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Abstract

We develop a superfield approach to compute chiral anomalies in general N = (1, 0)

supersymmetric gauge theories in six dimensions. Within the harmonic-superspace

formulation for these gauge theories, the anomalous contributions to the effective action

only come from matter and ghost hypermultiplets. By studying the short-distance

behaviour of the propagator for the hypermultiplet coupled to a background vector

multiplet, we compute the covariant and consistent chiral anomalies. We also provide

a superform formulation for the non-abelian anomalous current multiplet in general

N = (1, 0) supersymmetric gauge theories.
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1 Introduction

The general structure of chiral and gravitational anomalies in gauge theories in diverse

dimensions was fully understood as long ago as the mid-1980s [1, 2, 3, 4, 5, 6, 7, 8] (more

complete lists of references can be found, e.g., in [9, 10]). In supersymmetric gauge theories,
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both chiral and gravitational anomalies (if present) should be embedded into supermultiplets.

It is somewhat surprising that not much explicit information is available about the anomaly

supermultiplets in six and higher spacetime dimensions, in contrast to four dimensions (4D).1

As is well known, the latter case is characterised by the absence of gravitational anomalies,

while chiral gauge anomalies cannot occur in extended supersymmetry (N > 1). We recall

that the fermions in general 4DN = 2 supersymmetric gauge theories transform in non-chiral

representations of the gauge group.

The chiral anomalies in 4D N = 1 supersymmetric gauge theories have been thoroughly

studied in numerous works, see [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26] and references

therein. These studies include both the formal aspects of supersymmetric gauge anomalies

as well as the powerful superfield techniques to compute such anomalies. In particular, it was

realised that the (abelian) chiral anomaly can be viewed as a consistent deformation of the

N = 1 linear multiplet L = L̄. In the anomaly-free case, L obeys the constraint D̄2L = 0,

which implies that the component field [Dα, D̄α̇]L|θ=0 is a conserved current [27]. If a chiral

anomaly is present, the conservation equation is deformed to take the form

D̄α̇D̄
α̇L ∝ W αWα , (1.1)

where Wα is the chiral gauge-invariant field strength of a vector multiplet.

In the case of 6D N = (1, 0) supersymmetry, a conserved current belongs to the linear

multiplet Lij which is a real SU(2) iso-triplet constrained by D
(k
α Lij) = 0 [28]. In the presence

of a chiral anomaly, this conservation equation turns into a deformed one. It was shown in

our recent paper [29] (see also [30]) that the abelian chiral anomaly amounts to the following

deformation

Aijk
α := D(k

α Lij) ∝ i εαβγδW
iβW jγW kδ , (1.2)

whereW iα is the gauge-invariant field strength of a vector multiplet.2 In [29] we also provided

a nonlocal effective action which generates the anomaly (1.2). So far, however, even the

abelian chiral anomaly (1.2) has never been computed directly in superspace in spite of the

recent progress in applying the background covariant supergraphs to compute low-energy

effective actions for 6D N = (1, 0) supersymmetric gauge theories [35, 36, 37, 38, 39, 40].

The present paper aims to fill this gap by providing an explicit supergraph derivation of the

non-abelian chiral anomaly using the 6D N = (1, 0) harmonic-superspace setting [41, 42, 43].

1Chiral anomalies for general supersymmetric gauge theories in dimensions D = 6, 8 and 10 were com-

puted in [11], and can be read off from the results in [5, 6, 12, 13, 14], however no discussion of anomaly

supermultiplets was given in these publications.
2The modern superfield formulation for 6D N = (1, 0) supersymmetric Yang-Mills theory was developed

in [31, 32] as a reformulation of the earlier SU(2) non-covariant approach [33, 34].
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In 6D N = (1, 0) harmonic superspace, the non-abelian vector multiplet can be described

either in terms of the analytic prepotential V ++ [41, 42, 43] (which is introduced in complete

analogy with the 4D N = 2 case [44]) or by means of an unconstrained harmonic super-

field M−− defined by V ++ = (D+)4M−− [45]. We will refer to M−− as the “generalised

Mezincescu prepotential” due to the fact that M−− contains the 6D analogue [31, 32] of

Mezincescu’s prepotential M ij [46].3 In order to compute the chiral anomalies using su-

pergraphs, one may analyse the effective action Γ = Γ[M−−] in a general 6D N = (1, 0)

supersymmetric gauge theory. Such a theory describes the pure supersymmetric Yang-Mills

(SYM) theory coupled to a hypermultiplet transforming in some representation of the gauge

group. In this paper we argue that the non-abelian extension of (1.2) naturally originates

as a covariant chiral anomaly. We also generalise Leutwyler’s ideas [8] to the 6D N = (1, 0)

harmonic-superspace setting in order to construct a consistent chiral anomaly from the co-

variant one.

