2

dx ≤ δ
}
⇔ Rl = min k : ak

∫
Bσ

e−t
2
kx

2

dx ≤ δ.

The quantitative estimates on the value of Rl can be easily calculated by using the
explicit equation (2.6) for the quadrature parameters. For example, in the case C0 = 3
and a(t) = 1, criterion (A) implies that Rl solves the equation(

3Rl logM

M

)2

σ2 = log

(
hM
δ

)
.

Criteria (2.12) and (2.13) can be modified depending on the particular applications.
For example, in electronic structure calculations, the parameter σ can be associated
with the typical interatomic distance in the molecular system of interest.

Figure 2 illustrates the splitting (2.10) for the tensor PR = PRl + PRs in (2.11)
represented on the n× n× n grid with the parameters R = 20, Rl = 12, and Rs = 8,
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Fig. 2. Long- and short-range canonical vectors for n = 1024, R = 20, and Rl = 12.

respectively. Following criterion (A) with δ ≈ 10−4, the effective support for this
splitting is determined by σ = 0.9. The complete Newton kernel depicted in Figure
1 covers the long-range behavior, while the function values of the tensor PRs vanish
exponentially fast apart of the effective support; see the right panel of Figure 2.

Inspection of the quadrature point distribution in (2.6) shows that the short- and
long-range subsequences are nearly equally balanced distributed, so one can expect
approximately

(2.14) Rs ≈ Rl = M/2.

The optimal choice may depend on the particular kernel function and the specific
applications.

The advantage of range separation in the splitting of the canonical tensor PR 7→
PRs + PRl in (2.11) is the opportunity to obtain independent tensor representations
of both subtensors PRs and PRl , providing the separate treatment of the short- and
long-range parts in the total sum of many-interaction potentials as in (1.1).

Finally, we notice that the range separation principle can be generalized to more
than two-term splitting, taking into account the requirements of specific applications.

3. Range-separated tensor format for modeling the multiparticle po-
tentials. Given the generating kernel p(‖x‖), we consider the problem of efficiently
calculating the weighted sum of a large number of single potentials located in a set
S of separable distributed points (sources) xν ∈ R3, ν = 1, . . . , N , embedded in the
fixed bounding box Ω = [−b, b]3,

(3.1) P0(x) =

N∑
ν=1

zν p(‖x− xν‖), zν ∈ R, x, xν ∈ Ω,

where the radial basis function p(‖x‖) is allowed to have slow polynomial decay in
1/‖x‖ so that each individual source contributes essentially to the total potential at
each point in Ω.

In what follows, for ease of presentation, we confine ourselves to the case of
electrostatic potentials described by the Newton kernel p(‖x‖) = 1

‖x‖ , x ∈ R3.

3.1. Low-rank representation to the sum of long-range terms. First,
we describe the tensor summation method for calculation of the collective potential
of a multiparticle system that includes only the long-range contribution from the
generating kernel.
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RANGE-SEPARATED TENSOR FORMAT A1043

We introduce the n× n× n rectangular grid Ωn in Ω = [−b, b]3 (see section 2.2)

as well as the auxiliary 2n× 2n× 2n grid Ω̃2n on the accompanying domain Ω̃ = 2Ω
of double size. The canonical rank-R representation of the Newton kernel on Ω̃2n,
living on the extended index set Ĩ, and its restriction onto the n× n× n subgrid are
denoted by P̃R and PR ∈ Rn×n×n, respectively; see (2.9).

Consider the splitting (2.11) applied to the reference canonical tensor PR and to

its accompanying version P̃R = [p̃R(i1, i2, i3)], i` ∈ Ĩ`, ` = 1, 2, 3, such that

P̃R = P̃Rs + P̃Rl ∈ R2n×2n×2n.

For technical reasons, we further assume that the tensor grid Ωn is fine enough, such
that all charge centers S = {xν} specifying the total electrostatic potential in (3.1)

belong to the set of grid points, i.e., xν = (xν,1, xν,2, xν,3)T = h(j
(ν)
1 , j

(ν)
2 , j

(ν)
3 )T ∈ Ωn

with some indexes 1 ≤ j(i)
1 , j

(i)
2 , j

(i)
3 ≤ n.

The total electrostatic potential P0(x) in (3.1) is represented by a projected ten-
sor P0 ∈ Rn×n×n that can be constructed by a direct sum of shift-and-windowing
transforms of the reference tensor P̃R (see [32] for more details):

(3.2) P0 =

N∑
ν=1

zνWν(P̃R) =

N∑
ν=1

zνWν(P̃Rs + P̃Rl) =: Ps + Pl.

The shift-and-windowing transform Wν maps a reference tensor P̃R ∈ R2n×2n×2n

onto its subtensor of smaller size n × n × n, which is obtained by first shifting the
center of the reference tensor P̃R to the grid point xν and then restricting (windowing)
the result onto the computational grid Ωn:

Wν : P̃R 7→ P(ν) = [p
(ν)
i1,i2,i3

], p
(ν)
i1,i2,i3

:= p̃R(i1 + j
(ν)
1 , i2 + j

(ν)
2 , i3 + j

(ν)
3 ), i` ∈ I`.

The point is that the number of terms in the canonical representation of the full tensor
sum P0 increases almost proportionally to the number N of particles in the system.
Figure 3 demonstrates singular values of the side matrix in the canonical tensor P0.
Furthermore, the compressed canonical rank of the tensor P0 shows up the pessimistic
bound ≤ RN .

100 200 300 400 500
10 -20

10 -15

10 -10

10 -5

10 0

N=200
N=400
N=774

200 400 600 800 1000
10 -20

10 -15

10 -10

10 -5

10 0

N=200
N=400
N=774

Fig. 3. Mode-1 singular values of the side matrix in the canonical representation of the total
potential sum P0 versus the number of particles N = 200, 400, 774 and grid size n: n = 512 (left);
n = 1024 (right).
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singular values
200 400 600 800 1000
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singular values
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Fig. 4. Mode-1 singular values of side matrices for the long-range part Pl (with Rl = 12) in the
total potential versus the number of particles N (left). Zoom of the first 70 singular values (right).

To overcome this difficulty, in what follows we consider the global tensor decom-
position of only the long-range part in the tensor P0, defined by

(3.3) Pl =

N∑
ν=1

zνWν(P̃Rl) =

N∑
ν=1

zνWν

(∑
k∈Kl

p̃
(1)
k ⊗ p̃

(2)
k ⊗ p̃

(3)
k

)
.

Since by construction the tensor Pl approximates rather smooth functions on the
domain Ω, one may expect that the large initial rank can be reduced considerably to
some value R∗ � RN that remains almost independent of N . The principal ingredient
of our tensor approach is the rank reduction in the initial large canonical sum Pl by
application of the multigrid accelerated canonical-to-Tucker (C2T) transform. The
first step in the C2T transform is the SVD of side matrices U (`), ` = 1, 2, 3, in the
initial canonical tensor of type (2.3) (the so-called reduced higher order singular value
decomposition [RHOSVD]; see [39]).

