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Abstract

We calculate various quantities that characterize the dissimilarity of reduced density matrices
for a short interval of length ` in a two-dimensional (2D) large central charge conformal field theory
(CFT). These quantities include the Rényi entropy, entanglement entropy, relative entropy, Jensen-
Shannon divergence, as well as the Schatten 2-norm and 4-norm. We adopt the method of operator
product expansion of twist operators, and calculate the short interval expansion of these quantities
up to order of `9 for the contributions from the vacuum conformal family. The formal forms of these
dissimilarity measures and the derived Fisher information metric from contributions of general
operators are also given. As an application of the results, we use these dissimilarity measures
to compare the excited and thermal states, and examine the eigenstate thermalization hypothesis
(ETH) by showing how they behave in high temperature limit. This would help to understand how
ETH in 2D CFT can be defined more precisely. We discuss the possibility that all the dissimilarity
measures considered here vanish when comparing the reduced density matrices of an excited state
and a generalized Gibbs ensemble thermal state. We also discuss ETH for a microcanonical ensemble
thermal state in a 2D large central charge CFT, and find that it is approximately satisfied for a
small subsystem and violated for a large subsystem.
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1 Introduction

Motivated by the eigenstate thermalization hypothesis (ETH) [1,2] or its generalization, the subsystem

ETH [3, 4], it is important to characterize quantitatively the difference between the excited state and

the thermal state. One such characterization is to quantify the difference between reduced density

matrices over a local regions of these two states. This is also an interesting question by itself in

quantum information theory. For two-dimensional (2D) conformal field theory (CFT), many other

quantities of examining ETH have been adopted, such as correlation functions [5, 6], entanglement

entropy, Rényi entropy, relative entropy [3, 4, 7–10], trace square [11], etc. Due to the infinite number

of degrees of freedom in CFT, not every quantity is good for the use of examining the ETH [3, 4],

unless its behaviors for both excited and thermal states are known precisely.

It was proposed in [12] to use correlation functions of twist operators to calculate the Rényi entropy

in a 2D CFT, i.e., the partition function of the Riemann surface resulting from the replica trick. When

there is no compact form for these twist-operator correlation functions, one can use operator product

expansion (OPE) of twist operators to calculate the short interval expansion of Rényi entropy [13–17].

Following this method, in this paper we will calculate various quantities which are just the sums of
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some partition functions, and moreover can be used to characterize the dissimilarity of the reduced

density matrices of thermal and excited states, and other states on various Riemann surfaces.

Our results can be used to examine ETH. The ETH and subsystem ETH are originally defined by

comparing the highly excited state with the microcanonical ensemble thermal state [1–4]. Motivated by

[18,19], as well as [5–8], we compare in [10] the excited state with the canonical ensemble thermal state,

and adopt the so-called weak ETH [18,19]. In [10] the short-interval ` expansions of the entanglement

entropies for the excited state and canonical ensemble thermal state are calculated to order `8, and it

was found that their difference, which is just the relative entropy, is only suppressed by the powers of

large central charge c, instead of exponential suppression. In this paper we show that there are similar

behaviors for the Jensen-Shannon divergence and Schatten 2-norm. For the more refined consideration,

one should compare the excited state with the generalized Gibbs ensemble (GGE) thermal state [20–

25]. We will discuss the possibility that all the dissimilarities considered in this paper vanish when

comparing the reduced density matrices of an excited state and a suitably defined GGE thermal

state. As a by-product, we also check ETH for the microcanonical ensemble thermal state with the

dissimilarity measures of comparing with the energy eigenstate.

The rest of this paper is arranged as follows. In section 2 we give prescriptions of the method and

show how to get the partition functions from OPE of twist operators. Moreover, in subsection 2.5 we

apply the prescriptions to evaluate the Reńyi and entanglement entropies. In section 3 we calculate

the various dissimilarity measures between reduced density matrices. In section 4 we apply our results

to examine ETH and the possible scenarios of GGE. In section 5 we discuss ETH for a microcanonical

ensemble thermal state in a 2D large central charge CFT, and find that it is approximately satisfied

for a small subsystem and violated for a large subsystem. We conclude with discussion in section 6.

In appendix A we calculate the relative entropy from modular Hamiltonian as a consistent check. In

appendix B we consider the contributions from general operators, and get the formal forms of the

various dissimilarity measures and the Fisher information metric.

2 Prescriptions of the method

In this section we first give the useful basics of the vacuum conformal family in two-dimensional large

central charge CFT and then show how we calculate the partition functions on various Riemann surfaces

using OPE of the twist operators.

2.1 CFT basics

In this paper we only consider the contributions from the holomorphic sector of the vacuum conformal

family in a two-dimensional large central charge CFT, and the generalization to antiholomorphic sector

can be figured out easily. We need the quasiprimary operators to level 9, i.e., T , A, B, D, E , H, I
and J as shown in table 1. The definitions, normalization factors, and conformal transformations of

the quasiprimary operators up to level 8, as well as some useful structure constants, can be found

in [10,16,17,26].
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level 0 2 4 6 8 9

operator 1 T A B, D E , H, I J

Table 1: The holomorphic quasiprimary operators to level 9 in vacuum conformal family of a two-
dimensional large central charge CFT.

In this paper, we need the additional structure constants

CTTE =
20c(105c+ 11)

63
, CTTH = CTTI = 0,

CAAE =
8c(5c+ 22)(525c+ 2419)

315
,

CAAH = −8c(5c+ 22)(8400c2 + 44575c− 6961)

125(105c+ 11)
, (2.1)

CAAI =
3c(2c− 1)(3c+ 46)(5c+ 3)(5c+ 22)(7c+ 68)

2(1050c2 + 3305c− 251)
.

Furthermore, at level 9 we have the operator and its normalization

−iJ = (∂T (∂T∂T ))− 6

5
(∂2T (∂TT )) +

4

15
(∂3T (TT ))− 1

10
(∂4T∂T ) +

1

100
(∂5TT )− 1

3150
∂7T,

αJ =
224c(2c− 1)(5c+ 22)

25
, (2.2)

with (XY) denoting normal ordering of two operators X and Y. Under a general conformal transfor-

mation z → f(z) it transforms as

J (z) = f ′9J (f) + · · ·+ c(2c− 1)(5c+ 22)(4s2s′′′ + 15s′3 − 18ss′s′′)

259200
, (2.3)

where s denotes the Schwarzian derivative

s(x) =
f ′′′(x)

f ′(x)
− 3

2

(f ′′(x)

f ′(x)

)2
, (2.4)

and · · · represents the omitted terms that are proportional to T , A, B, D and their derivatives.

2.2 OPE of twist operators

For one short interval A = [0, `] on a Riemann surface R, replica trick leads to a CFT on an n-fold

Riemann surface Rn. The partition function on Rn can be written as a two-point function of twist

operators T and T̃ in an n-fold CFT on R [12]

trAρ
n
A = 〈T (`)T̃ (0)〉R, hT = hT̃ =

c(n2 − 1)

24n
, (2.5)

and the n folds of the CFT, which we call CFTn, are independent except the connection by the twist

operators. In this paper we only consider Riemann surface R with translation symmetry, and so the

one-point functions are all constants. Using OPE of twist operators [13–17], we may get

〈T (`)T̃ (0)〉R =
cn
`2hσ

∑
K

dK`
hK 〈ΦK(0)〉R, (2.6)
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and in the summation we only need to consider the quasiprimary operators ΦK in CFTn that are the

direct products of the quasiprimary operators in different replicas of the CFT. Only considering the

contributions from the vacuum conformal family, we list the quasiprimary operators in CFTn to level

9 in table 2. To level 8, the coefficients dK can be found in [16, 26], and using the method in [15] and

(2.2), (2.3) we can easily get

dJ = 0. (2.7)

Interestingly, there is no contribution from level 9 operators, which consist of J only.

level operator level operator level operator level operator

2 T B, D E , H, I
8

TTA

4
A 6 TA 8 TB, TD TTTT

TT TTT AA 9 J

Table 2: The holomorphic nonidentity quasiprimary operators to be considered in this paper for CFTn

and up to level 9. We have omitted the replica indices and their constraints, which can be easily figured
out and can also be found in [26].

Each of the CFTn quasiprimary operator ΦK in (2.6) has the form

Φj1,j2,··· ,jk
K = X j11 X

j2
2 · · · X

jk
k , (2.8)

with X1, X2, · · · , Xk being nonidentity quasiprimary operators in table 1 and there are also some

constraints for the k replica indices j1, j2, · · · , jk. We have the one-point functions that are independent

of the replica indices

〈Φj1j2···jk
K 〉R = 〈X1〉R〈X2〉R · · · 〈Xk〉R, (2.9)

and so we can define bK from the OPE coefficient dj1j2···jkK by summing over the replica indices [17]

bK =
∑

j1,j2,··· ,jk

dj1j2···jkK with some constraints for 0 ≤ j1, j2, · · · , jk ≤ n− 1. (2.10)

To level 8 the form of bK can be found in [10,17], and from (2.7) we know

bJ = 0. (2.11)

Then we write (2.5) explicitly as

trAρ
n
A =

cn
`2hσ

[
1 + bT 〈T 〉R`2 +

(
bA〈A〉R + bTT 〈T 〉2R

)
`4 +

(
bB〈B〉R + bD〈D〉R

+ bTA〈T 〉R〈A〉R + bTTT 〈T 〉3R
)
`6 +

(
bE〈E〉R + bH〈H〉R + bI〈I〉R

+ bTB〈T 〉R〈B〉R + bTD〈T 〉R〈D〉R + bAA〈A〉2R + bTTA〈T 〉2R〈A〉R

+ bTTTT 〈T 〉4R
)
`8 +O(`10)

]
. (2.12)

Due to the absence of level 9 contribution, in the above the unknown terms start from O(`10).

In this paper we consider several different Riemann surfaces that are environments of a short

interval A = [0, `], and they are shown in figure 1. Note that the complex plane case figure 1(a) can

be got as limits of other six cases.
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• In figure 1(a), the interval is on an infinite straight line in ground state of the CFT. It is just a

complex plane R(∅), and we denote the total system density matrix as ρ(∅) and reduced density

matrix as ρA(∅).

• In figure 1(b), the interval is on a length L circle in ground state, and it is a vertical cylinder

R(L). We have the density matrix ρ(L) and reduced density matrix ρA(L).