This paper is organised as follows. We first present a superform formulation of the

non-abelian anomalous current multiplet in general 6D N = (1, 0) supersymmetric gauge

theories in section 2. This construction allows for two possible forms of the non-abelian chiral

anomaly, which reduce to the same expression in the abelian case. Explicit supergraph

computation presented in subsequent sections shows that only one of these structures is

realised as a part of effective action in (1,0) gauge theories.

To compute chiral anomalies in general 6D N = (1, 0) supersymmetric gauge theories,

it suffices to consider the hypermultiplet model in the presence of a background vector

multiplet. Indeed, in pure SYM theory the anomalous contributions can come only from

ghost superfields which are described by hypermultiplets according to [47, 48, 49]. Therefore,

following the discussion of general aspects of covariant and consistent anomalies in superspace

given in section 3, in section 4 we examine the short-distance behaviour of the hypermultiplet

propagator in the presence of a background vector multiplet and argue that the non-abelian

extension of (1.2) naturally arises from those terms in the propagator which involve harmonic

singularities. In the 4D N = 2 and 5D N = 1 cases, similar terms in the hypermultiplet

propagator give no contributions to the effective action [50, 51], in agreement with the fact

that all 4D N = 2 supersymmetric gauge theories have no chiral anomaly (which is also

obviously true for the 5D N = 1 theories). This uncovers the role of harmonic singularities

in the context of chiral anomalies.

In the main body of the paper, we mostly study the form of the chiral anomaly in the

formulation of the (1,0) gauge theory based on the generalised Mezincescu prepotential M−−.

3The prepotential M−− contains the conventional Mezincescu prepotential M ij as a leading Fourier

coefficient in its harmonic expansion, M−−(z, u) = M ij(z)u−

i u
−

j + . . . As explained in [45], a gauge condition

may be chosen in which M−−(z, u) = M ij(z)u−

i u
−

j .
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However, the concluding section 5 discusses the issues of describing the chiral anomaly in the

formulation of gauge theory with the analytic prepotential V ++. In particular, we propose

a consistent expression for this anomaly in the abelian case.

In this paper, we follow the 6D superspace notation and conventions given in [52] and

employed in our recent paper [29]. In Appendix A we review the basic aspects of the 6D

supersymmetric gauge theories in N = (1, 0) harmonic superspace.

2 Superform formulation of the covariant chiral anomaly

In our recent paper [29], we presented a superform formulation of the anomalous current

multiplet for the abelian chiral anomaly. In this section, we generalise those results to

the case of the non-abelian chiral anomaly. In particular, a superform formulation of the

covariant anomalous current multiplet will be developed. For the reader’s convenience, we

start this section with a short review of the superform descriptions of the 6D Yang-Mills and

linear multiplets.

2.1 The Yang-Mills multiplet

In this subsection we review the superspace formulation for the 6D N = (1, 0) Yang-

Mills supermultiplet. To describe a non-abelian vector multiplet, the covariant derivative of

Minkowski superspace DA = (∂a, D
i
α) has to be replaced with a gauge-covariant one,

DA := DA + iVA . (2.1)

Here the gauge connection one-form V = dzAVA takes its values in the Lie algebra of the

Yang-Mills gauge group. The covariant derivative algebra is

[DA,DB} = TAB
CDC + iFAB , (2.2)

where the only non-vanishing torsion is

T i
α
j
β
c = −2 i εij(γc)αβ (2.3)

and FAB are the components of the gauge covariant field strength two-form F = dzB ∧

dzAFAB. The covariant derivatives and field strength may be written in a coordinate-free

way as follows

D = d + iV , F = dV − iV ∧ V , (2.4)
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where we have introduced D := dzADA. The field strength F satisfies the Bianchi identity

