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Abstract— The stochastic H∞-norm is defined as the L2-
induced norm of the input-output operator of a stochastic linear
system. Like the deterministic H∞-norm it is characterised by
a version of the bounded real lemma, but without a frequency
domain description or a Hamiltonian condition. Therefore, we
base its computation on a parametrised algebraic Riccati-type
matrix equation and a Newton iteration. For large dimensions,
our algorithm outperforms LMI-methods.

I. INTRODUCTION

The H∞-norm is a fundamental concept for asymptot-
ically stable deterministic linear time invariant systems. It
is equal to the input/output norm of a system both in the
frequency and the time domain. It is used in robustness
analysis and serves as a performance index in H∞ control.
In model order reduction, it is an important measure for
the quality of the approximation. There are very efficient
algorithms for the computation of the H∞-norm, which are
based on a Hamiltonian characterization. The most widely
used among these was described in [1], [2], but recent
progress has also been made e.g. in [3], [4], [5], [6].

A stochastic version of the H∞-norm was introduced by
Hinrichsen and Pritchard in [7]. It has a similar range of
applications as its deterministic counterpart, but its numerical
computation has hardly been considered in the literature.
A major obstacle in transferring ideas and algorithms from
the deterministic case is the lack of a suitable frequency
domain interpretation or a Hamiltonian characterization in
the stochastic setup.

But according to the stochastic bounded real lemma,
[7], the stochastic H∞-norm can be characterized as the
minimum (or infimum) value of a minimization problem
with constraints in terms of linear matrix inequalities (LMIs).
Thus its computation lies in the scope of general purpose
LMI-solvers based on semidefinite programming techniques.
To our knowledge, this is the only approach readily available
so far. However, these methods turn out to be quite expensive
for large dimensions.

As an alternative, we present an algorithm based on a
Riccati characterization. Again by the stochastic bounded
real lemma, the norm is the infimum of all γ > 0 for
which a given parametrized Riccati equation has a stabilizing
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solution. We check the solvability of the Riccati equation
by a Newton iteration. To reduce the complexity, the linear
equations in each Newton step are solved by a preconditioned
Krylov subspace iteration. Numerical experiments confirm
that the asymptotic complexity of our algorithm is much
lower than that of LMI-solvers.

Our investigations were motivated by our recent work
[8], [9] on model order reduction for stochastic systems. To
quantify the approximation error, the stochastic H∞-norm
needs to be computed for large systems.

The paper is structured as follows. In Section 2 we
introduce stochastic systems, define the stochastic H∞-norm
and state the stochastic bounded real lemma. We also provide
a new version of the non-strict bounded real lemma and
give some new bounds for the stabilizing solution, which are
proven in Appendix B. In Section 3 we describe our basic
algorithm and discuss ways to make all the steps fast. In
Section 4 we report on numerical experiments. In particular,
we compare our algorithm with LMI-solvers. To keep the
notational burden low, we confine ourselves to the case,
where only one multiplicative noise term affects the state
vector. Our results can easily be extended to more general
situations which we hint at in Appendix A.

II. THE STOCHASTIC H∞-NORM

We consider stochastic linear systems of the form

dx = (Ax+Bu) dt+Nxdw , y = Cx+Du , (1)

where A,N ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m,
and w = (w(t))t∈R+

is a zero mean real Wiener process on
a probability space (Ω,F , µ) with respect to an increasing
family (Ft)t∈R+

of σ-algebras Ft ⊂ F (e.g. [10], [11]).
Let L2

w(R+,Rq) denote the corresponding space of non-anti-
cipating stochastic processes v with values in Rq and norm