• In figure 1(c), the interval is on a circle in excited state |φ〉 of a primary operator φ with conformal

weight hφ and normalization αφ = 1. The manifold is a vertical cylinder capped with an operator

inserted at each of the two ends, and we denote it as R(L, φ). We have the density matrix ρ(L, φ)

and reduced density matrix ρA(L, φ).

• In figure 1(d), the interval is on an infinite straight line in thermal state with inverse temperature

β. The manifold is a horizontal cylinder R(β), and it is the modular transformation of R(L).

We have the density matrix ρ(β) and reduced density matrix ρA(β).

• Figure 1(e) is the modular transformation of figure 1(c). The interval is on an infinite straight

line in thermal state with inverse temperature β, and also there are boundary conditions imposed

on both ends of the horizontal cylinder. Each boundary condition is effectively represented by

insertion of a primary operator φ. We have the Riemann surface R(β, φ), the density matrix

ρ(β, φ) and reduced density matrix ρA(β, φ).

• In figure 1(f), the interval is on a length L circle in thermal state with inverse temperature β.

The temperature is low β � L, and the manifold is a fat torus. In limit β/L → ∞, it becomes

a vertical cylinder figure 1(b). We have the Riemann surface R(L, q), the density matrix ρ(L, q)

and reduced density matrix ρA(L, q), with definition q = e−2πβ/L.

• In figure 1(g), the interval is on a length L circle in thermal state with inverse temperature β. The

temperature is high L � β, the manifold is a thin torus, and it is the modular transformation

of the fat torus figure 1(f). In limit L/β → ∞, it becomes the horizontal cylinder figure 1(d).

We have the Riemann surface R(β, p), the density matrix ρ(β, p) and reduced density matrix

ρA(β, p), with p = e−2πL/β.

We need the one-point functions 〈X 〉R with X = T,A,B,D, E ,H, I for R being each of these

Riemann surfaces in figure 1. In practice, we only need to consider the cases of R(L, φ) and R(L, q),

and the other cases can be got from them by some simple substitutes and/or limits. For the case

R(L, φ) one can find the results in [10]. For the case R(L, q) one can find the results to level 6 in [17].

Using the method in appendix B of [17], the conformal transformations of E ,H, I in [10], as well as
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A BB

(a)

A

B

(b)

A

B

|ϕ〉

〈ϕ|

(c)

A BB

(d)

A BB

|ϕ〉
〈ϕ|

(e)

(f) (g)

Figure 1: The Riemann surfaces as environments for the interval A = [0, `] we consider in this paper.
(a) A complex plane R(∅). (b) A vertical cylinder R(L). (c) A vertical cylinder capped with operators
R(L, φ). (d) A horizontal cylinder R(β). (e) A horizontal cylinder capped with operators R(β, φ). (f)
A fat torus R(L, q = e−2πβ/L). (g) A thin torus R(β, p = e−2πL/β).
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the structure constants in [17] and (2.1), we get the one-point functions

〈E〉R(L,q) =
23452π8c

59535L8
+

36608π8(1008c− 1)q2

3969L8
+

18304π8(13608c+ 335)q3

1323L8

+
36608π8(54096c+ 5795)q4

1323L8
+O(q5),

〈H〉R(L,q) = −13π8c(5c+ 22)(465c− 127)

10125(105c+ 11)L8
+

1664π8(5c+ 22)(945c2 + 2184c− 10)q2

675(105c+ 11)L8

+
416π8(5c+ 22)(11340c2 + 31323c− 1517)q3

225(105c+ 11)L8
(2.13)

+
1664π8(64575c3 + 334935c2 + 226879c+ 26048)q4

225(105c+ 11)L8
+O(q5),

〈I〉R(L,q) =
π8c(2c− 1)(3c+ 46)(5c+ 3)(5c+ 22)(7c+ 68)

1296(1050c2 + 3305c− 251)L8

(
1 +

3264q2

c
+

13536q3

c

+
576(325c+ 4814)q4

c(5c+ 22)
+O(q5)

)
.

2.3 Partition function from twist operators

Gluing n reduced density matrices ρA,j on n different Riemann surface Rj with j = 0, 1, · · · , n − 1,

one gets a CFT on the Riemann surface Rn = R0 ⊕ · · · ⊕ Rn−1. This suggests to assume that the

partition function on Rn can still be written as a two-point function of twist operators

trA(ρA,0 · · · ρA,n−1) = 〈T (`)T̃ (0)〉R0⊕···⊕Rn−1 . (2.14)

Each replica of the CFT lives on one of the Riemann surfaces, and different replicas are connected only

by twist operators. For the n = 2 and n = 3 cases one can see, for examples, [11,21,22,27–33], but we

are not sure if it is applicable for general n when Zn replica symmetry is lost. Actually, in this paper

we only use a relaxed relation

1

n!
[trA(ρA,0 · · · ρA,n−1) + permutations] =

1

n!
[〈T (`)T̃ (0)〉R0⊕···⊕Rn−1 + permutations], (2.15)

and Zn replica symmetry is recovered after permutations. Thus when we write (2.14), we actually

mean (2.15), and there is caveat that (2.15) basically is an assumption that we have no concrete proof.

For two different Riemann surfaces R and S, we may define respectively two reduced density

matrices ρA and σA. In this paper, we need to calculate the partition function

trA(ρmAσ
n−m
A ), (2.16)

with n being an integer and m = 0, 1, · · · , n. Using (2.15), we see that it is just the right-hand side of
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(2.12) with the substitutes of the forms

bX 〈X 〉R →
bX
n

[
m〈X 〉R + (n−m)〈X 〉S

]
,

bXX 〈X 〉2R →
bXX

n(n− 1)

[
m(m− 1)〈X 〉2R + 2m(n−m)〈X 〉R〈X 〉S + (n−m)(n−m− 1)〈X 〉2S

]
,

bXY〈X 〉R〈Y〉R →
bXY

n(n− 1)

[
m(m− 1)〈X 〉R〈Y〉R +m(n−m)(〈X 〉R〈Y〉S + 〈X 〉S〈Y〉R)

+ (n−m)(n−m− 1)〈X 〉S〈Y〉S
]
,

bXXX 〈X 〉3R →
bXXX

n(n− 1)(n− 2)

[
m(m− 1)(m− 2)〈X 〉3R + 3m(m− 1)(n−m)〈X 〉2R〈X 〉S

+ 3m(n−m)(n−m− 1)〈X 〉R〈X 〉2S + (n−m)(n−m− 1)(n−m− 2)〈X 〉3S
]
,

bXXY〈X 〉2R〈Y〉R →
bXXY

n(n− 1)(n− 2)

[
m(m− 1)(m− 2)〈X 〉2R〈Y〉R

+m(m− 1)(n−m)(〈X 〉2R〈Y〉S + 2〈X 〉R〈X 〉S〈Y〉R) (2.17)

+m(n−m)(n−m− 1)(2〈X 〉R〈X 〉S〈Y〉S + 〈X 〉2S〈Y〉R)

+ (n−m)(n−m− 1)(n−m− 2)〈X 〉2S〈Y〉S
]
,

bXXXX 〈X 〉4R →
bXXXX

n(n− 1)(n− 2)(n− 3)

[
m(m− 1)(m− 2)(m− 3)〈X 〉4R

+ 4m(m− 1)(m− 2)(n−m)〈X 〉3R〈X 〉S

+ 6m(m− 1)(n−m)(n−m− 1)〈X 〉2R〈X 〉2S
+ 4m(n−m)(n−m− 1)(n−m− 2)〈X 〉R〈X 〉3S
+ (n−m)(n−m− 1)(n−m− 2)(n−m− 3)〈X 〉4S

]
,

with X , Y denoting general quasiprimary operators. A general substitute takes the form

bX1X2···Xk〈X1〉R〈X2〉R · · · 〈Xk〉R →
bX1X2···Xk

Ckn

(
Ckm〈X1〉R〈X2〉R · · · 〈Xk〉R + · · ·

)
, (2.18)

with Ckn and Ckm being the binomial coefficients, and in the right hand side we have omitted various

terms with some R’s being replaced by S’s.

In section 3.2, we need to calculate the partition function

trA

(ρA + σA
2

)n
=

1

2n

n∑
m=0

Cmn trA(ρmAσ
n−m
A ), (2.19)

with trA(ρmAσ
n−m
A ) being understood as the left-hand side of (2.15). Using the summation formulas

n∑
m=0

Cmn m = 2n−1n,
n∑

m=0

Cmn m(m− 1) =
n∑

m=0

Cmn m(n−m) = 2n−2n(n− 1),

n∑
m=0

Cmn m(m− 1)(m− 2) =

n∑
m=0

Cmn m(m− 1)(n−m) = 2n−3n(n− 1)(n− 2),

n∑
m=0

Cmn m(m− 1)(m− 2)(m− 3) =
n∑

m=0

Cmn m(m− 1)(m− 2)(n−m) (2.20)

=

n∑
m=0

Cmn m(m− 1)(n−m)(n−m− 1) = 2n−4n(n− 1)(n− 2)(n− 3),
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we get that (2.19) is just the right-hand side of (2.12) with the substitutes

bX 〈X 〉R →
bX
2

(
〈X 〉R + 〈X 〉S

)
,

bXX 〈X 〉2R →
bXX

4

(
〈X 〉R + 〈X 〉S

)2
,

bXY〈X 〉R〈Y〉R →
bXY

4

(
〈X 〉R + 〈X 〉S

)(
〈Y〉R + 〈Y〉S

)
,

bXXX 〈X 〉3R →
bXXX

8

(
〈X 〉R + 〈X 〉S

)3
, (2.21)

bXXY〈X 〉2R〈Y〉R →
bXXY

8

(
〈X 〉R + 〈X 〉S

)2(〈Y〉R + 〈Y〉S
)
,

bXXXX 〈X 〉4R →
bXXXX

16

(
〈X 〉R + 〈X 〉S

)4
.