DF = dF + iV ∧ F − iF ∧ V = 0 ⇐⇒ D[AFBC} − T[AB
DF|D|C} = 0 . (2.5)

The Yang-Mills gauge transformation acts on the gauge covariant derivatives DA and a

matter superfield U (transforming in some representation of the gauge group) as

DA → eiτDAe
−iτ , U → U ′ = eiτU , τ † = τ , (2.6)

where the Hermitian gauge parameter τ(z) takes its values in the Lie algebra of the gauge

group. This implies that the gauge connection and field strength transform as follows

V → eiτ V e−iτ − ieiτ de−iτ , F → eiτ F e−iτ . (2.7)

Some components of the field strength two-form have to be constrained in order to de-

scribe an irreducible multiplet. Upon constraining the lowest mass dimension component of

the field strength two-form as

F i
α
j
β = 0 , Fa

j
β = (γa)βγW

jγ , (2.8)

the remaining component is determined from the Bianchi identity (2.5) to be

Fab = −
i

8
(γab)β

αDk
αW

β
k , (2.9)

and the superfield W iα is required to obey the differential constraints

Dk
γW

γ
k = 0 , D(i

αW
j)β =

1

4
δβαD

(i
γ W

j)γ . (2.10)

2.2 The superform formulation for the linear multiplet

It is instructive to first describe the conserved current multiplet in the abelian case which

invariably is described by a linear multiplet (or O(2) multiplet). The linear multiplet can be

described using a four-form gauge potential B = 1
4!
dzD ∧ dzC ∧ dzB ∧ dzABABCD possessing

the gauge transformation

δB = dρ , (2.11)

where the gauge parameter ρ is an arbitrary three-form. The corresponding field strength is

H = dB =
1

5!
dzE ∧ dzD ∧ dzC ∧ dzB ∧ dzAHABCDE , (2.12)

where

HABCDE = 5D[ABBCDE} − 10T[AB
FB|F |CDE} . (2.13)
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The field strength must satisfy the Bianchi identity

dH = 0 ⇐⇒ D[AHBCDEF} −
5

2
T[AB

GH|G|CDEF} = 0 . (2.14)

In order to describe the linear multiplet we need to impose some covariant constraints

on the field strength H . We choose the constraint

Habc
i
α
j
β = −2i(γabc)αβL

ij , Lij = Lji , (2.15)

and require all lower dimension components to vanish. We can now solve for the remaining

components of H in terms of Lij . The solution is

Habcd
i
α = −

1

6
εabcdef(γ

ef)α
βDβjL

ij , (2.16)

Habcde = −
i

24
εabcdef(γ̃

f)αβDk
αD

l
βLkl , (2.17)

where Lij is required to satisfy the constraint for the linear multiplet

D(i
αL

jk) = 0 . (2.18)

2.3 The superform formulation for the non-abelian current mul-

tiplet

A non-abelian current multiplet described by a superfield Lij = L(ij) must take values in

the Lie algebra of the gauge group and satisfy the constraint

D(i
αL

jk) = 0 . (2.19)

To find a superform formulation we need to introduce a five-form H built out of Lij such

that its superform equation is satisfied as a result of the conservation equation above. To

do this we write down the superform equation

DH− Σ = 0 , (2.20)

where Σ is some covariant six-form taking values in the Lie algebra of the gauge group.

Consistency of the above equation requires

DΣ− [F,H] = 0 =⇒ D[A1
ΣA2···A7} − 3T[A1A2

BΣ|B|A3···A7} = 3[F[A1A2
,HA3···A7}] . (2.21)

The equation (2.21) does not have a bosonic analogue since a seven-form in six dimensions

vanishes, but it becomes an important requirement in the supersymmetric case where it
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demands that there exists a covariant solution to equation (2.21).4 One can check that there

exists a covariant solution to (2.21) and its non-vanishing components are:

Σabcde
i
α = −εabcdef (γ

f)αβ [W
β
j , L

ij] , (2.22a)

Σabcdef =
i

16
εabcdef

(

[Di
αW

jα, Lij ]−
8

3
{W α

i ,DαjL
ij}

)

. (2.22b)

The superform H possesses the following non-vanishing components:

Habc
i
α
j
β = −2i(γabc)αβL

ij , (2.23a)

Habcd
i
α = −

1

6
εabcdef(γ

ef)α
βDβjL

ij , (2.23b)

Habcde = −
i

24
εabcdef(γ̃

f)αβDk
αD

l
βLkl . (2.23c)

The superform equations (2.20) and (2.21) are satisfied as a consequence of the constraint

(2.19).