‖v(·)‖2L2
w

:= E
(∫ ∞

0

‖v(t)‖2dt
)
<∞,

where E denotes expectation. For initial data x(0) = x0

and input u ∈ L2
w(R+,Rm) we denote the solution and the

output of (1) by x(t, x0, u) and y(t, x0, u), respectively.
Definition 1: System (1) is called asymptotically mean-

square-stable, if

E(‖x(t, x0, 0)‖2)
t→∞−→ 0 ,

for all initial conditions x0. In this case, for simplicity, we
also call the pair (A,N) asymptotically mean-square stable.
If (A,N) is asymptotically mean-square stable, then (1) de-
fines an input-output operator L : u 7→ y from L2

w(R+,Rm)



to L2
w(R+,Rp) via u 7→ y(·, 0, u), see [7]. By ‖L‖ we denote

the induced operator norm,

‖L‖ = sup
‖u‖L2

w
=1

‖y(·, 0, u)‖L2
w
, (2)

which is an analogue of the deterministic H∞-norm. Follow-
ing [7], we call it the stochastic H∞-norm of system (1).

A. The stochastic bounded real lemma

The norm (2) can be characterized by the stochastic
bounded real lemma. To this end, we define the quadratic
(Riccati-type) mapping Rγ : Rn×n → Rn×n, which depends
on the parameter γ > ‖D‖2, by

Rγ(X) = ATX +XA+NTXN − CTC
− (BTX −DTC)T (γ2I −DTD)−1(BTX −DTC) .

Its Fréchet derivative at some X ∈ Rn×n is the linear
mapping (Rγ)′X : Rn×n → Rn×n given by

(Rγ)′X(∆) = ATX∆ + ∆AX +NT∆N , (3)

where AX = A−B(γ2I −DTD)−1(BTX −DTC).
Writing LA : X 7→ ATX + XA and ΠN : X 7→ NTXN ,
we have

(Rγ)′X(∆) = LAX
(∆) + ΠN (∆) . (4)

The pair (A,N) is asymptotically mean-square stable if and
only if σ(LA + ΠN ) ⊂ C− = {λ ∈ C

∣∣ <λ < 0}, cf. [12].
Theorem 2: [7] Let σ(LA + ΠN ) ⊂ C−. For γ > ‖D‖2,

the following are equivalent.
(i) ‖L‖ < γ.

(ii) There exists a negative definite solution X < 0 to the
linear matrix inequality[

(LA + ΠN )(X)− CTC XB − CTD
BTX −DTC γ2I −DTD

]
> 0. (5)

(iii) There exists a negative definite solution X < 0 to the
strict Riccati inequality Rγ(X) > 0.

(iv) There exists a solution X ≤ 0 to the Riccati equation
Rγ(X) = 0, such that σ((Rγ)′X) ⊂ C−.

Remark 3: A solution of the Riccati equation Rγ(X) = 0
with σ((Rγ)′X) ⊂ C− is called a stabilizing solution. If it
exists, then it is the uniquely defined largest solution of the
inequality Rγ(X) ≥ 0, see [12]. We will write X+(γ) for
this solution. By Theorem 2, the norm ‖L‖ is the infimum of
all γ such that Rγ(X) = 0 possesses a stabilizing solution,

‖L‖ = inf

{
γ > ‖D‖2

∣∣ ∃X < 0 :
Rγ(X) = 0 and
σ((Rγ)′X) ⊂ C−

}
.

(6)
Under a controllability assumption we can also give a

nonstrict version of Theorem 2 for asymptotically mean-
square stable systems. This is useful to understand the limit
case when γ approaches ‖L‖. We define the controllability
Gramian P of system (1) as the solution of

AP + PAT +NPNT = −BBT . (7)

If the system is stable, then P is nonnegative definite, P ≥ 0.

Corollary 4: Assume that (A,N) is asymptotically mean-
square stable and P > 0 in (7). For γ > ‖D‖2, the following
are equivalent.
(i) ‖L‖ ≤ γ.

(ii) There exists a solution X ≤ 0 to the linear matrix
inequality[

(LA + ΠN )(X)− CTC XB − CTD
BTX −DTC γ2I −DTD

]
≥ 0. (8)

(iii) There exists a solution X ≤ 0 to the Riccati equation
Rγ(X) = 0.