The left panel of Figure 4 illustrates that the singular values of the side matrices
for the long-range part exhibit fast exponential decay with a rate independent of
N = 214, 405, and 754 (cf. Figure 3). The right panel of Figure 4 zooms into the first
50 singular values, which are almost identical for the different values of N . The fast
decay in singular values guarantees the existence of low-rank RHOSVD-based Tucker
decomposition (see [5]) to the long-range part Pl.

The following theorem justifies the above observations and proves that the Tucker
ε-rank of the long-range part in the accumulated sum of potentials in the bounding box
Ω = [−b, b]3 remains almost independent of the number of particles N (but depends
on the domain size b). Simplifying the exposition, we assume that the tensor entries
in Pl are computed by collocation of Gaussian sums at the centers of the grid-cells.
This provides a representation which is practically identical to that of (2.9).

Theorem 3.1. Let the long-range part Pl in the total interaction potential (see
(3.3)) correspond to the choice of the splitting parameter in (2.14) with M = O(log2 ε).
Then the total ε-rank r0 of the Tucker approximation to the canonical tensor sum Pl
is bounded by

|r0| := rankTuck(Pl) = C b log3/2(| log(ε/N)|),
where the constant C does not depend on the number of particles N .

Proof. We consider the Gaussian in normalized form Gσ(x) = e−
x2

2σ2 so that the

relation e−t
2
kx

2

= e−
x2

2σ2 holds, i.e., we set (see (2.6))
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RANGE-SEPARATED TENSOR FORMAT A1045

tk =
1√
2σk

with tk = khM , k = 0, 1, . . . ,M,

where hM = C0 logM/M . The choice of Rs is based on criterion (B) in (2.13) on the
bound of the L1-norm, which reads

ak

∫ ∞
a

e
− x2

2σ2
k ≤ ε

2
< 1, ak = hM .

This allows us to select all σk, which satisfy this criteria.
We sketch the proof according to the following steps. (a) We represent all shifted

Gaussian functions, contributing to the total sum in the fixed set of basis functions
by using a truncated Fourier series. (b) We prove that, on the “long-range” index
set k ∈ Tl, the parameter σk remains uniformly bounded in N from below, implying
the uniform bound on the number of terms in the ε-truncated Fourier series. (c) The
summation of functions presented in the fixed Fourier basis set does not enlarge the
Tucker rank, but only effects the Tucker core. The dependence on size of computa-
tional domain b appears in the explicit form.

Specifically, let us consider the rank-1 term in the splitting (2.11) with maximal
index k ∈ Tl. Taking into account the asymptotic choice M = log2 ε (see (2.8)) where
ε > 0 is the accuracy of the sinc-quadrature, the relation (2.14) implies

(3.4) max
k∈Tl

tk = RlhM =
M

2
C0 log(M)/M ≈ log(M) = 2 log(| log(ε)|).

Now we consider the Fourier transform of the univariate Gaussian on [−b, b]:

Gσ(x) = e−
x2

2σ2 =

M∑
m=0

αm cos
(πmx

b

)
+ η with |η| =

∣∣∣∣∣
∞∑

m=M+1

αm cos
(πmx

b

)∣∣∣∣∣ < ε,

where

αm =

∫ b

−b
e−

x2

2σ2 cos
(πmx

b

)
dx

|Cm|2
with |Cm|2 =

∫ b

−b
cos2

(πmx
b

)
dx =

{
2b if m = 0,
b otherwise.

Following arguments in [21] one obtains

αm =
(
σe−

π2m2σ2

2a2 − ξm
)
/|Cm|2 where 0 < ξm < ε.

On the one hand, truncation of the coefficients αm at m = m0 such that αm0
≤ ε

leads to the bound

m0 ≥
√

2

π

b

σ
log0.5

(
σ

(1 + |CM |2)ε

)
=

√
2

π

b

σ
log0.5

(
σ

1 + b

1

ε

)
for all admissible σ = σk. On the other hand, (3.4) implies

1/σk ≤ c log(| log ε|), k ∈ Tl, i.e., 1/σRl ≈ log(| log ε|),

which ensures the estimate on m0:

(3.5) m0 = O(b log3/2(| log ε|)).
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Fig. 5. Absolute values of the Fourier coefficients of the long-range (left) and short-range
(right) discrete Gaussians.

Now following [32], we represent the Fourier transform of the shifted Gaussians by

Gσ(x− xν) =

M∑
m=0

αm cos

(
πm(x− xν)

b

)
+ ην , |ην | < ε,

which requires only double the number of trigonometric terms compared with the
single Gaussian analyzed above. To compensate the possible increase in |

∑
ν ην |, we

refine ε 7→ ε/N . These estimates also apply to all Gaussian functions presented in
the long-range sum, since for k ∈ Tl they have larger values of σk than σRl . Indeed,
in view of (2.14) the number of summands in the long-range part is of the order
Rl = M/2 = O(log2 ε). Combining these arguments with (3.5) proves the resulting
estimate.

Figure 5 illustrates fast decay of the absolute values of the Fourier coefficients for
the “long-range” discrete Gaussians sampled on an n-point grid (left) with n = 1024,
and a slow decay of the Fourier coefficients for the “short-range” Gaussians (right).
In the latter case, almost all coefficients remain essential, resulting in the full rank
decomposition.

To reduce the initial canonical rank NRl of the low-rank part in the total po-
tential Rl, we apply the multigrid accelerated canonical-to-Tucker (C2T) transform
accomplished by the Tucker-to-canonical (T2C) algorithm; see [5]. The complexity of
the multigrid C2T transform is of the order of O(n2

mR + r2n), where nm � n is the
starting small grid size, n is the final grid parameter, R = NRl is the large rank of
the initial sum, and r is the maximal Tucker rank. The multigrid acceleration method
allows one to avoid the expensive SVD of the complexity O(R2n), or O(Rn2).

Table 1 shows the ranks of sums of long-range ingredients in the electrostatic
potentials for the N -particle clusters: the canonical rank NRN , the rank in the long-
range part of the canonical tensor sum NR`, Tucker ranks RRS,T , and the RS canon-
ical rank RRS,C versus the number of particles N and for varying parameters R` and
Rs of the rank-RN reference canonical tensor. The Newton kernel is generated on the
grid with n3 = 10243 in the computational box [−b, b]3 with b = 40Å, with accuracy
ε = 10−4 and canonical rank 21. Particle clusters with 200, 400, and 782 atoms are
taken as part of a protein-like multiparticle system. The clusters of size 1728 and 4096
correspond to the lattice structures of size 12× 12× 12 and 16× 16× 16, respectively,
with randomly generated charges. The “RS canonical rank” RRS,C shows the result-
ing rank after the C2T and T2C transforms with the thresholds εC2T = 4 · 10−5 and
εT2C = 4 · 10−6. Table 1 demonstrates considerable rank reduction in the canonical
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Table 1
The tensor ranks of the N-particle potential sum: the initial canonical rank NRN , the rank of

the long-range part in the canonical tensor sum NR`, Tucker ranks RRS,T , and the RS canonical
rank RRS,C versus the number of particles N and for varying parameters R` and Rs of the reference
rank-RN canonical tensor. Grid size n3 = 10243.