In section 3.3, we need to calculate

trA(ρA − σA)n =
n∑

m=0

Cmn (−)n−mtrA(ρmAσ
n−m
A ). (2.22)

Using the fact that

n∑
m=0

Cmn (−)n−mmk = 0 for k = 0, 1, · · · , n− 1,

n∑
m=0

Cmn (−)n−mmn = n!, (2.23)

we get

trA(ρA − σA)n =
∑

{X1,X2,··· ,Xn}

bX1X2···Xn
(
〈X1〉R − 〈X1〉S

)(
〈X2〉R − 〈X2〉S

)
· · ·
(
〈Xn〉R − 〈Xn〉S

)
. (2.24)

Note that the summation of {X1,X2, · · · ,Xn} is over different sets of nonidentity quasiprimary opera-

tors and the order of the operators in each set does not matter. For n = 2 it is just the result in [11].

Note that for general n, bX1X2···Xn is complex and has no universal form, and it is related to the n-point

correlation function on complex plane 〈X1(z1)X2(z2) · · · Xn(zn)〉C .

2.4 The n→ 1 limit

If we are only interested in the n→ 1 limit

−
log trAρ

n
A

n− 1

∣∣∣
n→1

, (2.25)

instead of the general n result, there can be a simpler calculation [34, 35]. For each CFTn operator

ΦK , we may define

aK = − lim
n→1

bK
n− 1

, (2.26)

with bK being defined in (2.10). Using the results of bK in [10,17], we get the relevant results of aK

aT = −1

6
, aTT = − 1

30c
, aTTT = − 4

315c2
, (2.27)

aAA = − 1

126c(5c+ 22)
, aTTA =

1

315c2
, aTTTT = − c+ 8

630c3
.
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For the reduced density matrix ρA on Riemann surface R, we get

−
log trAρ

n
A

n− 1

∣∣∣
n→1

=
c

6
log

`

ε
+ aT 〈T 〉R`2 + aTT 〈T 〉2R`4 + aTTT 〈T 〉3R`6 +

(
aAA〈A〉2R

+ aTTA〈T 〉2R〈A〉R + aTTTT 〈T 〉4R
)
`8 +O(`10). (2.28)

For the reduced density matrix ρA, σA, defined respectively on Riemann surface R, S, we get that

−
log trA(ρAσ

n−1
A )

n− 1

∣∣∣
n→1

(2.29)

equals right-hand side of (2.28) with the substitutes

aXX 〈X 〉2R → aXX
(
2〈X 〉R − 〈X〉S

)
〈X 〉S ,

aXXX 〈X 〉3R → aXXX
(
3〈X 〉R − 2〈X 〉S

)
〈X 〉2S , (2.30)

aXXY〈X 〉2R〈Y〉R → aXXY
(
2〈X 〉R〈X 〉S〈Y〉S + 〈X 〉2S〈Y〉R − 2〈X 〉2S〈Y〉S

)
,

aXXXX 〈X 〉4R → aXXXX
(
4〈X 〉R − 3〈X 〉S

)
〈X 〉3S .

Similarly, we get that

−
log trA(ρA+σA

2 )n

n− 1

∣∣∣
n→1

(2.31)

equals right-hand side of (2.28) with the substitutes (2.21).

2.5 Rényi and entanglement entropies on various Riemann surfaces

Using the above prescriptions, we can evaluate the entanglement and Rényi entropies on various Rie-

mann surfaces, some of which have been obtained before. The results will then serve in the next section

for calculating the dissimilarity measures between reduced density matrices.

For a reduced density matrix ρA, the Rényi entropy is defined as

Sn = − 1

n− 1
log trAρ

n
A, (2.32)

and taking the n→ 1 limit one can get the entanglement entropy

S = −trA(ρA log ρA). (2.33)

The Rényi entropy can be calculated from (2.12), and the entanglement entropy can be calculated

from the n→ 1 limit of the Rényi entropy or directly from (2.28).

We calculate the Rényi entropies and entanglement entropies for the seven Riemann surfaces in

figure 1. The seven Rényi entropies are shown in figure 2. In practice we only need to calculate

Sn(L, φ) and Sn(L, q), as marked in blue in the figure, and the other cases can be obtained easily from

them. Note that most of the results in this section are not new, and just serves as a check of the OPE

coefficients and the one-point functions.

Rényi entropy Sn(L, φ) and entanglement entropy S(L, φ) have been calculated in [10]1, and we

will not repeat the results here. Since now at level 9 we have (2.11), the unknown terms O(`9) in

1One can also follow different approach [36–38] to obtain Rényi entropy Sn(L, φ) with finite size system in 2D rational
CFTs.
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Sn(L) Sn(∅) Sn(β)

Sn(L,ϕ) Sn(L,q) Sn(β,ϕ) Sn(β,p)

Figure 2: The seven Rényi entropies we can calculate using OPE of the twist operators. In practice, we
only need to calculate Sn(L, φ) and Sn(L, φ), as marked in blue, and the other cases can be obtained
easily from them.

results of [10] are actually of order O(`10). For the reduced density matrix ρA(β, φ), we have the Rényi

entropy and entanglement entropy

Sn(β, φ) = Sn(L, φ)|L→iβ, S(β, φ) = S(L, φ)|L→iβ. (2.34)

For ρA(L, q), the Rényi entropy and entanglement entropy have been calculated using OPE of the

twist operators to order `7 in [17], and here we calculate the results to order `9. In large c limit we

write the Rényi entropy as the leading part, the next-to-leading part, the next-to-next-to-leading part,

and etc,

Sn(L, q) = SL
n (L, q) + SNL

n (L, q) + SNNL
n (L, q) + · · · , (2.35)

and to order `9 only the first three parts are non-vanishing. Explicitly, we have the leading part

SL
n (L, q) =

c(n+ 1)

12n
log

`

ε
− π2c(n+ 1)

72n

`2

L2
+
(
− π4c(n+ 1)

2160n
− π4c(n− 1)(n+ 1)2q2

18n3

− 2π4c(n− 1)(n+ 1)2q3

9n3
− 11π4c(n− 1)(n+ 1)2q4

18n3
+O(q5)

) `4
L4

+
(
− π6c(n+ 1)

34020n
+
π6c(n− 1)(n+ 1)2q2

27n3
+

10π6c(n− 1)(n+ 1)2q3

27n3

+
π6c(n+ 1)(48n4 − 49n2 + 1)q4

27n5
+O(q5)

) `6
L6

+
(
− π8c(n+ 1)

453600n

− π8c(n− 1)(n+ 1)2q2

90n3
− 4π8c(n− 1)(n+ 1)2q3

15n3
(2.36)

− π8c(n− 1)(n+ 1)2(3727n4 − 62n2 − 11)q4

1620n7
+O(q5)

) `8
L8

+O(`10)

the next-to-leading part

SNL
n (L, q) =

(2π2(n+ 1)q2

3n
+
π2(n+ 1)q3

n
+

2π2(n+ 1)q4

n
+O(q5)

) `2
L2

+
(
− π4(n+ 1)(9n2 − 11)q2

45n3
− π4(n+ 1)(41n2 − 44)q3

45n3

− π4(n+ 1)(49n2 − 51)q4

15n3
+O(q5)

) `4
L4

+
(2π6(n+ 1)(17n4 − 46n2 + 31)q2

945n5

+
π6(n+ 1)(492n4 − 1013n2 + 527)q3

945n5
+

2π6(n+ 1)(1654n4 − 2903n2 + 1255)q4

945n5

+O(q5)
) `6
L6

+
(
− π8(n+ 1)(62n6 − 278n4 + 415n2 − 205)q2

14175n7
(2.37)

− π8(n+ 1)(866n6 − 2694n4 + 2850n2 − 1025)q3

4725n7

− π8(n+ 1)(66439n6 − 163681n4 + 139223n2 − 36257)q4

28350n7
+O(q5)

) `8
L8

+O(`10),
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and the next-to-next-to-leading part

SNNL
n (L, q) =

(
− 4π4(n+ 1)(n2 + 11)q4

45n3c
+O(q5)

) `4
L4

+
(4π6(n+ 1)(26n4 + 271n2 − 345)q4

945n5c
+O(q5)

) `6
L6

(2.38)

+
(
− 8π8(n+ 1)(116n6 + 1141n4 − 3017n2 + 3398)q4

14175n7c
+O(q5)

) `8
L8

+O(`10).

The leading and next-to-leading parts match the results in [39–41], which are calculated in another

method. The `8 order of the next-to-next-to-leading part is a new result. Taking n → 1 limit we get

the entanglement entropy

S(L, q) =
c

6
log

`

ε
+
(
− cπ2

36
+

4π2q2

3
+ 2π2q3 + 4π2q4 +O(q5)

) `2
L2

+
(
− cπ4

1080
+

4π4q2

45
+

2π4q3

15
+

4(c− 8)π4q4

15c
+O(q5)

) `4
L4

+
(
− cπ6

17010
+

8π6q2

945
+

4π6q3

315
+

8(c− 16)π6q4

315c
+O(q5)

) `6
L6

(2.39)

+
(
− cπ8

226800
+

4π8q2

4725
+

2π8q3

1575
− 4π8(159c+ 728)q4

1575c
+O(q5)

) `8
L8

+O(`10).

The Rényi entropy and entanglement entropy for ρA(β, p) are just the modular transformation of

those for ρA(L, q), i.e.,

Sn(β, p) = Sn(L, q)|L→iβ,q→p, S(β, p) = S(L, q)|L→iβ,q→p. (2.40)

Without considering the subtlety of boundary conditions at the entangling surface [42, 43], the Rényi

entropy and entanglement entropy for ρA(∅), ρA(L) and ρA(β) are of universal forms and depend only

on the central charge [12]

Sn(∅) =
c(n+ 1)

12n
log

`

ε
, S(∅) =

c

6
log

`

ε
,

Sn(L) =
c(n+ 1)

12n
log
( L
πε

sin
π`

L

)
, S(L) =

c

6
log
( L
πε

sin
π`

L

)
,

Sn(β) =
c(n+ 1)

12n
log
( β
πε

sinh
π`

β

)
, S(β) =

c

6
log
( β
πε

sinh
π`

β

)
. (2.41)

To order `9 the above results can be obtained easily as the limits and/or substitutes of Sn(L, q), S(L, q).

3 Dissimilarities of reduced density matrices

In this section we evaluate various dissimilarity measures between reduced density matrices, which

include relative entropy, Jensen-Shannon divergence, Schatten 2-norm and 4-norm.