Moreover, if ‖L‖ = γ, then Rγ(X) = 0 has a largest
solution X = X+(γ), for which 0 ∈ σ ((Rγ)′X) ⊂ C− ∪ iR.

This result is slightly stronger than [13, Proposition 9.6]
or [12, Corollary 5.3.14], where it was shown that (i) implies
(iii) if (A,B) is controllable. In the appendix we give a new
simplified proof, which can also be modified to obtain lower
bounds for solutions of (8) as follows.

B. Inequalities for solutions of the Riccati equation

Lemma 5: Assume that (A,N) is asymptotically mean-
square stable, and γ > ‖D‖2. Let P † ≥ 0 be the Moore-
Penrose inverse of P from (7). If X ≤ 0 satisfies (8), then

0 ≤ trace(−BTXB) ≤ m2γ2‖BTP †B‖2 . (9)

Note that trace(−BTXB) is monotonically decreasing.
Hence, if (9) is violated for some X ≤ 0 and X̃ ≤ X ,
then X̃ cannot solve (8). This bound is very easy to check.
Alternatively, we may compare with solutions of Riccati
equations from deterministic control. Let Rdet

γ denote the
counterpart of Rγ with N = 0, i.e.

Rdet
γ (X) = Rγ(X)−NTXN .

Lemma 6: Assume that (A,N) is asymptotically mean-
square stable, and γ1 ≥ γ > ‖L‖.
Then the Riccati equation from the deterministic case

Rdet
γ1 (X) = 0 (10)

possesses a smallest solution Xγ1
− ≤ 0, and Xγ1

− ≤ X for
all solutions X of (8).

III. COMPUTATION OF THE STOCHASTIC H∞-NORM

To exploit the characterization (6), we need a method to
check, whether the Riccati equation Rγ(X) = 0 possesses a
stabilizing solution. Given the Fréchet derivative of Rγ(X)
displayed in (3), it is natural to apply Newton’s method to
solve the stochastic algebraic Riccati equation from part (iv)
of Theorem 2. The following result was proven in [13].

Theorem 7: Let (A,N) be mean-square stable and as-
sume that γ > ‖L‖. Consider the Newton iteration

Xk+1 = Xk − (Rγ)′Xk

−1
(Rγ(Xk)) , (11)

where we assume σ((Rγ)′X0
) ⊂ C−. Then the sequence Xk

converges to X+, and for all k ≥ 1 it holds that

σ((Rγ)′Xk
) ⊂ C−, Rγ(Xk) ≤ 0, and Xk ≥ Xk+1 . (12)



Moreover, under the given assumptions X0 = 0 is a
suitable initial guess. This actually follows from [12, Corol-
lary 5.3.5], but the argument there is not really taylored for
our purpose here. Therefore a more direct proof (within the
framework of [12]) is given in the appendix.

Lemma 8: Let (A,N) be mean-square stable and assume
that γ > ‖L‖. Then σ((Rγ)′0) ⊂ C−.

For a given γ > ‖D‖2, we can check whether γ > ‖L‖ by
running the Newton iteration (11) starting from X0 = 0. If
all iterates are stabilizing, and the sequence converges with
a given level of tolerance, then we conclude that γ ≥ ‖L‖.

Conversely, if γ < ‖L‖, then either σ((Rγ)′Xk
) 6⊂ C− for

some k, or the sequence Xk is monotonically decreasing and
unbounded. In principle, the latter case can be detected by
Lemma 6. It suffices to compute Xγ1

− for some γ1 > ‖L‖
and to test whether Xk ≥ Xγ1

− . If Xk is unbounded, then
this condition will be violated for some iterate indicating,
that γ < ‖L‖. In practice, however, we never observed that
this bound (or the easier condition of Lemma 5) was violated
earlier than the stability condition.

Thus, if for some k the condition σ((Rγ)′Xk
) ⊂ C− is

violated or the iteration takes more than a fixed number of
steps, then we conclude that γ ≤ ‖L‖.