2.4 The superform formulation for the anomalous non-abelian

current multiplet

To describe the covariant anomaly one only needs to modify the superform equation

(2.20) as follows

DH− Σ = κ str(TAF ∧ F ∧ F )TA = κ dABCDFA ∧ FB ∧ FC TD , (2.24)

where κ is some constant and ‘str’ is the symmetrised trace. The two-form field strength F

takes its values in the Lie algebra of the gauge group with generators TA

F = FAT
A , (2.25)

and dABCD is the gauge-invariant tensor

dABCD = tr(T (AT BT CTD)) . (2.26)

The solution to the superform equation (2.24) is just a deformation of the solution in the

previous subsection. It turns out that only two components of H must be modified and they

are given by

Habcd
i
α = −

1

6
εabcdef(γ

ef)α
βDβjL

ij

+ κ i εabcdef(γ
e)αβ(γ

f)γδ str
(

TAW
β
j W

(jγW i)δ
)

TA , (2.27a)

Habcde = εabcdefH̃
f , (2.27b)

4This requirement is known in the literature as Weil triviality [53].
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where

H̃a = −
i

24
(γ̃a)αβDk

αD
l
βLkl +

κ

8
str

(

TA(DγkW
γ
l )(W

kγaW l)
)

TA

+
3κ i

8
str

(

TAFbc(W
kγabcWk)

)

TA . (2.28)

The superform equation (2.24) requires that Lij satisfy the differential equation

D(i
αL

jk) = κ i εαβγδ str
(

W (iβW jγW k)δTA
)

TA

= κ i εαβγδ d
ABCDW

(iβ
A W

jγ
B W

k)δ
C TD . (2.29)

The value of the constant κ will be fixed by the explicit calculation in the next section.

In particular, for the model of a hypermultiplet interacting with a background Yang-Mills

multiplet this constant is κ = − 1
96π3 .

The highest dimension component of (2.24) implies the following

DaH̃
a −

i

16

(

[Di
αW

jα, Lij ]−
8

3
{W α

i ,DαjL
ij}

)

=
κ

8
εabcdefstr(TAFabFcdFef)TA . (2.30)

Thus the component projection of H̃a should be understood as the current whose conserva-

tion condition is now deformed.

2.5 Another deformation of the non-abelian current multiplet

It is worth mentioning that besides the deformation just considered, there exists another

deformation of the current multiplet. To describe it, one modifies the superform equation

(2.20) as follows

DH− Σ = µ tr(F ∧ F ) ∧ F , (2.31)

where µ is some constant. The superform equation (2.31) is solved by

Habc
i
α
j
β = −2i(γabc)αβL

ij , (2.32a)

Habcd
i
α = −

1

6
εabcdef(γ

ef)α
βDβjL

ij + µ i εabcdef(γ
e)αβ(γ

f )γδtr(W
(iγW j)δ)W β

j , (2.32b)

Habcde = εabcdefH̃
f , (2.32c)

where

H̃a = −
i

24
(γ̃a)αβDk

αD
l
βLkl +

µ

8
tr(W kγaW l)DγkW

γ
l +

3µ i

8
tr(W kγabcWk)Fbc (2.33)

and all lower dimension components of H vanish. The superfield Lij is now required to

satisfy the differential equation

D(i
αL

jk) = µ i εαβγδtr(W
(iβW jγ)W k)δ . (2.34)
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The highest dimension component of eq. (2.31) implies

DaH̃
a −

i

16

(

[Di
αW

jα, Lij ]−
8

3
{W α

i ,DαjL
ij}

)

=
µ

8
εabcdeftr(FabFcd)Fef . (2.35)

The component projection of H̃a corresponds to the current with a deformed conservation

equation as described above.

3 Chiral anomaly in N = (1, 0) harmonic superspace

In this section we discuss the general aspects of covariant and consistent anomalies in 6D

N = (1, 0) supersymmetric gauge theories.