3.1 Relative entropy

The relative entropy is also called Kullback-Leibler divergence. For two reduced density matrices ρA

and σA, the relative entropy is defined as

S(ρA‖σA) = trA(ρA log ρA)− trA(ρA log σA). (3.1)
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To calculate the relative entropy, one may first calculate the n-th relative entropy

Sn(ρA‖σA) =
1

n− 1
[log trAρ

n
A − log trA(ρAσ

n−1
A )], (3.2)

and then takes the n→ 1 limit. The relative entropy is not symmetric for its two arguments, and one

may define the symmetrized relative entropy

S(ρA, σA) = S(ρA‖σA) + S(σA‖ρA). (3.3)

To calculate the symmetrized relative entropy, one can first calculate the n-th symmetrized relative

entropy

Sn(ρA, σA) = Sn(ρA‖σA) + Sn(σA‖ρA), (3.4)

and then takes the n→ 1 limit. It turns out that

S(ρA‖σA) = −aTT
(
〈T 〉R − 〈T 〉S

)2
`4 − aTTT

(
〈T 〉R − 〈T 〉S

)2(〈T 〉R + 2〈T 〉S
)
`6

−
[
aAA

(
〈A〉R − 〈A〉S

)2
+ aTTA

(
〈T 〉R − 〈T 〉S

)(
〈T 〉R〈A〉R + 〈T 〉S〈A〉R − 2〈T 〉S〈A〉S

)
+ aTTTT

(
〈A〉R − 〈A〉S

)2(〈T 〉2R + 2〈T 〉R〈T 〉S − 3〈T 〉2S
)]
`8 +O(`10), (3.5)

S(ρA, σA) = −2aTT
(
〈T 〉R − 〈T 〉S

)2
`4 − 3aTTT

(
〈T 〉R − 〈T 〉S

)2(〈T 〉R + 〈T 〉S
)
`6

−
[
2aAA

(
〈A〉R − 〈A〉S

)2
+ aTTA

(
〈T 〉R − 〈T 〉S

)(
3〈T 〉R〈A〉R − 〈T 〉R〈A〉S

+ 〈T 〉S〈A〉R − 3〈T 〉S〈A〉S
)

+ 4aTTTT
(
〈A〉R − 〈A〉S

)2(〈T 〉2R + 〈T 〉R〈T 〉S + 〈T 〉2S
)]
`8

+O(`10). (3.6)

ρA(L,ϕ)

ρA(L,q)

ρA(β,ϕ)

ρA(β,p)

ρA(L)

ρA(β)

ρA(∅)

Figure 3: The 48 relative entropies we can calculate using OPE of the twist operators. By ρA → σA
we mean the relative entropy S(ρA‖σA), and by ρA ↔ σA we mean the relative entropies S(ρA‖σA)
and S(σA‖ρA). Note that q = e−2πβ/L and p = e−2πL/β depend on both L and β. In the figure
· · ·L · · · → · · ·L · · · actually means · · ·L1 · · · → · · ·L2 · · · with generally L1 6= L2, · · ·φ · · · → · · ·φ · · ·
means · · ·φ1 · · · → · · ·φ2 · · · , and · · ·β · · · → · · ·β · · · means · · ·β1 · · · → · · ·β2 · · · . In practice, we only
need to calculate the four relative entropies as marked in blue.

As shown in figure 3, we use OPE of twist operators as described in section 2 to calculate four
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relative entropies. For ρA(L1, φ1) and ρA(L2, φ2) we have the relative entropy2

S(ρA(L1, φ1)‖ρA(L2, φ2)) =
π4[L2

1(c− 24hφ2)− L2
2(c− 24hφ1)]2`4

1080cL4
1L

4
2

+
π6[L2

1(c− 24hφ2)− L2
2(c− 24hφ1)]2[2L2

1(c− 24hφ2) + L2
2(c− 24hφ1)]`6

17010c2L6
1L

6
2

+ · · · `8 +O(`10). (3.7)

For the special case L1 = L2 in (3.7), it matches the result in [10]. For ρA(L1, φ) and ρA(L2, q) we

have the relative entropy

S(ρA(L1, φ)‖ρA(L2, q)) =
[π4[cL2

1 − (c− 24hφ)L2
2]2

1080cL4
1L

4
2

+
4π4[(c− 24hφ)L2

2 − cL2
1]q2

45cL2
1L

4
2

+
2π4[(c− 24hφ)L2

2 − cL2
1]q3

15cL2
1L

4
2

+
4π4[(c− 24hφ)L2

2 − (c− 8)L2
1]q4

15cL2
1L

4
2

+O(q5)
]
`4

+
[π6[cL2

1 − (c− 24hφ)L2
2]2(2cL2

1 + (c− 24hφ)L2
2)

17010c2L6
1L

6
2

+
16π6[(c− 24hφ)L2

2 − cL2
1]q2

945cL2
1L

6
2

+
8π6[(c− 24hφ)L2

2 − cL2
1]q3

315cL2
1L

6
2

+
16π6[(c− 8)(c− 24hφ)L2

2 − c(c− 16)L2
1]q4

315c2L2
1L

6
2

+O(q5)
]
`6

+ · · · `8 +O(`10). (3.8)

For ρA(L1, q) and ρA(L2, φ) we have the relative entropy

S(ρA(L1, q)‖ρA(L2, φ)) =
[π4[(c− 24hφ)L2

1 − cL2
2]2

1080cL4
1L

4
2

+
4π4[(c− 24hφ)L2

1 − cL2
2]q2

45cL4
1L

2
2

+
2π4[(c− 24hφ)L2

1 − cL2
2]q3

15cL4
1L

2
2

+
4π4[(c− 24hφ)L2

1 − (c− 8)L2
2]q4

15cL4
1L

2
2

+O(q5)
]
`4

+
[π6[(c− 24hφ)L2

1 − cL2
2]2[2(c− 24hφ)L2

1 + cL2
2]

17010c2L6
1L

6
2

+
8π6[(c− 24hφ)2L4

1 − c2L4
2]q2

945c2L6
1L

4
2

+
4π6[(c− 24hφ)2L4

1 − c2L4
2]q3

315c2L6
1L

4
2

+
8π6[(c− 24hφ)2L4

1 − (c− 16)cL4
2]q4

315c2L6
1L

4
2

+O(q5)
]
`6

+ · · · `8 +O(`10). (3.9)

Note that

S(ρA(L1, φ)‖ρA(L2, q)) 6= S(ρA(L2, q)‖ρA(L1, φ)). (3.10)

2Note that the `8 order in (3.7) is too complex and so we just omit it. One can see its explicit form in the Mathematica
notebook in the attachment of the paper in arXiv. In the following part of the paper, all the missing terms represented
by · · · can be found in the attached Mathematica notebook in arXiv.
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For ρA(L1, q1) and ρA(L2, q2) we have the relative entropy

S(ρA(L1, q1)‖ρA(L2, q2)) =
[π4c(L2

1 − L2
2)2

1080L4
1L

4
2

− 4π4(L2
1 − L2

2)(L2
1q

2
2 − L2

2q
2
1)

45(L4
1L

4
2)

− 2π4(L2
1 − L2

2)(L2
1q

3
2 − L2

2q
3
1)

15(L4
1L

4
2)

− 4π4[(c− 8)(L4
1q

4
2 + L4

2q
4
1)− L2

1L
2
2(cq4

1 − 16q2
2q

2
1 + cq4

2)]

15(cL4
1L

4
2)

+O(q5
1, q

5
2)
]
`4 +

[π6c(2L6
1 − 3L2

2L
4
1 + L6

2)

17010L6
1L

6
2

− 8π6(L2
1 − L2

2)[2L4
1q

2
2 − L2

2(L2
1 + L2

2)q2
1]

945L6
1L

6
2

+
4π6[L4

1L
2
2(q3

1 + 2q3
2)− 2L6

1q
3
2 − L6

2q
3
1]

315L6
1L

6
2

(3.11)

− 8π6[(c− 16)(2L6
1q

4
2 + L6

2q
4
1)− L4

1L
2
2(cq4

1 − 32q2
1q

2
2 + 2(c− 8)q4

2)]

315cL6
1L

6
2

+O(q5
1, q

5
2)
]
`6

+ · · · `8 +O(`10).

For general n 6= 1, the n-th relative entropy Sn(ρA||σA) and n-th symmetrized relative entropy

Sn(ρA, σA) have no obvious physical meaning because they are not positive definite. However, the 2nd

symmetrized relative entropy, which is defined as

S2(ρA, σA) = log
(trAρ

2
A)(trAσ

2
A)

[trA(ρAσA)]2
, (3.12)

is positive definite and can be used to characterize the dissimilarity of ρA, σA. In fact, it is directly

related to the overlap of the two reduced density matrices

F(ρA, σA) =
[trA(ρAσA)]2

(trAρ2
A)(trAσ2

A)
. (3.13)

As shown in figure 4, we calculate three symmetrized relative entropies using OPE of twist opera-

tors. Explicitly, we have

S(ρA(L1, φ1), ρA(L2, φ2)) =
π4[L2

1(c− 24hφ2)− L2
2(c− 24hφ1)]2`4

540cL4
1L

4
2

(3.14)

+
π6[L2

1(c− 24hφ2)− L2
2(c− 24hφ1)]2[L2

1(c− 24hφ2) + L2
2(c− 24hφ1)]`6

5670c2L6
1L

6
2

+ · · · `8 +O(`10),

S(ρA(L1, φ), ρA(L2, q)) =
[π4[cL2

1 − (c− 24hφ)L2
2]2

540cL4
1L

4
2

+
8π4[(c− 24hφ)L2

2 − cL2
1]q2

45cL2
1L

4
2

+
4π4[(c− 24hφ)L2

2 − cL2
1]q3

15cL2
1L

4
2

+
8π4[(c− 24hφ)L2

2 − (c− 8)L2
1]q4

15cL2
1L

4
2

+O(q5)
]
`4

+
[π6[cL2

1 − (c− 24hφ)L2
2]2[cL2

1 + (c− 24hφ)L2
2]

5670c2L6
1L

6
2

(3.15)