N 200 400 782 1728 4096
R`/Rs NR 4200 8400 16422 32288 86016

9/12 NR` 1800 3600 7038 15552 36864
RRS,T 21,16,18 22,19,23 24,22,24 23,24,24 24,24,24
RRS,C 254 292 362 207 243

10/11 NR` 2000 4000 7820 17280 40960
RRS,T 30,22,25 32,25,33 36,32,34 25,25,25 29,29,29
RRS,C 476 579 768 286 426

Table 2
Tucker ranks RRS,T = (r1, r2, r3) for the long-range parts of many-particle potentials versus

the number of particles N .

N /Rl 8 9 10 11 12 13
200 10,10,11 13,12,12 18,15,16 23,19,21 32,24,27 42,30,34
400 11,10,11 14,13,14 19,16,20 26,21,26 35,27,36 47,34,47
782 11,11,12 15,14,15 20,18,20 28,26,27 39,35,37 52,46,50

tensor representation and the stable Tucker ranks in the sum of electrostatic potentials
when using the range separation approach.

Table 2 displays the Tucker ranks RRS,T = (r1, r2, r3) for the long-range part of
the potential sum versus the number of particles N and the chosen long-range part
of the reference canonical tensor Rl. The reference Newton kernel is approximated
on a 3D grid of size 20483, with the rank R = 29 and by accuracy εN = 10−5. The
Tucker tensor is computed using the alternating least squares (ALS) iteration with the
stopping criterion εT2C = 10−5. We observe that for fixed Rl the Tucker ranks RRS,T
only moderately increase with respect to the number of particles N . This provides
the motivation for introducing the RS tensor format in what follows.

The proof of Theorem 3.1 indicates that the Tucker directional vectors, living on
large n⊗d spatial grids, can be represented in the uniform Fourier basis with a small
number of terms. Hence, following the arguments in [21] and [32], we are able to
apply the low-rank quantized tensor train (QTT) tensor approximation [36] to these
long vectors (see [48] for the case of matrices). The QTT tensor compression allows
one to reduce the representation complexity of the long-range part in an RS tensor
to the logarithmic scale in the univariate grid size, O(log n). This will be a topic in a
forthcoming paper.

3.2. Quasi-uniformly separable point distributions. The trade-off between
the numerical efficiency and approximation quality of the short-range part in the total
potential sum can be controlled by introducing the concept of separability of the point
set.

Definition 3.2 (Well-separable point distribution). Given a constant σ∗ > 0,
a set S = {xν} of points in Rd is called σ∗-separable if there holds

(3.6) d(xν , xν′) := ‖xν − xν′‖ ≥ σ∗ for all ν 6= ν′.

A family of point sets {S1, . . . ,Sm} is called uniformly σ∗-separable if (3.6) holds for
every set Sm′ , m′ = 1, 2, . . . ,m, independently of the number of particles in a set
#Sm′ .
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Fig. 6. Interparticle distances in ascending order for a protein-type structure with 500 particles
(left). Zoom of the first 100 smallest interparticle distances (right).

Condition (3.6) can be reformulated in terms of the so-called separation distance
qS of the point set S:

(3.7) qS := min
s∈S

min
xν∈S\s

d(xν , s) ≥ σ∗.

Definition 3.2, concerning the separability of point distributions, is fulfilled, par-
ticularly in the case of large molecular systems (e.g., proteins, crystals, polymers,
nanoclusters), where all atomic centers are strictly separated from each other by a
certain fixed interatomic distance, e.g., the so-called van der Waals radius. The same
happens for lattice-type structures, where each atomic cluster within the unit cell is
separated from its neighbors by a distance proportional to the lattice step size. More
detailed discussion on the choice of the admissible separation distance qS is presented
in the next section.

The left panel of Figure 6 shows interparticle distances in ascending order for a
protein-type structure with N = 500 particles. Here and in the following we use the
data for a protein-type molecular system provided by the authors of [44]. The total
number of distances equals N(N − 1)/2, where N is the number of particles. The
right panel of Figure 6 indicates that the number of particles with small interparticle
distances is moderate. In particular, for this example the number of pairs with in-
terparticle distances of less than 1Å is about 0.04 % (≈ 110)) of the total number of
2,495·105 distances.

Remark 3.3. Notice that for fixed σ > 0, the σ-separability of the point distribu-
tions (see Definition 3.2), which controls the approximation quality of the short-range
part, implies that the volume size of the computational box [−b, b]3 should increase
proportionally to the number of particles N , i.e., b = O(N1/3). Hence, Theorem
3.1 indicates that, since rl = O(b), the number of entries in the Tucker core of size
r1× r2× r3 can be estimated by CN . This asymptotic cost remains of the same order
in N as that for the short-range part in the potential sum.

Incorporating periodic boundary conditions is not specifically addressed in this
paper. In view of Remark 3.3, we notice that the contribution from the “periodic
extension” includes only the long-range component and can be treated in the low-
rank tensor format. We refer to section 3.2 of [32] for a discussion of the regularized
summation scheme in the periodic setting (see Figures 3.6 and 3.7 in [32]).
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3.3. Range-separated canonical and Tucker tensor formats. We recall
that the canonical tensor is specified by an R-term sum of rank-1 tensors as in (2.1),
hence large values of R complicate operations in this tensor format.3 In many-particle
modeling the initial rank R = R0N is proportional to the large number of particles
N with a pre-factor of about R0 ≈ 30.

The idea on how to get rid of the “curse of ranks,” that is, the critical bottleneck
in the application of tensor methods to problems such as (3.1), is suggested by results
in Theorem 3.1 on the logarithmic bound of the Tucker rank in N for the long-range
part in the N -particle potential. The remaining short-range part consists of localized
subtensors with nonintersecting supports, each parametrized by the same small-size
reference canonical tensor, but differing only in the coordinates of their centers and
weights.

Owing to this beneficial property, we introduce the new range-separated (RS)
tensor formats based on the aggregated composition of the globally supported low-
rank canonical/Tucker tensor, and the set of localized canonical tensors living on the
large corporate multi-index set I = I1 × · · · × Id.