3.1 Effective action in non-anomalous gauge theories

Let us consider an anomaly-free gauge theory in N = (1, 0) harmonic superspace. The

effective action Γ of such a theory may always be chosen to be a gauge-invariant functional,

Γ = Γ[V ++], of the analytic gauge prepotential V ++ = V ++
A TA taking its values in the Lie

algebra of the gauge group. The generators of the gauge group, TA, will be normalised so

that tr(F)(T
AT B) = δAB in the fundamental representation. If the prepotential is perturbed,

V ++ → V ++ + δV ++, the variation of the effective action can be represented in the form

δΓ =

∫

dζ (−4) δV ++
A L++A = tr(F)

∫

dζ (−4) δV ++L++ , (3.1a)

D+
αL

++ = 0 , (3.1b)

for some effective current L++ = L++
A TA = L++(V ++). The effective action is invariant

under infinitesimal gauge transformations

δλV
++ = −D++λ , (3.2)

where the gauge parameter λ = λAT
A is analytic, D+

αλ = 0.

The invariance condition δλΓ = 0 implies that the effective current obeys the harmonic

shortness constraint

D++L++ = 0 . (3.3)

The general solution to this constraint reads

L++ = eibL++
τ e−ib , L++

τ (z, u) = Lij(z)u+
i u

+
j , (3.4)
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where Lij(z) obeys, as a consequence of (3.1b), the conservation equation

D(i
αL

jk) = 0 . (3.5)

Here b = b(z, u) is the bridge superfield, see Appendix A for the technical details.

The analyticity constraint D+
αV

++ = 0 can always be solved as

V ++ = (D+)4M−− , (3.6)

where M−− is an unconstrained superfield (subject to a certain reality condition) on the full

harmonic superspace. It is defined modulo gauge transformations

δξM
−− = D+

α ξ
(−3)α , (3.7)

which do not change V ++ for any unconstrained gauge parameter ξ(−3)α. We emphasise that

(3.2) and (3.7) are two different gauge symmetries. The gauge transformation (3.7) is absent

when one works solely with V ++.

The vector multiplet can be described either in terms of V ++ or in terms of M−−. We

will refer to these descriptions as V -formulation and M-formulation, respectively. The gauge

freedom in the V -formulation is given by (3.2). Let us now discuss, in some more detail, the

gauge freedom in the M-formulation.

When dealing with M−−, it is natural to express the analytic gauge parameter λ in (3.2)

via an unconstrained one to be denoted ρ(−4),

λ = (D+)4ρ(−4) . (3.8)

Then the λ-transformation (3.2) results in the following variation of M−−

δλM
−− = −D++ρ(−4) , (3.9)

modulo a ξ-transformation (3.7). The complete gauge freedom in the M-formulation is

δM−− = −D++ρ(−4) +D+
α ξ

(−3)α . (3.10)

The prepotential M−− has the following harmonic expansion:

M−−(z, u) = M ij(z)u−
i u

−
j +

∞
∑

κ=1

M (i1...ikj1...jk+2)(z)u+
i1
. . . u+

ik
u−
j1
. . . u−

jk+2
. (3.11)

A similar series can be introduced for the gauge parameter ρ(−4)

ρ(−4)(z, u) =
∞
∑

κ=0

ρ(i1...ikj1...jk+4)(z)u+
i1
. . . u+

ik
u−
j1
. . . u−

jk+4
. (3.12)
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Then the transformation law (3.9) tells us that all the superfields M (i1...ikj1...jk+2), k ≥ 1, in

the Fourier series (3.11) can be gauged away algebraically. In the resulting gauge

M−−(z, u) = M ij(z)u−
i u

−
j , (3.13)

the local symmetry (3.9) is completely fixed. However, we still have the freedom to perform ξ-

transformations (3.7) generated by a single harmonic-independent parameter ξijk α(z), which

originates as ξ(−3)α(z, u) = 4
3
ξijk α(z)u−

i u
−
j u

−
k . The gauge superfieldM ij(z) may be recognised

as Mezincescu’s prepotential [31, 32, 46]. We will refer to the unconstrained superfield

M−−(z, u) defined by (3.6) as the generalised Mezincescu prepotential.