−
8π6[cL2

1 − (c− 24hφ)L2
2][3cL2

1 + (c− 24hφ)L2
2]q2

945c2L4
1L

6
2

−
4π6[cL2

1 − (c− 24hφ)L2
2][3cL2

1 + (c− 24hφ)L2
2]q3

315c2L4
1L

6
2

−
8π6[3c(c− 16)L4

1 − 2(c− 8)(c− 24hφ)L2
1L

2
2 − (c− 24hφ)2L4

2]q4

315c2L4
1L

6
2

+O(q5)
]
`6

+ · · · `8 +O(`10),
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S(ρA(L1, q1), ρA(L2, q2)) =
[cπ4(L2

1 − L2
2)2

540L4
1L

4
2

− 8π4(L2
1 − L2

2)(L2
1q

2
2 − L2

2q
2
1)

45L4
1L

4
2

− 4π4(L2
1 − L2

2)(L2
1q

3
2 − L2

2q
3
1)

15L4
1L

4
2

+
8π4[8(L2

2q
2
1 − L2

1q
2
2)2 + c(L2

1 − L2
2)(L2

2q
4
1 − L2

1q
4
2)]

15cL4
1L

4
2

(3.16)

+O(q5
1, q

5
2)
]
`4 +

[cπ6(L2
1 − L2

2)2(L2
1 + L2

2)

5670L6
1L

6
2

− 8π6(L2
1 − L2

2)[3q2
2L

4
1 + L2

2(q2
2 − q2

1)L2
1 − 3L4

2q
2
1]

945L6
1L

6
2

− 4π6(L2
1 − L2

2)[3q3
2L

4
1 + L2

2(q3
2 − q3

1)L2
1 − 3L4

2q
3
1]

315L6
1L

6
2

+ · · ·+O(q5
1, q

5
2)
]
`6 + · · · `8 +O(`10).

ρA(L,ϕ)

ρA(L,q)

ρA(β,ϕ)

ρA(β,p)

ρA(L)

ρA(β)

ρA(∅)

Figure 4: The 27 symmetrized relative entropies we can calculate using OPE of the twist operators. We
only need to calculate the three ones marked in blue. This figure also applies to the 2nd symmetrized
relative entropy, Jensen-Shannon divergence, as well as the Schatten 2-norm and 4-norm in the following
subsections.

We have the 2nd symmetrized relative entropies

S2(ρA(L1, φ1), ρA(L2, φ2)) =
π4[L2

1(c− 24hφ2)− L2
2(c− 24hφ1)]2`4

4608cL4
1L

4
2

+
π6[L2

1(c− 24hφ2)− L2
2(c− 24hφ1)][L4

1(11c− 240hφ2)− L4
2(11c− 240hφ1)]`6

552960cL6
1L

6
2

+ · · · `8 +O(`10), (3.17)

S2(ρA(L1, φ), ρA(L2, q)) =
[π4[cL2

1 − (c− 24hφ)L2
2]2

4608cL4
1L

4
2

+
π4[(c− 24hφ)L2

2 − cL2
1]q2

48cL2
1L

4
2

+
π4[(c− 24hφ)L2

2 − cL2
1]q3

32cL2
1L

4
2

+
π4[(c− 24hφ)L2

2 − (c− 8)L2
1]q4

16cL2
1L

4
2

+O(q5)
]
`4

+
[π6[cL2

1 − (c− 24hφ)L2
2][11cL4

1 + (240hφ − 11c)L4
2]

552960cL6
1L

6
2

+
π6[3c(10c+ 33)L4

1 − 10(3c+ 11)(c− 24hφ)L2
2L

2
1 + (11c− 240hφ)L4

2]q2

11520cL4
1L

6
2

+
π6[c(80c+ 319)L4

1 − 10(8c+ 33)(c− 24hφ)L2
2L

2
1 + (11c− 240hφ)L4

2]q3

7680cL4
1L

6
2

+
π6[11(c(10c+ 9)− 160)L4

1 − 10(11c+ 59)(c− 24hφ)L2
2L

2
1 + (11c− 240hφ)L4

2]q4

3840cL4
1L

6
2

+O(q5)
]
`6 + · · · `8 +O(`10), (3.18)
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S2(ρA(L1, q1), ρA(L2, q2)) =
[cπ4(L2

1 − L2
2)2

4608L4
1L

4
2

− π4(L2
1 − L2

2)(L2
1q

2
2 − L2

2q
2
1)

48L4
1L

4
2

− π4(L2
1 − L2

2)(L2
1q

3
2 − L2

2q
3
1)

32L4
1L

4
2

+
π4[8(L2

2q
2
1 − L2

1q
2
2)2 + c(L2

1 − L2
2)(L2

2q
4
1 − L2

1q
4
2)]

16cL4
1L

4
2

+O(q5
1, q

5
2)
]
`4 +

[11π6c(L2
1 − L2

2)2(L2
1 + L2

2)

552960L6
1L

6
2

+
π6(L2

1 − L2
2)[3(10c+ 33)q2

2L
4
1 + 11L2

2(q2
1 − q2

2)L2
1 − 3(10c+ 33)L4

2q
2
1]

11520L6
1L

6
2

+
π6(L2

1 − L2
2)[(80c+ 319)q3

2L
4
1 + 11L2

2(q3
1 − q3

2)L2
1 − (80c+ 319)L4

2q
3
1]

7680L6
1L

6
2

+ · · ·+O(q5
1, q

5
2)
]
`6 + · · · `8 +O(`10). (3.19)

3.2 Jensen-Shannon divergence

The Jensen-Shannon divergence of two reduced density matrices ρA and σA are defined as

JS(ρA, σA) = S
(ρA + σA

2

)
− 1

2
S(ρA)− 1

2
S(σA), (3.20)

with S
(ρA+σA

2

)
, S(ρA), S(σA) being the von Neumann entropies. By definition

0 ≤ JS(ρA, σA) ≤ log 2. (3.21)

One can also define the Jensen-Shannon distance√
JS(ρA, σA). (3.22)

To calculate the Jensen-Shannon divergence, we first calculate the Jensen-Rényi divergence

JRn(ρA, σA) = Sn
(ρA + σA

2

)
− 1

2
Sn(ρA)− 1

2
Sn(σA), (3.23)

with Sn
(ρA+σA

2

)
, Sn(ρA), Sn(σA) being the Rényi entropies, and then take the n → 1 limit. We then

get

JS(ρA, σA) = −1

4
aTT

(
〈T 〉R − 〈T 〉S

)2
`4 − 3

8
aTTT

(
〈T 〉R − 〈T 〉S

)2(〈T 〉R + 〈T 〉S
)
`6

−
[1
4
aAA

(
〈A〉R − 〈A〉S

)2
+

1

8
aTTA

(
〈T 〉R − 〈T 〉S

)(
3〈T 〉R〈A〉R − 〈T 〉R〈A〉S

+ 〈T 〉S〈A〉R − 3〈T 〉S〈A〉S
)

+
1

16
aTTTT

(
〈A〉R − 〈A〉S

)2(
7〈T 〉2R + 10〈T 〉R〈T 〉S + 7〈T 〉2S

)]
`8

+O(`10). (3.24)

Explicitly, we have

JS(ρA(L1, φ1), ρA(L2, φ2)) =
π4[L2

1(c− 24hφ2)− L2
2(c− 24hφ1)]2`4

4320cL4
1L

4
2

+
π6[L2

1(c− 24hφ2)− L2
2(c− 24hφ1)]2[L2

1(c− 24hφ2) + L2
2(c− 24hφ1)]`6

45360c2L6
1L

6
2

+ · · · `8 +O(`10), (3.25)
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JS(ρA(L1, φ), ρA(L2, q)) =
[π4[cL2

1 − (c− 24hφ)L2
2]2

4320cL4
1L

4
2

+
π4[(c− 24hφ)L2

2 − cL2
1]q2

45cL2
1L

4
2

+
π4[(c− 24hφ)L2

2 − cL2
1]q3

30cL2
1L

4
2

+
π4[(c− 24hφ)L2

2 − (c− 8)L2
1]q4

15cL2
1L

4
2

+O(q5)
]
`4

+
[π6[cL2

1 − (c− 24hφ)L2
2]2[cL2

1 + (c− 24hφ)L2
2]

45360c2L6
1L

6
2

−
π6[cL2

1 − (c− 24hφ)L2
2][3cL2

1 + (c− 24hφ)L2
2]q2

945c2L4
1L

6
2

(3.26)

−
π6[cL2

1 − (c− 24hφ)L2
2][3cL2

1 + (c− 24hφ)L2
2]q3

630c2L4
1L

6
2

−
π6[3(c− 16)cL4

1 − 2(c− 8)(c− 24hφ)L2
1L

2
2 − (c− 24hφ)2L4

2]q4

315c2L4
1L

6
2

+O(q5)
]
`6 + · · · `8 +O(`10),

JS(ρA(L1, q1), ρA(L2, q2)) =
[cπ4(L2

1 − L2
2)2

4320L4
1L

4
2

− π4(L2
1 − L2

2)(L2
1q

2
2 − L2

2q
2
1)x2

45L4
1L

4
2

− π4(L2
1 − L2

2)(L2
1q

3
2 − L2

2q
3
1)

30L4
1L

4
2

+
π4[8(L2

2q
2
1 − L2

1q
2
2)2 + c(L2

1 − L2
2)(L2

2q
4
1 − L2

1q
4
2)]

15cL4
1L

4
2

(3.27)

+O(q5
1, q

5
2)
]
`4 +

[cπ6(L2
1 − L2

2)2(L2
1 + L2

2)

45360L6
1L

6
2

− π6(L2
1 − L2

2)(3q2
2L

4
1 + L2

2(q2
2 − q2

1)L2
1 − 3L4

2q
2
1)

945L6
1L

6
2

− π6(L2
1 − L2

2)[3q3
2L

4
1 + L2

2(q3
2 − q3

1)L2
1 − 3L4

2q
3
1]

630L6
1L

6
2

+ · · ·+O(q5
1, q

5
2)
]
`6 + · · · `8 +O(`10).