Such a parametrization attempts to represent the short-range part of a large
multidimensional array in O(N) storage (the list of N -particle coordinates) plus the
storage of a single small subtensor representing cumulated inclusions. The structure
of the RS canonical/Tucker tensor formats, specified by a combination of the local-
global low-parametric representations, provides good approximation features in the
real-space approximation to long-range many-particle interaction potentials.

The following definition introduces cumulated canonical tensors (CCT), describ-
ing a sum of short-range potentials with local (up to some threshold) nonintersecting
supports.

Definition 3.4 (Cumulated canonical tensors). Given a set of multi-indices

(sources) J = {j(ν) := (j
(ν)
1 , j

(ν)
2 , . . . , j

(ν)
d )}, ν = 1, . . . , N , j

(ν)
` ∈ I`, and the separa-

tion constant σ∗ > 0, choose the width parameter γ ∈ N from the relation γh ≤ σ∗
such that the γ-vicinity of each point j(ν) ∈ J , i.e., J (ν)

γ := {j : |j − j(ν)| ≤ γ}, does
not intersect all others:

J (ν)
γ ∩ J (ν′)

γ = ∅, ν 6= ν′.

A rank-R0 CCT tensor Û ∈ RI , associated with J and the width parameter γ, is
defined as a set of tensors which can be represented in the form

(3.8) Û =
∑N

ν=1
cνUν with rank(Uν) ≤ R0,

where canonical tensors Uν = [uj] are vanishing beyond the γ-vicinity of j(ν):

(3.9) uj = 0 for j ⊂ I \ J (ν)
γ , ν = 1, . . . , N.

Given the particular point set S, the effective support of the localized subten-
sors should be of a size close to the parameter σ∗ > 0, appearing in Definition 3.2,
that introduces the σ∗-separable point distributions characterized by the separation
parameter σ∗ > 0. In this case, we use the relation σ∗ ≈ γh, where h = 2b/n is the
mesh size of the computational (n× · · · × n)-grid.

3Notice that the subclass of the so-called orthogonal canonical tensors [40] allows stable rank
reduction, but suffers from poor approximation capacity. Another class of “monotone” tensors pro-
viding stable canonical representation is specified by all positive canonical vectors (see [39, 34] for
a definition), which is the case in the decomposition of the elliptic Green’s kernels. Both classes of
tensors do not suit problems such as (3.1).
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Fig. 7. Schematic illustration of effective supports of the CCT (left). Short-range canonical
vectors for k = 1, . . . , 11, presented in the logarithmic scale (right).

The left panel of Figure 7 illustrates the effective supports of a CCT in the
nonoverlapping case, while the right panel presents the supports for the first 11 short-
range canonical vectors (selected from rank-24 reference canonical tensor PR), which
allows the choice of the parameter γ in the separation criteria.

The CCTs have beneficial features which are particularly useful in the low-rank
tensor approximation of many-particle interaction potentials.

Proposition 3.5 (Properties of CCT). (A) The local rank of a CCT tensor Û
is bounded by R0:

rankloc(Û) := max
ν

rank(Uν) ≤ R0.

(B) Local components in the CCT (3.8) are “block orthogonal” in the sense of

(3.10) 〈Uν ,Uν′〉 = 0 ∀ν 6= ν′.

(C) There holds ‖Û‖2 =
∑N
ν=1c

2
ν‖Uν‖2.

Proof. Properties (A) and (B) simply follow by definition of the CCT, while (C)
is a direct consequence of (B).

If R0 = 1, i.e., Û is the usual rank-N canonical tensor, then property (B) in
Proposition 3.5 leads to the definition of orthogonal canonical tensors in [40]; hence,
in the case R0 > 1, we arrive at the generalization further called the block orthogonal
canonical tensors.

The separation criteria in Definition 3.4 lead to a rather “aggressive” strategy
for selecting the short-range part PRs in the reference canonical tensor PR at the
benefit of easy implementation of the CCT (nonoverlapping case). However, in some
cases this may lead to overestimation of the Tucker/canonical rank in the long-range
tensor component. To relax the criteria in Definition 3.4, we propose a “soft” strategy
that allows us to include a few (i.e., O(1) for large N) neighboring particles into the

local vicinity J (ν)
γ of the source point xν , which can be achieved by increasing the

overlap parameter γ > 0. This allows us to control both the bound on the rank
parameter of the long-range tensor almost uniformly in N and the complexity of the
CCT tensors Û.

Remark 3.6. Our strategy for splitting of the reference potential into short- and
long-range parts is based on the control of the overlap region for the short-range
part compared with the typical “interparticle distance” in the considered system of
quasi-uniformly distributed particles. The principal difference of our approach from
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the existing Ewald summation schemes is the rank-structured representation of both
short- and long-range parts in the reference kernel, which allows one to split the diffi-
culties and then efficiently perform the summation of both localized and global parts
in the total potential sum by using different tensor formats. However, the traditional
generating kernels may depend on parameters whose variation could significantly al-
ter their “effective support,” so that the balance (correlation) between the short- and
long-range components may vary dramatically. In such a scenario the adaptive RS
splitting can be useful for rather general classes of generating kernels.

Example 1. Assume that the separation distance is equal to σ∗ = 0.8Å, cor-
responding to the example in the right panel of Figure 6, and the computational
threshold is given as ε = 10−4. Then we find from the right panel of Figure 7 that the
“aggressive” criteria in Definition 3.4 lead to the choice Rs = 10, since the value of
the canonical vector with k = 11 at the point x = σ∗ is about 10−3. Hence, in order
to control the required rank parameter Rl, we have to extend the overlap area to the
larger parameter σ∗ and, hence, to larger γ. This will lead to a small O(1)-overlap
between the supports of the short-range tensor components, but without asymptotic
increase in the total complexity.

In the following, we distinguish a special subclass of uniform CCTs.

Definition 3.7 (Uniform CCTs). A CCT tensor in (3.8) is called uniform if

all components Uν are generated by a single rank-R0 tensor U0 =
∑R0

m=1µmû
(1)
m

⊗ · · · ⊗ û
(d)
m such that Uν |J (ν)

δ

= U0.

Now we are in a position to define the RS canonical and Tucker tensor formats
in Rn1×···×nd .

Definition 3.8 (RS canonical tensors). Given the separation parameter γ ∈ N,
the RS canonical tensor format specifies the class of d-tensors A ∈ Rn1×···×nd which

can be represented as the sum of a rank-R canonical tensor U =
∑R
k=1ξku

(1)
k ⊗ · · · ⊗

u
(d)
k ∈ Rn1×···×nd and a (uniform) CCT tensors Û =

∑N
ν=1cνUν generated by U0

with rank(U0) ≤ R0 as in Definition 3.7 (or more generally in Definition 3.4):

(3.11) A =
∑R

k=1
ξku

(1)
k ⊗ · · · ⊗ u

(d)
k +

∑N

ν=1
cνUν ,

where diam(suppUν) ≤ 2γ in the index size.