Using bisection, we can thus compute ‖L‖ up to a
given precision, which in theory can be arbitrarily small,
in practice, of course, is restricted by roundoff effects.

A. The basic algorithm
We summarize this approach as our basic algorithm.

Algorithm 9 Computation of the stochastic H∞-norm
1: Choose γ0 < ‖L‖ < γ1, kmax, tol
2: repeat
3: Set γ = γ0+γ1

2 , X0 = 0
4: repeat
5: if σ((Rγ)′Xk

) ⊂ C− then
6: Xk+1 = Xk − (Rγ)′Xk

−1
(R(Xk))

7: end if
8: until convergence or k = kmax or σ((Rγ)′Xk

) 6⊂ C−
9: if convergence then

10: γ1 = γ,
11: else
12: γ0 = γ
13: end if
14: until γ1 − γ0 < tol

The stability test in line 5 and the solution of the linear
system in line 6 are central issues. Both concern the gen-
eralized Lyapunov mapping R′Xk

. A naive implementation
with general purpose eigenvalue and linear system solvers,
respectively, would result in an overall complexity of about
O(n6). The complexity of semidefinite programming meth-
ods is slightly smaller: For Lyapunov and Riccati equations,
[14] reports a worst case estimate of O(n5.5) and an average
of O(n4). Our numerical experiments suggest that similar
estimates hold for the computation of the stochastic H∞-
norm. It is, however, well known that standard Lyapunov

equations of the form LAXk
(X) = Y can be solved in

O(n3) operations, using e.g. the Bartels-Stewart algorithm,
[15]. Exploiting this in iterative approaches, we can bring
down the complexity of Algorithm 9 to O(n3). This will be
explained briefly in the following two subsections. Moreover,
we suggest a way to choose γ0 and γ1 in line 1.

In the numerical experiments, we will show that our
algorithm outperforms general purpose LMI methods.

B. The stability test

The condition σ((Rγ)′Xk
) ⊂ C− in line 5 holds if and

only if σ(AXk
) ⊂ C− and ρ(L−1

AXk
ΠN ) < 1, where ρ

denotes the spectral radius, [12, Theorem 3.6.1]. Hence, we
can first check, whether σ(AXk

) ⊂ C− and then apply the
power method to compute the spectral radius ρ of L−1

AXk
ΠN .

Note that the mapping −L−1
AXk

ΠN is nonnegative, in the
sense that it maps the cone of nonnegative definite matrices
to itself, see [12]. Hence, the iterative scheme

P0 = I, Pk+1 = −L−1
AXk

ΠN (Pk), ρk =
trace(PkPk+1)

trace(PkPk)

produces a sequence of nonnegative definite matrices Pk
which generically converge to the dominant eigenvector. In
the limit we have Pk+1 ≈ ρPk, i.e. ρk

k→∞→ ρ.

C. The generalized Lyapunov equation

By (4), in the Newton step in line 6, the generalized
Lyapunov equation

ATXk
∆ + ∆AXk

+NT∆N = −Rγ(Xk) (13)

has to be solved for ∆ to obtain Xk+1 = Xk+∆. Equations
of this type have been studied e.g. in [16].

Here ∆ = ∆T ∈ Rn×n satisfies the fixed point equation

∆ = −L−1
AXk

(ΠN (∆) +Rγ(Xk)) .

The condition σ((Rγ)′Xk
) ⊂ C− implies ρ(L−1

AXk
ΠN ) < 1,

where ρ denotes the spectral radius. Hence the iteration

∆j+1 = −L−1
AXk

(ΠN (∆j) +Rγ(Xk))

is convergent. In each step this iteration only requires the
solution of a standard Lyapunov equation at a cost in O(n3).
The speed of convergence can be improved by using a Krylov
subspace approach like gmres or bicgstab. For details
see [16]. More recently, also low-rank techniques have been
considered in [17], [18], [19].