3.3 Schatten 2-norm and 4-norm

For a general matrix ρ, the Schatten n-norm is defined as

‖ρ‖n = (tr|ρ|n)1/n, (3.28)

with |ρ| =
√
ρ†ρ. For n = 1 it is just the trace norm, and for n = 2 it is just the Hilbert-Schmidt

norm. For two reduced density matrices ρA, σA, we just calculate

‖ρA − σA‖nn = trA|ρA − σA|n. (3.29)

For n = 1 it is just the trace distance, and for n = 2 it is just trace square. Since the reduced density

matrices are hermitian, when n := 2p is an even integer we have a simpler expression

‖ρA − σA‖2p2p = trA(ρA − σA)2p. (3.30)

In this paper we use (2.24) to calculate the Schatten 2-norms and 4-norms. We have

‖ρA(L1, φ1)− ρA(L2, φ2)‖22 =
(`
ε

)− c
8
{π4(c+ 2)`4[L2

1(c− 24hφ2)− L2
2(c− 24hφ1)]2

9216cL4
1L

4
2

+
π6(c+ 4)`6

4423680cL6
1L

6
2

[L2
1(c− 24hφ2)− L2

2(c− 24hφ1)]{L4
1[c(5c+ 22)− 240hφ2(c− 12hφ2 + 2)]

− L4
2[c(5c+ 22)− 240hφ1(c− 12hφ1 + 2)]}+ · · · `8 +O(`10)

}
, (3.31)
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‖ρA(L1, φ)− ρA(L2, q)‖22 =
(`
ε

)− c
8

{
π4(c+ 2)

{ [cL2
1 − (c− 24hφ)L2

2]2

9216cL4
1L

4
2

+
[(c− 24hφ)L2

2 − cL2
1]q2

96cL2
1L

4
2

+
[(c− 24hφ)L2

2 − cL2
1]q3

64cL2
1L

4
2

+
[(c− 24hφ)L2

2 − (c− 8)L2
1]q4

32cL2
1L

4
2

+O(q5)
}
`4 + π6(c+ 4)

{ [cL2
1 − (c− 24hφ)L2

2]

4423680cL6
1L

6
2

{c(5c+ 22)L4
1

+ [240(c− 12hφ + 2)hφ − c(5c+ 22)]L4
2}+

q2

92160cL4
1L

6
2

{9c(5c+ 22)L4
1 (3.32)

− 10(5c+ 22)(c− 24hφ)L2
1L

2
2 + [c(5c+ 22)− 240(c− 12hφ + 2)hφ]L4

2}

+
q3

61440cL4
1L

6
2

{29c(5c+ 22)L4
1 − 30(5c+ 22)(c− 24hφ)L2

2L
2
1

+ [c(5c+ 22)− 240(c− 12hφ + 2)hφ]L4
2}+ · · · q4 +O(q5)

}
`6 + · · · `8 +O(`10)

}
,

‖ρA(L1, q1)− ρA(L2, q2)‖22 =
(`
ε

)− c
8
{
π4(c+ 2)

[c(L2
1 − L2

2)2

9216L4
1L

4
2

− (L2
1 − L2

2)(L2
1q

2
2 − L2

2q
2
1)

96L4
1L

4
2

− (L2
1 − L2

2)(L2
1q

3
2 − L2

2q
3
1)

64L4
1L

4
2

(3.33)

− (c− 8)(L4
1q

4
2 + L4

2q
4
1)− L2

1L
2
2(cq4

1 − 16q2
2q

2
1 + cq4

2)

32cL4
1L

4
2

+O(q5
1, q

5
2)
]
`4

+ π6c(c+ 4)(5c+ 22)
[ L4

1 − L4
2

4423680L6
1L

6
2

+
9L4

1q
2
2 + L2

1L
2
2(q2

1 − q2
2)− 9L4

2q
2
1

92160L6
1L

6
2

+
29L4

1q
3
2 + L2

1L
2
2(q3

1 − q3
2)− 29L4

2q
3
1

61440L6
1L

6
2

+ · · ·+O(q5
1, q

5
2)
]
`6 + · · · `8 +O(`10)

}
.

We also have

‖ρA(L1, φ1)− ρA(L2, φ2)‖44 =
(`
ε

)− 5c
16
[π8(c+ 2)[25c(25c− 14) + 192]`8

21743271936c3L8
1L

8
2

[L2
1(c− 24hφ2)

− L2
2(c− 24hφ1)]4 +O(`10)

]
, (3.34)

‖ρA(L1, φ)− ρA(L2, q)‖44 =
(`
ε

)− 5c
16
{
π8(c+ 2)[25c(25c− 14) + 192]

[ [cL2
1 − L2

2(c− 24hφ)]4

21743271936c3L8
1L

8
2

−
[cL2

1 − L2
2(c− 24hφ)]3q2

113246208c3L6
1L

8
2

−
[cL2

1 − L2
2(c− 24hφ)]3q3

75497472c3L6
1L

8
2

(3.35)

−
[(c− 24)L2

1 − L2
2(c− 24hφ)][cL2

1 − L2
2(c− 24hφ)]2q4

37748736c3L6
1L

8
2

+O(q5)
]
`8 +O(`10)

}
,

‖ρA(L1, q1)− ρA(L2, q2)‖44 =
(`
ε

)− 5c
16
{
π8(c+ 2)[25c(25c− 14) + 192]

[ c(L2
1 − L2

2)4

21743271936L8
1L

8
2

− (L2
1 − L2

2)3(L2
1q

2
2 − L2

2q
2
1)

113246208L8
1L

8
2

− (L2
1 − L2

2)3(L2
1q

3
2 − L2

2q
3
1)

75497472L8
1L

8
2

− (L2
1 − L2

2)2[(c− 24)(L4
1q

4
2 + L4

2q
4
1)− L2

1L
2
2(cq4

1 + cq4
2 − 48q2

2q
2
1)]

37748736cL8
1L

8
2

+O(q5
1, q

5
2)
]
`8 +O(`10)

}
. (3.36)
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4 ETH for canonical ensemble and GGE thermal states

As a check of ETH for canonical ensemble thermal state, we calculate various quantities to characterize

the dissimilarity of the reduced density matrix ρA(L, φ) for the excited state and ρA(β) for the thermal

state. Note that ETH is for comparing a highly exited state and a high temperature state, so that we

use ρA(β) to approximate ρA(β, p). The excited state |φ〉 is heavy and we write the conformal weight

as

hφ = cεφ, (4.1)

and by requiring

〈T 〉R(L,φ) = 〈T 〉R(β), (4.2)

we get the identification [5, 6]

β =
L√

24εφ − 1
. (4.3)

We have the difference of Rényi entropy

Sn(L, φ)− Sn(β) =
π4c(n− 1)(n+ 1)2εφ(22εφ − 1)`4

90n3L4
(4.4)

−
π6c(n− 1)(n+ 1)2εφ[8(145n2 + 188)ε2φ − 3(46n2 + 37)εφ + 4n2 + 2]`6

2835n5L6
+ · · · `8 +O(`10),

and it has been calculated in [3, 9, 10]. The difference of entanglement entropy is

S(L, φ)− S(β) = −
128π8cε2φ(22εφ − 1)2`8

1575(5c+ 22)L8
+O(`10), (4.5)

and it has been calculated in [10]. We have the relative entropies

S(ρA(L, φ)‖ρA(β)) =
128π8cε2φ(22εφ − 1)2`8

1575(5c+ 22)L8
+O(`10),

S(ρA(β)‖ρA(L, φ)) =
128π8cε2φ(22εφ − 1)2`8

1575(5c+ 22)L8
+O(`10), (4.6)

and the first one has been calculated in [10] by a different method. Note that S(ρA(L, φ)‖ρA(β)) and

S(ρA(β)‖ρA(L, φ)) happen to be the same at order `8, and we expect they will be different at higher

orders. We have the symmetrized relative entropy and the 2nd symmetrized relative entropy

S(ρA(L, φ), ρA(β)) =
256π8cε2φ(22εφ − 1)2`8

1575(5c+ 22)L8
+O(`10),

S2(ρA(L, φ), ρA(β)) =
π8c(5c+ 27)ε2φ(22εφ − 1)2`8

3200(5c+ 22)L8
+O(`10). (4.7)

The Jensen-Rényi divergence and Jensen-Shannon divergence are respectively

JRn(ρA(L, φ), ρA(β)) = −
π8(n+ 1)cε2φ(22εφ − 1)2`8

2268000(5c+ 22)n7L8
[175c2(n2 − 1)3 + 70c(7n2 − 55)(n2 − 1)2

− 8(n2 + 11)(157n4 − 298n2 + 381)] +O(`10),

JS(ρA(L, φ), ρA(β)) =
32π8c(22εφ − 1)2ε2φ`

8

1575(5c+ 22)L8
+O(`10). (4.8)
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We also have

‖ρA(L, φ)− ρA(β)‖22 =
(`
ε

)− c
8
[π8c[c(5c+ 62) + 216]ε2φ(22εφ − 1)2`8

25600(5c+ 22)L8
+O(`10)

]
. (4.9)

All the above dissimilarities between the excited and thermal state originate from the fact that the

level 4 operator A has different expectation values [9, 10]

〈A〉R(L,φ) 6= 〈A〉R(β). (4.10)

A more refined consideration is that one should not compare the excited state and the canonical

ensemble thermal state, instead one need to consider the generalized Gibbs ensemble (GGE) thermal

state [20–25]. The GGE state has the density matrix

ρGGE = e−βH−
∑
i βiJi , (4.11)

with Ji being some conserved charges and βi being the corresponding chemical potentials. By requiring

the ETH comparison is done for the same macroscopic super-selection sector, we should impose

〈H〉R(L,φ) = 〈H〉GGE, 〈Ji〉R(L,φ) = 〈Ji〉GGE, (4.12)

so that one can get the relation of hφ with the GGE parameters β, µi. In the vacuum conformal

family, there are an infinite number of commuting conserved charges I2k+1 with k = 0, 1, · · · [44, 45].

For examples, one has

I1 = − 1

2π

∫ L/2

−L/2
dwT (w) =

2π

L

(
L0 −

c

24

)
= H, (4.13)

I3 =
1

2π

∫ L/2

−L/2
dwA(w) =

(2π

L

)3[
A0 −

5c+ 22

60

(
L0 −

c

48

)]
.

We may choose the GGE state

ρGGE = e−βH−
∑∞
k=1 β2k+1I2k+1 . (4.14)

Then we have the requirement

〈X 〉R(L,φ) = 〈X 〉GGE, (4.15)

for all vacuum conformal family quasiprimary operator X . Since there are more equations than the

unknown chemical potentials, we do not know if there is a unique solution for all β, β2k+1, k = 1, 2, · · · .
If this is the case, all the dissimilarities considered in this paper vanish so that there is no difference

between the reduced density matrices of the excited state and GGE thermal state.