For a given A and a grid point i ∈ I = I1 × · · · × Id, we define the set of indexes

L(i) := {ν ∈ {1, . . . , N} : i ∈ suppUν},

labeling all short-range tensors Uν , which include the grid point i within their effective
support.

Lemma 3.9. The storage cost of the RS canonical tensor A in (3.11) is estimated
by

stor(A) ≤ dRn+ (d+ 1)N + dR0γ.

Given i ∈ I, denote by u
(`)
i`
∈ R1×R the row vector with index i` in the side matrix

U (`) ∈ Rn`×R of U, and let ξ = (ξ1, . . . , ξd). Then the ith entry of the RS canonical
tensor A = [ai] can be calculated as a sum of long- and short-range contributions by

ai =
(
�d`=1u

(`)
i`

)
ξT +

∑
ν∈L(i)

cνUν(i)

at the expense O(dR+ 2dγR0).
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Proof. Definition 3.8 implies that each RS canonical tensor is uniquely defined
by the following parametrization: the rank-R canonical tensor U, the rank-R0 local
reference canonical tensor U0 with the mode size bounded by 2γ, and a list J of the
coordinates and weights of the N particles. Hence the storage cost directly follows. To
justify the entrywise representation complexity, we notice that by the well-separability
assumption (see Definition 3.2) we have #L(i) = O(1) for all i ∈ I. This proves the
complexity bound.

Now we define the class of RS Tucker tensors.

Definition 3.10 (RS Tucker tensors). Given the separation parameter γ ∈ N,
the RS Tucker tensor format specifies the class of d-tensors A ∈ Rn1×···×nd , which can
be represented as the sum of a rank-r Tucker tensor V and a (uniform) CCT generated
by U0 with rank(U0) ≤ R0 as in Definition 3.7 (or more generally in Definition 3.4):

(3.12) A = β ×1 V
(1) ×2 V

(2) · · · ×d V (d) +
∑N

ν=1
cνUν ,

where the tensor Uν , ν = 1, . . . , N , has local support, i.e., diam(suppUν) ≤ 2γ.

Similarly to Lemma 3.9, the complexity bounds for the RS Tucker tensors can be
proven.

Lemma 3.11. The storage size for the RS Tucker tensor does not exceed

stor(A) ≤ rd + drn+ (d+ 1)N + dR0γ.

Let the r`-vector v
(`)
i`
∈ R1×r` be the i` row of the matrix V (`) ∈ Rn`×r` . Then the ith

element of the tensor A = [ai] can be calculated at the expense O(rd + 2dγR0) by

(3.13) ai = β ×1 v
(1)
i1l
×2 v

(2)
i2
· · · ×d v(d)

id
+
∑
ν∈L(i)

cνUν(i).

Proof. In view of Definition 3.10, the RS Tucker tensor is uniquely defined by the
following parametrization: the rank-r = (r1, . . . , rd) Tucker tensor V ∈ Rn1×···×nd ,
the rank-R0 local reference canonical tensor U0 with diam(suppU0) ≤ 2γ, and a list
J of the coordinates of the N particle centers {xν} and N weights {cν}. This proves
the storage complexity. The entrywise representation complexity follows by (3.13).

The main computational benefits of the new RS canonical/Tucker tensor formats
are demonstrated by the uniform bounds on the Tucker rank of the long-range part in
the large sum of interaction potentials (see Theorem 3.1 and the numerics in section
3.1). Moreover, we have the low storage cost for the RS canonical/Tucker tensors,
cheap representation of each entry in an RS tensor, and the possibility for simple
implementation of multilinear algebra on these tensors (see section 3.4), which opens
the opportunities for various applications.

Figure 8 displays the accuracy of the RS tensor approximation to the electrostatic
potential of a cluster with 500 particles at the middle section of the computational
box [−20, 20]3 Å by using an n × n × n 3D Cartesian grid with n = 1024 and step
size h = 0.04Å. The top-left figure shows the surface of the potential at the level
z = 0, while the top-right figure shows the absolute error of the RS approximation
with Rl = 15, Rs = 11, and σ∗ = 1.5. The bottom figures visualize the long-range
(left) and short-range (right) parts of the RS tensor, representing the potential sum.

The most time-consuming part in our scheme is the canonical-to-Tucker algorithm
for computing the long-range part of the RS format tensors. Table 3 indicates almost
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Fig. 8. Top: the sum of electrostatic potentials at the middle plane of a cluster with 500
particles (left), and the error of its RS approximation (right). Bottom: long-range part of a sum
(left); short-range part of a sum (right).

Table 3
Times (sec) for a canonical-to-Tucker rank reduction versus number of particles N and grid

size n3.

N /n3 5123 10243 20483 40963 81923 163843 RRS,C

100 0.9 1.5 2.3 4.1 6.0 12.2 183
200 2.3 3.0 4.7 7.9 14.4 23.4 214
400 5.2 7.0 8.7 16.1 32.9 71.7 227
770 12.3 13.8 18.3 32.7 67.5 147.3 290

linear scaling in the number of particles and in the univariate grid size n of the n×n×n
representation grid. The rightmost column shows the resulting canonical ranks RRS,C
of the side matrices U (`), ` = 1, 2, 3 in (3.11). The asymptotically optimal complexity
scaling of the RS decomposition and the required storage provides the main motivation
for further applications of the RS tensor format.

Remark 3.12. It is worth noting that in the case of higher dimensions, say, for
d > 3, the local canonical tensors can be combined with the global tensor train (TT)
format [49] such that the simple canonical-to-TT transform can be applied. This
introduces the RS-TT format as a set of tensors represented by a sum of CCT terms
and the global low-rank TT tensor. The complexity and structural analysis is very
similar to the case of RS canonical and RS Tucker formats.

3.4. Algebraic operations on the RS canonical/Tucker tensors. Multilin-
ear algebraic operations in the format of RS canonical/Tucker tensor parametrization
can be implemented by using 1D vector operations applied to both localized and global
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tensor components. In particular, the following operations on RS canonical/Tucker
tensors can be realized efficiently: (a) storage of a tensor; (b) real-space representa-
tion on a fine rectangular grid; (c) summation of many-particle interaction potentials
represented on the fine tensor grid; and (d) computation of scalar products.

Estimates on the storage complexity for the RS canonical and RS Tucker formats
are presented in Lemmas 3.9 and 3.11. Items (b) and (c) have already been addressed
in the previous part. Calculation of the scalar product of two RS canonical tensors in
the form (3.11), defined on the same set S of particle centers, can be reduced to the
standard calculation of the cross-scalar products between all elementary canonical
tensors presented in (3.11). The numerical cost is bounded by O( 1

2R(R − 1)dn +
2γRR0N).