D. Choosing γ0 and γ1

For the bisection it is useful to find suitable upper and
lower bounds for ‖L‖. Let G(s) = C(sI − A)−1B + D
be the transfer function of the deterministic system obtained
from (1) by replacing N with zero. The H∞-norm ‖G‖H∞

equals the input-output norm of this deterministic system.
Then from Theorem 2 we have ‖G‖H∞ ≤ ‖L‖, because the
inequality (5) for a given matrix X < 0 implies that the
corresponding linear matrix inequality with N = 0 holds for
the same X . Hence, if γ > ‖L‖, then γ > ‖G‖H∞ . So,



we choose γ0 = ‖G‖H∞ and try γ1 = 2γ0. If the Newton
iteration does not converge for γ1, then we replace γ0 by
2γ0 and repeat the previous step, until we have γ1 > ‖L‖.

IV. NUMERICAL EXPERIMENTS

The experiments were carried out on a 2016 MacBook Pro
with a 3.3 GHz Intel Core i7 processor and 16 GB Memory
running OS X 10.12.4 using MATLAB® version R2017a.

A. Random systems

We first consider random data (A,N,B,C) produced by
randn. The matrix A is made stable by mirroring the
unstable eigenvalues at iR. Then the spectral radius ρ of
L−1
A ΠN is estimated as described in subsection III-B and an

update of N is obtained by multiplication with (2ρ+1)−1/2.
Thus (A,N) is guaranteed to be mean-square stable. We
compute the stochastic H∞-norm by our algorithm and
compare it with the results obtained by both the MATLAB-
function mincx, and Sedumi [20] via the toolbox YALMIP,
[21] (see Appendix C). For each dimension, 20 random
examples are considered. In most of our tests, the computed
H∞-norm coincided for all three methods roughly up to
the chosen relative precision tol=1e-08. Among the 120
examples for dimension n = 10, 20, 40, 60, 80, 100, there
were only 2 cases, where mincx did not converge, and two
more cases where the results of Algorithm 9 and mincx
differed between 1% and 4%. However, in 13 cases (not
analyzed further), the result computed by Sedumi differed
by magnitudes from the other two. The averaged computing
times are given in Table I and Figure 1. Note that mincx
is a built-in function, and therefore outperforms generic
MATLAB functions for small n, as it saves the time the
interpreter needs to execute the code and to manage the
memory requirements. For high-level implementations of
our method and of Sedumi, we would expect to observe
a speed-up also for smaller dimensions. For larger n the
asymptotic complexity becomes relevant. The regression
lines in Figure 1 have slopes s = 2.7 for Algorithm 9,
s = 6.4 for mincx and s = 5.9 for Sedumi, indicating
that the respective complexities are roughly O(ns).

TABLE I
AVERAGED COMPUTING TIMES (IN SEC) FOR RANDOM SYSTEMS.

n 10 20 40 60 80 100 200 400
mincx 0.03 0.3 10 141 867 3635 - -
Sedumi 1.1 1.1 11 107 577 2550 - -
Alg. 9 1.2 2.4 5 15 23 50 280 1600

B. A heat transfer problem

This stochastic modification of a heat transfer problem
described in [8] was also discussed in [9]. On the unit square
Ω = [0, 1]2, the heat equation Tt = ∆T for T = T (t, x)
is given with Dirichlet condition T = uj , j = 1, 2, 3,
on three of the boundary edges and a stochastic Robin
condition n · ∇T = (1/2 + ẇ)T on the fourth edge (where
ẇ stands for white noise). We measure the average value
y(t) =

∫
Ω
T (t, x) dx.