Furthermore, in GGE it is not necessarily that all the conserved charges commute with each other

[22]. For each nonidentity quasiprimary operator in vacuum conformal family, say X , we may define a

conserved charge

IX ∝
∫ L/2

−L/2
dwX (w). (4.16)

Then we may define the GGE state

ρGGE = e−
∑
X βX IX , (4.17)
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with which there are the same number of equations and the unknown chemical potentials. However,

we still do not know if there is any solution to the equations (4.15).

To be more concrete, we consider a toy model of GGE

ρGGE = e
−βH− µ

2π

∫ L/2
−L/2 dwA(w)

. (4.18)

For an arbitrary operator X we have

tr(X (w0)ρGGE)

tre−βH
=
〈
X (w0)e

− µ
2π

∫ L/2
−L/2 dwA(w)

〉
R(β,p)

≈
〈
X (w0)e−

µ
2π

∫∞
−∞ dwA(w)

〉
R(β)

. (4.19)

We get the expectation value of GGE in expansion of the small chemical potential µ

〈X (w0)〉GGE =
tr(X (w0)ρGGE)

trρGGE
≈ 〈X (w0)〉R(β) −

µ

2π

∫ ∞
−∞

dw
[
〈A(w)X (w0)〉R(β)

− 〈A(w)〉R(β)〈X (w0)〉R(β)

]
+O(µ2). (4.20)

The correlation functions on the cylinder R(β) can be calculated by mapping the cylinder to a complex

plane by the conformal transformation z = e
2πw
β . Note that the above expectation value should be

independent of the position w0. Using the integral3∫ ∞
0

dx

sinhS x
=

Γ(S2 )Γ(1−S
2 )

2
√
π

, (4.21)

with S = 4 and S = 8, we finally get

〈T 〉GGE = −π
2c

6β2
+
π4c(5c+ 22)µ

45β5
+O(µ2),

〈A〉GGE =
π4c(5c+ 22)

180β4
− π6c(5c+ 22)(7c+ 74)µ

945β7
+O(µ2). (4.22)

In the excited state |φ〉 of a holomorphic primary operator φ with conformal weight hφ = cεφ, there

are expectation values [9, 10]

〈T 〉φ =
π2c(1− 24εφ)

6L2
, 〈A〉φ =

π4c((5c+ 22)− 240(c+ 2)εφ + 2880cε2φ)

180L4
. (4.23)

To consider ETH comparison for the same super-selection sector, we equate (4.22) and (4.23)

〈T 〉GGE = 〈T 〉φ, 〈A〉GGE = 〈A〉φ, (4.24)

and solve the inverse temperature β and chemical potential µ in terms of εφ, c, L. As known that

the ETH for canonical ensemble works well in the leading order of large c limit [7, 8], we should then

expect

lim
c→∞

β =
L√

24εφ − 1
, lim

c→∞
µ = 0. (4.25)

On the other hand, the finite c correction causes the mismatch between excited state and the canonical

thermal state by power suppression of 1/c [10], we then need to find the solution of (4.24) for GGE

3Note that the integral is only convergent for 0 < ReS < 1, and it is analytically continued to other values of S. The
results are the same as these from more delicate calculations in [46–48].
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with power correction of 1/c to (4.25) as follows. To make the 1/c expansions in (4.22) well-defined,

we need the leading order µ ∼ 1/cα with α > 1. Since there is no subleading term in 〈T 〉φ, we need

the leading order correction to β of order 1/cα−1. We then make the following ansatz for the solution

to equations (4.24)

β =
L√

24εφ − 1
+

aL

cα−1
+ o
( 1

cα−1

)
,

µ =
bL3

cα
+ o
( 1

cα

)
, (4.26)

with the constants α, a, b to be determined. It is easy to see that 〈A〉GGE = 〈A〉φ cannot be satisfied

for α ≥ 2. Thus, we have 1 < α < 2 in ansatz (4.26). However, we cannot determine the coefficient

b in ansatz (4.26) at the present expansion order of (4.22), but might be determined uniquely at the

higher expansion orders.

5 ETH for microcanonical ensemble thermal state

The ETH [1, 2] and its corollaries such as the subsystem ETH [3, 4] are originally considered for

comparing the energy eigenstate and the microcanonical (ensemble) thermal state. Despite that the

difference between canonical and microcanonical thermal states is power-law negligible in the limit of

large number of degrees of freedom, it is still interesting to check ETH directly for microcanonical

thermal state. In this appendix we will do this using OPE of twist operators as described in section 2.

The microcanonical thermal state to be considered is the equal-weight sum of the pure states

|φi〉 := φi|0〉 i = 1, 2, · · · ,Ω, i.e., its density matrix is given by

ρme =
1

Ω

Ω∑
i=1

|φi〉〈φi| (5.1)

where φi’s are nonidentity primary operators of conformal weights (hφi , h̄φi). For the microcanonical

thermal states, we should require for all i = 1, 2, · · · ,Ω

hφi ' hφ, h̄φi ' h̄φ (5.2)

where (hφ, h̄φ) is the conformal weight of the excited state φ with which we will compare for checking

ETH.

For simplicity, we can choose an orthonormal set of φi’s, i.e.,

〈φi|φj〉 = δij . (5.3)

We also choose φ as one of the Ω operators φi, i.e., φ ∈ {φi}.
Globally, the pure excited state density matrix ρφ = |φ〉〈φ| and the microcanonical thermal state

density matrix ρme = 1
Ω

∑Ω
i=1 ρφi are very different. This can be seen from various dissimilarity

measures, i.e., starting from their von-Neumann entropies,

S(ρφ) = 0, S(ρme) = log Ω, (5.4)
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and then the relative entropy

S(ρφ‖ρme) = log Ω, (5.5)

and the Jensen-Shannon divergence

JS(ρφ, ρme) = log 2 +
1

2
log Ω− Ω + 1

2Ω
log(Ω + 1). (5.6)

Instead, the ETH should be explored by the local observables. If ETH holds, for arbitrary local

observable X we should have

tr(ρφX ) ' tr(ρmeX ). (5.7)

If X is the operator in the vacuum conformal family, it is easy to see that (5.7) holds by the fact

(5.2). On the other hand, if X is some nonidentity primary operator or its descendants, then the ETH

imposes constraints on OPE coefficients CφiφiX :

CφφX '
1

Ω

Ω∑
i=1

CφiφiX . (5.8)

This implies that not every CFT satisfies ETH.

However, in a large c CFT, it is often a good approximation to consider contributions only from

the vacuum conformal family, and this is what we adopt in this paper. We now consider to divide

the circle of length L, on which the large c CFT lives, into a small subsystem A of length ` and its

large compliment B of length L− `. We can define the reduced density matrices ρA,φ and ρB,φ for the

excited state ρφ, and ρA,me and ρB,me for the microcanonical thermal state ρme. We then use OPE of

twist operators to calculate dissimilarity measures for comparing ρA,φ, ρA,me, and for comparing ρB,φ,

ρB,me.

We only include contributions from the vacuum conformal family in the following calculation. For

the small subsystem A, from (5.7) we get

trA(ρmA,φρ
n−m
A,me) ' trAρ

n
A,φ, m = 0, 1, · · · , n, (5.9)

and we further get the entanglement entropy, relative entropy, and Jensen-Shannon divergence

S(ρA,φ) ' S(ρA,me), S(ρA,φ‖ρA,me) ' 0, JS(ρA,φ, ρA,me) ' 0. (5.10)

For the large subsystem B, we use (5.3) and [49]

trB[ρB(φi1 , φi1)ρB(φi2 , φi2) · · · ρB(φin , φin)] = trA[ρA(φi1 , φi2)ρA(φi2 , φi3) · · · ρA(φin , φi1)], (5.11)

and get

trBρ
n
B,me ' Ω1−ntrAρ

n
A,φ, trB(ρmB,φρ

n−m
B,me) ' Ωm−ntrAρ

n
A,φ, m = 1, 2, · · · , n. (5.12)

Then we get

S(ρB,φ) = S(ρA,φ), S(ρB,me) ' S(ρA,φ) + log Ω,

S(ρB,φ‖ρB,me) ' log Ω,

JS(ρB,φ, ρB,me) ' log 2 +
1

2
log Ω− Ω + 1

2Ω
log(Ω + 1). (5.13)
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The above result agrees with the expectation from ETH, which states that the energy eigenstate

approximates the microcanonical thermal state only for a small enough subsystem but not for a large

one. This is also verified by the numerical simulations for lattice models done in [50] as long as the

size of subsystem is smaller than the half of the total system size. When the size of the subsystem A

becomes as large as half the total system size, the trace square distance starts to deviate from zero,

and the behavior indicates that one may be able to extract some critical exponents from the behavior

around ` = L/2.

As a byproduct, from (5.10), (5.13), we get the approximate saturation of the microcanonical

ensemble version of the Araki-Lieb inequality [51]

S(ρme)− S(ρB,me) + S(ρA,me) ' 0. (5.14)

The saturation of canonical ensemble version of the Araki-Lieb inequality and its holography have

been studies in [49, 52–58]. We expect the suturation in (5.14) is lifted if the approximation (5.2) is

scrutinized carefully and/or contributions from nonvacuum conformal families are included, i.e., that

S(ρme)− S(ρB,me) + S(ρA,me) > 0. (5.15)

6 Conclusion and discussion

We have used the OPE of the twist operators to calculate various quantities that can be used to

characterize the dissimilarity of two reduced density matrices, and these quantities include the Rényi

entropy, entanglement entropy, relative entropy, Jensen-Shannon divergence, as well as the Schatten

2-norm and 4-norm. We first consider contributions from only the holomorphic sector of the vacuum

conformal family, and make expansion of all the quantities by the length of short interval ` to order

`9. As an application of the results, for ETH we show how these dissimilarity measures behave for the

excited and thermal states in the high temperature limit. As we have showed in this paper, all these

quantities can capture the dissimilarity of the two reduced density matrices. Furthermore, we also

discuss the possibility to define ETH with GGE thermal state. By using GGE, we provide a possible

scenario to define ETH and resolve the mismatch between ETH and highly excited states in large c

CFT. We also discuss ETH for microcanonical ensemble thermal state. In the appendix we give the

formal forms of the entanglement entropy, relative entropy, Jensen-Shannon divergence, and Fisher

quantum metric with contributions from general operators.