4. Applications of the RS format in data modeling and in many-particle
calculations. The RS tensor formats can be gainfully applied in computational prob-
lems involving functions with multiple local singularities or cusps, as well as Green’s
kernels with essentially nonlocal behavior; they can also be applied in multidimen-
sional approximation problems treated by means of radial basis functions. In [5], the
RS approach was applied to computation of gradients and forces for many-particle
interaction potentials, and to the construction of approximate boundary/interface
conditions in the Poisson–Boltzmann equation describing the electrostatic potential
of proteins.

In what follows, we discuss how the RS tensor representations can be utilized
in computationally extensive problems related to the grid representation of multidi-
mensional scattered data, and for computation of the interaction energy of a charged
many-particle system.

4.1. Multidimensional data modeling. In this section, we briefly describe
the model reduction approach to the problem of multidimensional data fitting based
on the RS tensor approximation. The problems of multidimensional scattered data
modeling and data mining are known to lead to computationally intensive simulations.
We refer to [12, 31, 9, 23, 28] for discussion of the most commonly used computational
approaches in this field of numerical analysis.

The mathematical problems in scattered data modeling are concerned with the
approximation of the multivariate function f : Rd → R (d ≥ 2) by using samples
given at a certain finite set X = {x1, . . . , xN} ⊂ Rd of pairwise distinct points; see,
e.g., [12]. The function f may describe the surface of a solid body, the solution of
a PDE, a many-body potential field, the multiparametric characteristics of physical
systems, or some other multidimensional data.

In the particular problem setting one may be interested in recovering f from a
given sampling vector f|X = (f(x1), . . . , f(xN )) ∈ RN . One of the traditional ways to
tackle this problem is based on the construction of a suitable functional interpolant
PN : Rd → R satisfying PN |X = f|X =: f , i.e.,

(4.1) PN (xj) = f(xj) ∀ 1 ≤ j ≤ N,

or approximating the sampling vector f|X on the set X in the least-squares sense. We
consider the approach based on the use of radial basis functions, which provide the
traditional tools for multivariate scattered data interpolation. To that end, the radial
basis function (RBF) interpolation approach deals with a class of interpolants PN in
the form
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(4.2) PN (x) =

N∑
j=1

cjp(‖x− xj‖) +Q(x), Q is some smooth function,

where p : [0,∞) → R is a fixed radial function and ‖ · ‖ is the Euclidean norm on
Rd. To fix the idea, here we consider the particular version of (4.2) by setting Q = 0.
Notice that the interpolation ansatz PN in (4.2) has the same form as the multiparticle
interaction potential in (3.1). This observation indicates that the numerical treatment
of various problems based on the use of the interpolant PN can be handled by using
the same tools of model reduction via rank-structured RS tensor approximation.

The particular choice of RBFs described in [12, 31] includes functions p(r) in the
form

rν , (1 + r2)ν , (ν ∈ R), exp(−r2), r2 log(r),

where r = ‖x‖. For our tensor-based approach, the common feature of all these
function classes is the existence of low-rank tensor approximations to the grid-based
discretization of the RBF p(‖x‖) = p(x1, . . . , xd), x ∈ Rd. We can extend the above
examples with traditional functions commonly used in quantum chemistry, such as
the Coulomb potential 1/r, the Slater function exp(−λr), and the Yukawa potential
exp(−λr)/r, as well as the class of Matérn RBFs traditionally applied in stochastic
modeling [47]. Other examples are given by the Lennard-Jones (Van der Waals)
p(r) = 4ε[(σr )12 − (σr )6] and dipole-dipole interaction potentials p(r) = 1

r3 , as well as
the Stokeslet [45], specified by the 3× 3 matrix p(‖x‖) = I/r + (xxT )/r3 for x ∈ R3.

In the context of numerical data modeling, we focus on the following computa-
tional tasks.

(A) For a fixed coefficient vector c = (c1, . . . , cN )T ∈ RN , find the efficient rep-
resentation and storage of the interpolant in (4.2), sampled on a fine tensor
grid in Ω ⊂ Rd, that allows the O(1)-fast point evaluation of PN in the whole
volume Ω and computation of various integro-differential operations on that
interpolant, such as gradients, forces, scalar products, convolution integrals,
etc.

(B) Find the coefficient vector c that solves the interpolation problem (4.1).
We approach problems (A) and (B) with the intent to apply the RS tensor rep-

resentation to the interpolant PN (x). The point is that representation (4.2) can be
viewed as the many-particle interaction potential (with charges cj) considered in the
previous sections. Hence, the RS tensor approximation can be successfully applied if
the d-dimensional tensor approximating the RBF p(‖x‖), x ∈ Rd, on the tensor grid
allows a low-rank canonical representation that can be split into short- and long-range
parts. This can be proven for the functions listed above (see the example in section
2.2 for the Newton kernel 1/‖x‖). Notice that the Gaussian is already the rank-1
separable function.

Problem (A). To fix the idea, we consider the particular choice of the set X ⊂ Ω :=
[0, 1]d, which can be represented by using almost optimal point sampling. The so-
called optimal point sets realize the trade-off between the separation distance qX =
mins∈X minxν∈X\s d(xν , s) (see (3.7)) and the fill distance hX ,Ω = maxy∈Ω d(X , y),
i.e., they solve the problem (see [12])

qX /hX ,Ω → max .

We choose the set of points X as a subset of the n⊗ square grid Ωh with the mesh
size h = 1/(n − 1) such that the separation distance satisfies σ∗ = qX ≥ αh, α ≥ 1.
Here N ≤ nd. The square grid Ωh realizes an example of the almost optimal point
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set (see the discussion in [31]). The construction below also applies to nonuniform
rectangular grids.

Now we are in a position to apply the RS tensor representation to the total in-
terpolant PN . Let PR be the n × n × n (say, for d = 3) rank-R tensor representing
the RBF p(‖ · ‖) which allows RS splitting by (2.11), generating the global RS repre-
sentation (3.2). Then PN (x) can be represented by the tensor PN in the RS Tucker
(3.12) or RS canonical (3.11) formats. The storage cost scales linearly in both N and
n, O(N + dRln). The tensor-based computation of different functionals on PN will
be discussed in the following sections.

Problem (B). The interpolation problem (4.1) reduces to solve the linear system
of equations for an unknown coefficient vector c = (c1, . . . , cN )T ∈ RN ,

(4.3) Ap,Xc = f , where Ap,X = [p(‖xi − xj‖)]1≤i,j≤N ∈ RN×N

with the symmetric matrix Ap,X (in some applications it is called the covariance
matrix). Here, without loss of generality, we assume that the RBF, p(‖ · ‖), is contin-
uous. The solvability conditions for the linear system (4.3) with the matrix Ap,X are
discussed, for example, in [12]. We consider two principal cases.