101 102
10−2

101

104

Alg. 9
mincx

Sedumi

101 102

Alg. 9
mincx

Sedumi

Fig. 1. Computing times for random examples as in Table I (left) and the
heat transfer problem (right)
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Fig. 2. Computed norms for discretized heat equation (left) and their
deviation for Algorithm 9 and Sedumi (right)

A standard 5-point finite difference discretization on a
k × k grid leads to a modified Poisson matrix A ∈ Rn×n
with n = k2 and corresponding matrices N ∈ Rn×n,
B ∈ Rn×3 C = 1

n [1, . . . , 1] ∈ Rn×n. The H∞-norm of this
discretization ‖Ln‖ approximates the induced input/output
norm of the partial differential equation. Figure 1 (see also
Table II) displays the computing times (in seconds) for
n = 4, 9, 16, . . . , 529 and the regression lines with slopes
s = 3.1 for Algorithm 9, s = 6.6 for mincx, and s = 5.5 for
Sedumi. Figure 2 shows the computed norms (which nearly
coincide for all methods) and their differences exemplarily
for Algorithm 9 and Sedumi.

TABLE II
COMPUTING TIMES (IN SEC) FOR DISCRETIZED HEAT EQUATION.

n 16 49 100 144 196 256 400
mincx 0.1 72 8418 - - - -
Sedumi 0.9 4.5 223 2191 13219 - -
Alg. 9 1 4.8 33 93 285 720 2699

Again, we observe that Algorithm 9 allows to treat larger
dimensions than the LMI-solver. However, the computing
times for our algorithm also grow fairly fast. As an alternative
to bisection one might consider extrapolating the spectral
radii ρ(γ) = ρ

(
(Rγ)′X+(γ)

)
which are computed in the

course of the process for γ > ‖L‖, or perhaps the spectral
abscissae α(γ) = max<σ

(
(Rγ)′X+(γ)

)
. Then the norm

‖L‖ is given as the value of γ, where ρ(γ) = 1, or α(γ) = 0.
Unfortunately, the slopes of ρ and α are very steep as
γ approaches ‖L‖. Thus, an extrapolation does not seem
promising. The behaviour is visualized for the heat equation
system with n = 25 in Figure 3.

V. CONCLUSIONS

We have suggested an algorithm to compute the stochastic
H∞-norm. It builds upon several ideas developed in the
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Fig. 3. Spectral abscissa α(γ) and spectral radius ρ(γ) of X+(γ) close
to the critical value γ = ‖L25‖ = 0.47241.

literature, and is the first algorithm, whose complexity is
considerably smaller than that of a general purpose LMI-
solver. We chose to present the algorithm for the simplest
case of just one multiplicative noise term, which however can
easily be generalized to the class described in Appendix A.
Already in the simple case, the stochastic H∞-norm is much
harder to compute than the H∞-norm of a deterministic
system, and the computing times are still very high. We see
it as a challenge to come up with a faster method.

The note also contains some extensions of known results
with new proofs, like the nonstrict stochastic bounded real
lemma and lower bounds for Riccati solutions.

APPENDIX

A. Generalization

System (1) can be generalized in a straight-forward man-
ner to the case of multiple noise terms at the state and the
input (see e.g. [12]). Then our system takes the form

dx = (Ax+Bu) dt+

ν∑
j=1

(Nx,jx+Nu,ju) dwj (14)

y = Cx+Du , (15)

where Nx,j ∈ Rn×n, Nu,j ∈ Rn×m and the wj are
independent Wiener processes. Here, Rγ is given by

Rγ(X) = P (X)− S(X)TQγ(X)−1S(X) , where

P (X) = ATX +XA+
∑ν
j=1N

T
x,jXNx,j − CTC ,

S(X) = BTX +
∑ν
j=1N

T
u,jXNx,j − CTD ,

Qγ(X) =
∑ν
j=1N

T
u,jXNu,j + γ2I −DTD .

Our basic algorithm and all our considerations carry over to
this case literally. Only the expressions for Rγ and (Rγ)′X
become more technical.