In the method of twist operators we cannot calculate the trace distance, which is essential for the

definition of subsystem ETH [3, 4]. Trace distance is just the Schatten n-norm with n = 1, and the

absolute value in the definition makes it hard to evaluate when n is an odd integer. It would be nice

if the trace distance can be calculated in CFT.

Acknowledgement

We would like to thank Alexandre Belin, Xi Dong, Nabil Iqbal, Guojing Liu, and Gábor Sárosi for
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A Relative entropy from modular Hamiltonian

We calculate the relative entropies using modular Hamiltonian as shown in figure 5, and some of them

have been calculated from the same method in [59,60]. This appendix serves as a check of the relative

entropies from twist operators in section 3.1.

ρA(L,ϕ)

ρA(L,q)

ρA(β,ϕ)

ρA(β,p)

ρA(L)

ρA(β)

ρA(∅)

Figure 5: The 20 relative entropies we can calculate using modular Hamiltonian and entangle-
ment entropy. We only need to calculate the two relative entropies S(ρA(L1, φ)‖ρA(L2)) and
S(ρA(L1, q)‖ρA(L2)) as marked in blue.

For a reduced density matrix ρA, the modular Hamiltonian H(ρA) is defined as

ρA =
e−H(ρA)

trAe−H(ρA)
. (A.1)

For two reduced density matrices ρA, σA, the relative entropy can be written as

S(ρA‖σA) = 〈H(σA)〉ρ − 〈H(σA)〉σ − S(ρA) + S(σA), (A.2)

with H(σA) being the modular Hamiltonian of σA. The modular Hamiltonian is known only for cases

of ρA(∅), ρA(L) and ρA(β), and one has [43,61,62]4

HA(∅) = −
∫ `

0

x(`− x)

`
T (x)dx,

HA(L) = −L
π

∫ `

0

sin πx
L sin π(`−x)

L

sin π`
L

T (x)dx,

HA(β) = −β
π

∫ `

0

sinh πx
β sinh π(`−x)

β

sinh π`
β

T (x)dx. (A.3)

4One can see modular Hamiltonian for excited states in [63,64].
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We have only incorporated contributions from the holomorphic sector. They satisfy the relations

HA(∅) = lim
L→∞

HA(L) = lim
β→∞

HA(β), HA(β) = HA(L)|L→iβ. (A.4)

As shown in figure 5, we use the entanglement entropy and modular Hamiltonian to calculate the

relative entropies S(ρA(L1, φ)‖ρA(L2)) and S(ρA(L1, q)‖ρA(L2)). We have

S(ρA(L1, φ)‖ρA(L2)) =
π4[cL2

1 − L2
2(c− 24hφ)]2`4

1080cL4
1L

4
2

(A.5)

+
π6[cL2

1 − L2
2(c− 24hφ)]2[2cL2

1 + L2
2(c− 24hφ)]`6

17010c2L6
1L

6
2

+ · · · `8 +O(`10),

and this is in accord with (3.7) and (3.8). We have

S(ρA(L1, q)‖ρA(L2)) =
[π4c(L2

1 − L2
2)2

1080L4
1L

4
2

+
4π4(L2

1 − L2
2)q2

45L4
1L

2
2

+
2π4(L2

1 − L2
2)q3

15L4
1L

2
2

+
4π4[cL2

1 − (c− 8)L2
2]q4

15cL4
1L

2
2

+O(q5)
]
`4 +

[π6c(2L6
1 − 3L2

2L
4
1 + L6

2)

17010L6
1L

6
2

+
8π6(L4

1 − L4
2)q2

945L6
1L

4
2

+
4π6(L4

1 − L4
2)q3

315L6
1L

4
2

+
8π6[cL4

1 − (c− 16)L4
2]q4

315cL6
1L

4
2

+O(q5)
]
`6 +

[π8c(3L8
1 − 4L2

2L
6
1 + L8

2)

226800L8
1L

8
2

(A.6)

+
4π8(L6

1 − L6
2)q2

4725L8
1L

6
2

+
2π8(L6

1 − L6
2)q3

1575L8
1L

6
2

+
4π8[cL6

1 + (159c+ 728)L6
2]q4

1575cL8
1L

6
2

+O(q5)
]
`8 +O(`10),

and this is in accord with (3.9) and (3.11).

B Contributions from general operators

In the main text, we only consider the contributions from the holomorphic part of the vacuum conformal

family to order `9. In this appendix we consider the contributions from general holomorphic and

antiholomorphic operators, and we get closed forms of the entanglement entropy, relative entropy, and

Jensen-Shannon divergence.

For a short interval A = [0, `] on a Riemann surface R that has translational symmetry, we have

the reduced density matrix ρA and get

trAρ
n
A =

(ε
`

)4hσ(
1 +

n∑
k=1

∑
{X1,··· ,Xk}

`∆X1+···+∆Xk bX1···Xk〈X1〉R · · · 〈Xk〉R
)
, (B.1)

with the summation {X1 · · · Xk} being over different sets of all the nonidentity holomorphic and anti-

holomorphic quasiprimary operators. For a quasiprimary operator X , we use ∆X to denote its scaling

dimension. Then we get the entanglement entropy

S(ρA) =
c

3
log

`

ε
+

∞∑
k=1

∑
{X1,··· ,Xk}

`∆X1+···+∆XkaX1···Xk〈X1〉R · · · 〈Xk〉R. (B.2)

For the same short interval A = [0, `] on another Riemann surface S that also has translation symmetry,

we have the reduced density matrix σA and similar expression for entanglement entropy S(σA). The

difference of entanglement entropies is

S(ρA)− S(σA) =
∞∑
k=1

∑
{X1,··· ,Xk}

`∆X1+···+∆XkaX1···Xk(〈X1〉R · · · 〈Xk〉R − 〈X1〉S · · · 〈Xk〉S). (B.3)
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For k quasiprimary operators X1, · · · ,Xk, and two translation invariant Riemann surfaces R, S,

we may define

Fi(X1, · · · ,Xk|R,S) =
1

n!
(〈X1〉R · · · 〈Xi〉R〈Xi+1〉S · · · 〈Xk〉S + permutations), (B.4)

with 0 ≤ i ≤ k. Note that the above definition is normalized such that Fi(X , · · · ,X|R,S) =

〈X 〉iR〈X 〉
k−i
S , Fi(X1, · · · ,Xk|R,R) = 〈X1〉R · · · 〈Xk〉R. For 0 ≤ m ≤ n, we have

trA(ρmAσ
n−m
A ) =

(ε
`

)4hσ(
1 +

n∑
k=1

∑
{X1,··· ,Xk}

`∆X1+···+∆Xk bX1···Xk

k∑
i=0

CimC
k−i
n−m

Ckn
Fi(X1, · · · ,Xk|R,S)

)
.

(B.5)

Then we get the relative entropy

S(ρA‖σA) =
∞∑
k=2

∑
{X1,··· ,Xk}

{
`∆X1+···+∆XkaX1···Xk [kF1(X1, · · · ,Xk|R,S)− 〈X1〉R · · · 〈Xk〉R

− (k − 1)〈X1〉S · · · 〈Xk〉S ]
}
, (B.6)

and the symmetrized relative entropy

S(ρA, σA) =
∞∑
k=2

k
∑

{X1,··· ,Xk}

{
`∆X1+···+∆XkaX1···Xk [F1(X1, · · · ,Xk|R,S) + F1(X1, · · · ,Xk|S,R)

− 〈X1〉R · · · 〈Xk〉R − 〈X1〉S · · · 〈Xk〉S ]
}
. (B.7)

Using the summation
n∑

m=0

Cmn C
i
mC

k−i
n−m = 2n−kCknC

i
k, (B.8)

and (B.5), we get

trA
(ρA + σA

2

)n
=
(ε
`

)4hσ(
1 +

n∑
k=1

∑
{X1,··· ,Xk}

`∆X1+···+∆Xk bX1···Xk

k∑
i=0

Cik
2k
Fi(X1, · · · ,Xk|R,S)

)
. (B.9)

Then we get the Jensen-Shannon divergence

JS(ρA, σA) =

∞∑
k=2

∑
{X1,··· ,Xk}

{
`∆X1+···+∆XkaX1···Xk

[
− 1

2
〈X1〉R · · · 〈Xk〉R −

1

2
〈X1〉S · · · 〈Xk〉S

+

k∑
i=0

Cik
2k
Fi(X1, · · · ,Xk|R,S)

]}
. (B.10)

With the above results, we can also calculate short interval expansion of the Fisher information

metric. We parameterize the states of the CFT by θα, and we have the density matrix ρ(θ), and

formally the Riemann surface R(θ). For the reduced density matrix ρA(θ), the Fisher information

metric is defined as

gαβ =
1

2
{trA[ρA(θ)(∂α log ρA(θ))(∂β log ρA(θ))] + (α↔ β)} . (B.11)
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It is related to the relative entropy and Jensen-Shannon divergence as [65,66]

S(ρA(θ + δθ)‖ρA(θ)) =
1

2
gαβδθ

αδθβ +O[(δθ)3],

JS(ρA(θ + δθ), ρA(θ)) =
1

8
gαβδθ

αδθβ +O[(δθ)3]. (B.12)

From (B.6) or (B.10) we get short interval expansion of the Fisher information metric

gαβ = −
∞∑
k=2

∑
{X1,··· ,Xk}

`∆X1+···+∆XkaX1···XkGαβ(X1, · · · ,Xk|R(θ)), (B.13)

with the definition

Gαβ(X1, · · · ,Xk|R(θ)) =
∑

1≤i<j≤k
{〈X1〉R(θ) . . . [∂θα〈Xi〉R(θ)] . . . [∂θβ 〈Xj〉R(θ)] . . . 〈Xk〉R(θ) + (α↔ β)}.

(B.14)

In principle, the Fisher information metric can be used to define the distance on the state space, i.e.,

all the thermal and quasi-primary states of 2D CFTs as considered in this paper. Though we do not

know at present how to efficiently characterize the state space by this metric, we expect it may help

to visualize the ETH geometrically for the future studies.
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