Case (A). We assume that the point set X coincides with the set of grid points
in Ωh, i.e., N = nd. Introducing the d-tuple multi-index i = (i1, . . . , id) and j =
(j1, . . . , jd), we reshape the matrix Ap,X into the tensor form

Ap,X 7→ A = [a(i1, j1, . . . , id, jd)] ∈
d⊗
`=1

Rn×n,

which corresponds to the folding of an N -vector to a d-dimensional n⊗d tensor. This
d-level Toeplitz matrix is generated by the tensor PR obtained by collocation of the
RBF p(‖ · ‖) on the grid Ωh. Splitting the rank-R canonical tensor PR into a sum of
short- and long-range terms,

PR = PRs + PRl with PRl =

Rl∑
k=1

p
(1)
k ⊗ · · · ⊗ p

(d)
k ,

allows us to represent the matrix A in the RS canonical form as a sum of low-rank
canonical tensors A = ARs +ARl . Here, the first one corresponds to the diagonal (or
almost diagonal in the case of the “soft” separation strategy) matrix by assumption
on the locality of PRs . The second matrix takes the form of the Rl-term Kronecker
product sum

ARl =
∑Rl

k=1
A

(1)
k ⊗ · · · ⊗A

(d)
k ,

where each “univariate” matrix A
(`)
k ∈ Rn×n, ` = 1, . . . , d, takes the symmetric

Toeplitz form generated by the first column vector p
(`)
k . The storage complexity of

the resultant RS representation to the matrix A is estimated by O(N+dRln). Similar
matrix decompositions can be derived for the RS Tucker and RS-TT representations
of PR.

Now we represent the coefficient vector c ∈ RN as the d-dimensional n⊗d tensor

c 7→ C ∈ Rn⊗d . Then the matrix-vector multiplication AC = (ARs + ARl)C im-
plemented in tensor format can be accomplished in O(cN + dRlN log n) operations,
i.e., with the asymptotically optimal cost in the number of sampling points N . The
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reason is that the matrix ARs has the diagonal form, while the matrix-vector product

between the Toeplitz matrices A
(`)
k constituting the Kronecker factors ARl and the

corresponding n-columns (fibers) of the tensor C can be implemented by 1D FFT
in O(n log n) operations. One can enhance this scheme by introducing the low-rank
tensor structure in the target vector (tensor) C.

Case (B). This construction can be generalized to the situation where X is a
subset of Ωh, i.e., N < nd. In this case the complexity again scales linearly in N if
N = O(nd). In the situation where N � nd, the matrix-vector operation applies to
the vector C that vanishes beyond the small set X . In this case the corresponding

block-diagonal submatrices in A
(`)
k lose the Toeplitz form, thus resulting in a slight

increase in the overall cost O(N1+1/d).
In both cases (A) and (B), the presented new construction can be applied within

any favorable preconditioned iteration for solving the linear system (4.3).

4.2. Interaction energy for a charged many-particle system. Consider
the calculation of the interaction energy for a charged multiparticle system. In the
case of lattice-structured systems, the fast tensor-based computation scheme for the
interaction energy was described in [33]. Recall that the interaction energy of the
total electrostatic potential generated by the system of N charged particles located
at xk ∈ R3 (k = 1, . . . , N) is defined by the weighted sum

(4.4) EN = EN (x1, . . . , xN ) =
1

2

N∑
j=1

zj

N∑
k=1,k 6=j

zk
‖xj − xk‖

,

where zk denotes the particle charge. Letting σ > 0 be the minimal physical distance
between the centers of particles, we arrive at the σ-separable systems in the sense
of Definition 3.2. The double sum in (4.4) applies only to the particle positions
‖xj−xk‖ ≥ σ, hence the quantity in (4.4) is computable also for singular kernels such
as p(r) = 1/r.

We observe that the quantity of interest EN can be recast in terms of the inter-
connection matrix Ap,X defined by (4.3) with p(r) = 1/r, X = {x1, . . . , xN}:

(4.5) EN =
1

2
〈(Ap,X − diagAp,X )z, z〉, where z = (z1, . . . , zN )T .

Hence, EN can be calculated by using the approach briefly addressed in the previous
section.

We now describe this scheme in more detail. Recall that the reference canonical
tensor PR approximating the single Newton kernel on an n× n× n tensor grid Ωh in
the computational box Ω = [−b, b]3 is represented by (2.9), where h > 0 is the fine
mesh size. For ease of exposition, we assume that the particle centers xk are located
exactly at some grid points in Ωh (otherwise, an additional approximation error may
be introduced) such that each point xk inherits some multi-index ik ∈ I, and the
origin x = 0 corresponds to the central point on the grid, n0 = (n/2, n/2, n/2). In
turn, the canonical tensor P0 approximating the total interaction potential PN (x)
(x ∈ Ω) for the N -particle system

PN (x) =

N∑
k=1

zk
‖x− xk‖

 P0 = Ps + Pl ∈ Rn×n×n

is represented by (3.2) as the sum of short- and long-range tensor components. Now
the tensor P0 = P0(xh) is defined at each point xh ∈ Ωh, and, in particular, in the
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vicinity of each particle center xk, i.e., at the grid points xk+he, where the directional
vector e = (e1, e2, e3)T is specified by some choice of coordinates e` ∈ {−1, 0, 1} for
` = 1, 2, 3. This allows us to introduce the useful notation P0(xk + he), which can be
applied to all tensors living on Ωh. Such notation simplifies the definitions of entities
such as energy, gradients, forces, etc. applied to the RS tensors.

Remark 4.1. The assumption that particle coordinates are placed exactly at grid
points in Ωh often arises in many-particle computations. In particular, the meshing-
up step is present in most Ewald summation methods, where the spatial resolution
(accuracy) is limited by the total size of the 3D grid in the volume, and by the re-
spective 3D FFT. Our tensor approach scales linearly (not cubically) in the univariate
grid size hence we have facilities for the fine spatial resolution of the potential (say,
on 104 × 104 × 104 grids), meaning minor limitations on the grid size. Moreover, the
calculation of the interaction energy and forces can basically be performed in terms
of the smooth long-range part in the total potential which allows good resolution on
the grid, depending weakly on small perturbations in the centers of charges.

The following lemma describes the tensor-based scheme for calculating the ap-
proximation EN,T to EN by utilizing the long-range part Pl only in the tensor repre-
sentation of PN (x).

Lemma 4.2. Let the effective support of the short-range components in the refer-
ence potential PR not exceed σ > 0. Then the interaction energy EN of the N -particle
system can be calculated by using only the long-range part in the total potential sum

(4.6) EN,T = EN,RS(x1, . . . , xN ) =
1

2

N∑
j=1

zj(Pl(xj)− zjPRl(x = 0))

in O(dRlN) operations, where Rl is the canonical rank of the long-range component.

Proof. Similarly to [33], where the case of lattice-structured systems was analyzed,
we show that the interior sum in (4.4) can be obtained from the tensor P0 traced onto
the centers of particles xk, where the term corresponding to xj = xk is removed:

N∑
k=1,k 6=j

zk
‖xj − xk‖

 P0(xj)− zjPR(x = 0).