B. Proofs

Proofs are provided here for results which are new (Lem-
mas 5 and 6), or partly new (Corollary 4), or – in the case of
Lemma 8 – whose proof is not easy to access. Note that the
novelty of Corollary 4 lies in its usage of the controllability
Gramian P . This makes the statement more general and leads
to a significant simplification of the proof compared to [13].
As in the main text, we write LA : X 7→ ATX + XA and
ΠN : X 7→ NTXN . On the space of symmetric matrices
we consider the scalar product 〈X,Y 〉 = traceXY , and note
that the corresponding adjoint operators are

L∗A : X 7→ AX +XAT and Π∗N : X 7→ NXNT .

Further general facts on Riccati- and Lyapunov-type opera-
tors are cited from [12].

Proof of Corollary 4: (iii)⇒(ii) follows from the defi-
niteness criterion via the Schur-complement.
(ii)⇒(iii): If (ii) holds, then Rγ(X) ≥ 0, and by [13] there
exists a solution X+ ≤ 0 to the equation Rγ(X) = 0.
(ii)⇒(i): If (5) holds and we replace C and D by Cε = [ CεI ]
and Dε = [D0 ], then we get[
ATX +XA+NTXN − CTε Cε XB − CTε Dε

BTX −DT
ε Cε γ2I −DT

ε Dε

]
> 0 .

This implies ‖Lε‖ < γ for the corresponding modified input-
output operator. By ‖Lε‖

ε→0→ ‖L‖, we obtain ‖L‖ ≤ γ.
(i)⇒(ii): If (i) holds, then ‖L‖ < γ + 1

k for all k ∈ N,
k > 0. Hence there exist stabilizing solutions Xk ≤ 0
of Rγ+ 1

k
(X) = 0. Moreover, Xk is the largest solution

of (8) with γ replaced by γ + 1
k . Hence it follows that

Xk+1 ≤ Xk for all k. If the Xk are bounded below, then the
sequence (Xk) converges and the limit satisfies the nonstrict
linear matrix inequality in (iii). Thus it suffices to show
boundedness. We assume that the sequence is not bounded,
i.e. ‖Xk‖ → ∞ for k → ∞. Consider the normalized
sequence X̃k = Xk

‖Xk‖ , which – by Bolzano-Weierstrass –
has a convergent subsequence X̃kj with limit X̃ 6= 0. Then

0 ≤ 1

‖Xkj‖

[
(LA + ΠN )(Xkj )− CTC XkjB − CTD

BTXkj −DTC γ2I −DTD

]
j→∞→

[
AT X̃ + X̃A+NT X̃N X̃B

BT X̃ 0

]
≥ 0 ,

implying BT X̃ = 0 and 0 6= AT X̃ + X̃A + NT X̃N ≥ 0.
Since, by assumption, P > 0, we obtain

0 > trace
(
P (AT X̃ + X̃A+NT X̃N)

)
= trace

(
(AP + PAT +NPNT )X̃

)
= − traceBBT X̃ = 0

which is a contradiction.
Thus, Rγ(X) = 0 has a solution X∞, which is the limit
of the largest and stabilizing solutions Xk of Rγ+ 1

k
(X) ≥

0. Thus X∞ is the largest solution of Rγ(X) = 0 and
σ(Rγ)′X∞

⊂ C− ∪ iR. If γ = ‖L‖ then σ(Rγ)′X∞
∩ iR 6= ∅

and [12, Theorem 3.2.3] yields that 0 ∈ σ(Rγ)′X∞
.

Proof of Lemma 5:
We have P = −(LA + ΠN )−∗(BBT ).

In the following consider an arbitrary matrix X ≤ 0, X 6= 0,
satisfying (LA + ΠN )(X) = Y ≥ 0. Then

m‖BTXB‖2 ≥ | trace(BTXB)|
= 〈(LA + ΠN )−1(Y ),−BBT 〉 = 〈Y, P 〉 .

There exists a vector u ∈ Rm with ‖u‖2 = 1 and
〈Y,BuuTBT 〉 = uTBTXBu = −‖BTXB‖2 . Moreover

〈Y,BuuTBT 〉 ≤ 〈Y,BBT 〉 ≤ α∗〈Y, P 〉 (16)



for α∗ = ‖BTP †B‖2. To see this, note that the image of B
is contained in the image of P . Hence there exists a unitary
U , such that

αP −BBT = U

[
αP1 −B1B

T
1 0

0 0

]
UT , detP1 6= 0.

The largest zero of χ(α) = det(αP1 −B1B
T
1 ) is

α∗ = ‖P−1/2B1‖22 = ‖BTP †B‖22 .

For α ≥ α∗, we have αP −BBT ≥ 0 which proves (16).
We set µ(X) = 〈Y, P 〉 = | trace(BTXB)|. Let now X
satisfy (8). With the given data and η > 0 this implies

0 ≤
[
Bu
ηu

]T [
Y XB

BTX γ2I

] [
Bu
ηu

]
= uTBTY Bu+ 2ηuTBTXBu+ γ2η2

≤ α∗µ(X)− 2

m
µ(X)η + γ2η2

= γ2

(
η − µ(X)

mγ2

)2

− µ(X)2

m2γ2
+ µ(X)α∗ .

If we assume µ(X) > m2γ2α∗, then the right hand is
negative for η = µ(X)

mγ2 , which is a contradiction.
Hence, we have | trace(BTXB)| ≤ m2γ2‖BTP †B‖2.

Proof of Lemma 6: Note that Rdet
γ1 (X) ≥ Rγ(X) if

X ≤ 0 and γ ≤ γ1 and thus every solution of Rγ1(X) > 0
also satisfies Rdet

γ1 (X) > 0. Hence Rdet
γ1 (X) = 0 pos-

sesses a stabilizing solution, and, consequently, also an anti-
stabilizing solution X−, which is the smallest solution of
Rdet
γ1 (X) ≥ 0. Thus also X− ≤ X for every solution X of
Rγ1(X) ≥ 0.

Proof of Lemma 8: We exploit the concavity of Rγ and
the resolvent positivity of (Rγ)′0, see [12]. If ‖L‖ ≤ γ, then
there exists X ≤ 0 such that, by concavity,

0 = Rγ(X) ≤ Rγ(0) + (Rγ)′0(X) . (17)

Assume that σ ((Rγ)′0) 6⊂ C−. Then by [12, Theorem 3.2.3]
there exists H ≥ 0, λ ≥ 0, such that (Rγ)′0(H) = λH .
Taking the scalar product of inequality (17) with H , we get

0 ≤ 〈Rγ(0), H〉+ λ〈X,H〉 ≤ 0 .

It follows that Rγ(0)H = 0, which implies DTCH = 0
and thus A0H = AH . But then (LA + ΠN )∗(H) = λH in
contradiction to the stability of (A,N).

C. Usage of LMI-solvers in MATLAB

The solver mincx was used as in the following listing.

1 setlmis([])
2 X = lmivar(1,[n,1]);g = lmivar(1,[1,1]);
3 lmiterm([1 1 1 X],N',N);
4 lmiterm([1 1 1 X],A',1,'s');
5 lmiterm([1 1 1 0],C'*C);
6 lmiterm([1 1 2 X],1,B,'s');
7 lmiterm([1 2 2 g],-1,1);
8 lmisys = getlmis;
9 c = mat2dec(lmisys,zeros(n),1);

10 options = [tol,0,0,0,1];
11 copt = mincx(lmisys,c,options);
12 gamma = sqrt(copt)

Sedumi was called from the toolbox YALMIP, [21].

1 P=sdpvar(n,n);gamma=sdpvar(1);
2 F=[P<=0,[A'*P+P*A+N'*P*N-C'*C,P*B-C'*D;
3 B'*P-D'*C gamma*eye(size(B,2))-D'*D]>=0];
4 ops = sdpsettings('solver','sedumi',
5 'sedumi.eps',tol,'verbose',0);
6 optimize(F,gamma,ops);
7 gamma=sqrt(value(gamma))
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