Here the value of the reference canonical tensor PR (see (2.9)) is evaluated at the
origin x = 0, i.e., corresponding to the multi-index n0 = (n/2, n/2, n/2). Hence, we
arrive at the tensor approximation

(4.7) EN,T  
1

2

N∑
j=1

zj(P0(xj)− zjPR(x = 0)).

Now we split P0 into the long-range part (3.3) and the remaining short-range potential
to obtain P0(xj) = Ps(xj) + Pl(xj); we then do the same for the reference tensor
PR. By assumption, the short-range part Ps(xj) at point xj in (4.7) consists only of
the local term PRs(x = 0) = zjPR(x = 0). Due to the corresponding cancellations in
the right-hand side of (4.7), we find that EN depends only on Pl, leading to the final
tensor representation in (4.6).

We arrive at the linear complexity scaling O(dRlN), taking into account the
O(dRl) cost of the point evaluation for the canonical tensor Pl.
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Table 4
Accuracy of the tensor approximation EN,T to the interaction energy of an N-particle cluster

EN by using a full canonical tensor representation of the cluster potential (Rs = 0).

grid size N 100 200 400 782
EN −8.4888 −18.1712 −35.9625 −90.2027

81923 erT 0.0028 0.005 0.0074 0.0245

erT,rel 3 · 10−4 3 · 10−4 2 · 10−4 3 · 10−4

163843 erT 0.0021 0.0013 0.0039 0.0053

erT,rel 2 · 10−4 10−4 10−4 10−4

Table 5
Accuracy of the tensor approximation EN,T to the interaction energy of an N-particle cluster

EN when using the RS tensor approximation with Rl = 14 (Rs = 13).

grid size N 100 200 400 782
EN −8.4888 −18.1712 −35.9625 −90.2027

81923 erT 0.0010 0.0044 0.0074 0.0064

erT,rel 10−4 2 · 10−4 2 · 10−4 10−4

163843 erT 0.0015 0.0010 0.002 0.0001

erT,rel 2 · 10−4 10−4 10−4 10−5

Table 6
The accuracy of the tensor approximation EN,T to EN of the interaction energy of an N-

particle cluster when using the RS tensor approximation with Rl = 12 (Rs = 13), where RRS,C is
the reduced canonical rank of the RS tensor representation.

N 512 1728 2048 4096
EN 51.8439 −133.9060 −138.5562 −207.8477
erT 0.1145 0.1317 0.2263 0.2174

erT,rel 0.0022 0.001 0.0016 0.001
NR 12800 43200 51200 102400

RRS,C 688 1248 1256 1740

Table 4 shows the accuracy of the tensor approximation EN,T to the interaction
energy of an N -particle cluster EN when using full canonical tensor representation
of the cluster potential (Rs = 0). The absolute erT = EN − EN,T and relative
erT,rel = (EN − EN,T )/EN errors are shown for N -particle systems of different sizes
and are computed by tensor representation of the potentials on the n × n × n 3D
Cartesian grids with n = 8192 and n = 16384, with mesh sizes 6.8 10−3 Å and
3.4 10−3 Å, respectively. We use the data for a protein-type molecular system provided
by the authors of [44]. This table indicates that the relative error of tensor-based
computation of the interaction energy remains of the order of 10−4 for the considered
range of grid sizes and particle numbers N . Table 5 presents the error of energy
computation for the same clusters by (4.7) by using the RS tensor format with Rl = 14
and Rs = 13. Remarkably, the approximation error does not exceed the errors in
Table 4.

Table 6 shows the results for several clusters of particles generated by random
assignment of charges zj to finite lattices of size 83, 123, 16 × 16 × 8, and 163. The
Newton kernel is approximated with εN = 10−4 on the grid of size n3 = 40963, with
the rank R = 25. Computation of the interaction energy was performed by using only
the long-range part with Rl = 12. For rank reduction the multigrid C2T algorithm is
used [39], with the rank truncation parameters εC2T = 10−5, εT2C = 10−6. The box
size is about 20 × 20 × 20 Å, while the mesh size is h = 0.005 Å. Table 6 illustrates
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that the relative accuracy of energy calculations made using the RS tensor format
remains of the order of 10−3 almost independently of the cluster size.

5. Conclusions. In this paper, we have introduced and analyzed the new range-
separated canonical and Tucker tensor formats for modeling long-range interaction
potentials in multiparticle systems. One can distinguish the RS tensors from the con-
ventional rank-structured representations due to their intrinsic features, originating
from tensor approximation to multivariate functions with multiple singularities, in
particular, generated by a weighted sum of the classical Green’s kernels.

We have shown that the tensor approximation to the interaction potentials al-
lows one to split their long- and short-range parts, providing efficient representation
and numerical treatment of multiparticle systems in RS tensor formats. Indeed, the
long-range part in the potential sum can be represented on a grid by the low-rank
canonical/Tucker tensor globally in the computational box. In turn, its short-range
component is parametrized by a reference tensor of local support and a list of par-
ticle coordinates and charges. In particular, we prove that the Tucker rank of the
long-range part in the N -particle potential depends logarithmically on N . The model
parameters specifying the short- and long-range splitting in the generating poten-
tial are chosen adaptively depending on the target accuracy and typical interparticle
distances.

The RS formats prove to be well suited for summation of the electrostatic po-
tentials in large many-particle systems in a box (e.g., proteins or large molecular
clusters), providing a low-parametric tensor representation of the total potential at
any point of the fine 3D n × n × n Cartesian grid. For the computer realization of
the RS tensor decomposition, a canonical-to-Tucker rank reduction algorithm is ap-
plied resulting in the O(dn logN) grid representation of the long-range part in the
many-particle potential in Rd. Notice that most existing approaches are limited by
the O(nd) volume complexity, contrary to the almost linear scaling in the univariate
mesh size n and dimension parameter d inherent to the RS tensor format. Numerical
tests confirm the theoretical rank estimates and the asymptotically optimal complex-
ity bound O(N). In particular, the electrostatic potential for N -particle systems (up
to several thousands of atoms) is computed in MATLAB with controllable accuracy,
using large 3D representation grids of size up to n3 = 1012.

As examples of possible applications, we described the tensor-based calculation
of the electrostatic interaction energy of protein-type systems. We observed that
the application of the RS canonical/Tucker formats exhibits very mild limitations on
the system size. The applications of RS tensors in multidimensional scattered data
modeling are also discussed.

The presented analysis of the RS tensor format indicates its potential benefits in
various applications related to the modeling of many-particle systems with quasiuni-
form distribution. It addresses a number of new interesting theoretical and algorithmic
questions on the rank-structured tensor approximation of multivariate functions with
generally located point singularities.
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