The above discussion shows that all the superfields M (i1...ikj1...jk+2), k ≥ 1, in the Fourier

series (3.11) may be interpreted as compensators, for all of them can be gauged away al-

gebraically by applying local transformations (3.9).5 Thus in the M-formulation, the local

ξ-invariance (3.7) plays the role of genuine gauge transformations while the ρ-gauge freedom

(3.9) becomes purely compensating. The significance of this observation is that, in general,

the compensating gauge symmetries are known to be non-anomalous [54]. This means that

in the M-formulation the presence of chiral anomalies is equivalent to the fact that the local

ξ-invariance (3.7) becomes anomalous.

For our subsequent discussion, it is instructive to look at the gauge transformations of

M−− in the τ -frame. By construction, the relation (3.6) is defined in the λ-frame, where

the gauge-covariant spinor derivative D+
α has no gauge connection, D+

α = D+
α . If the ana-

lytic prepotential is subject to a perturbation, V ++ → V ++ + δV ++, then the generalised

Mezincescu prepotential also changes, M−− → M−− + δM−−, such that

δV ++ = (D+)4δM−− . (3.14)

This relation in the τ -frame becomes

δV ++
τ = (D+)4δM−−

τ , (3.15)

where

δV ++
τ = e−ibδV ++eib , δM−−

τ = e−ibδM−−eib . (3.16)

For δM−−
τ the gauge transformations (3.7) and (3.9) read, respectively,

δξM
−−
τ = D+

α ξ
(−3)α
τ , (3.17a)

δλM
−−
τ = −D++ρ(−4)

τ , (3.17b)

5One of the most familiar examples of compensators is the scalar field of the Stueckelberg formulation,

which is used to introduce a local gauge invariance in the theory with a massive vector field.

11



where

ξ(−3)α
τ = e−ibξ(−3)αeib , ρ(−4)

τ = e−ibρ(−4)eib . (3.18)

Unlike the original gauge transformations (3.7) and (3.9) in the λ-frame, the spinor deriva-

tive in (3.17a) is gauge covariant, while the harmonic derivative in (3.17b) has no gauge

connection.

In the τ -frame, the superfields δM−−
τ , ξ

(−3)α
τ and ρ

(−4)
τ have the following harmonic ex-

pansions:

δM−−
τ (z, u) = δM ij(z)u−

i u
−
j +

∞
∑

κ=1

δM (i1...ikj1...jk+2)(z)u+
i1
. . . u+

ik
u−
j1
. . . u−

jk+2
, (3.19)

ξ(−3)α
τ (z, u) =

4

3
ξijk α(z)u−

i u
−
j u

−
k + . . . , (3.20)

ρ(−4)
τ (z, u) =

∞
∑

κ=0

ρ(i1...ikj1...jk+4)
τ (z)u+

i1
. . . u+

ik
u−
j1
. . . u−

jk+4
. (3.21)

It is clear that the gauge freedom (3.17b) may be used to impose a gauge condition

δM−−
τ (z, u) = δM ij(z)u−

i u
−
j . (3.22)

The residual gauge transformations, which preserve the gauge, are generated by

ξ(−3)α
τ (z, u) =

4

3
ξijk α(z)u−

i u
−
j u

−
k , ρ(−4)(z, u) =

1

3
Di

αξ
jklαu−

i u
−
j u

−
k u

−
l . (3.23)

In accordance with (3.17a), the Mezincescu prepotential transforms as

δξMij = Dk
αξ

α
ijk . (3.24)

One can use the operator (D+)4 in (3.14) to restore the full superspace measure in (3.1a)

and to represent the variation of the effective action in two equivalent forms

δΓ = tr(F)

∫

d6|8zdu δM−−L++ = tr(F)

∫

d6|8zdu δM−−
τ L++

τ . (3.25)

where the effective current L++
τ is given by eq. (3.4). In the τ -frame, the harmonic integral

can be easily computed to result with

δΓ =
1

3

∫

d6|8z δM
ij
ALA

ij . (3.26)

The invariance of the effective action under the ξ-transformations (3.24), δξΓ = 0, is equiv-

alent to the analyticity constraint on the effective current Lij ,

D(i
αL

jk) = 0 . (3.27)

The λ (or ρ) gauge freedom is completely gone once the gauge condition (3.22) has been

chosen.
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3.2 Chiral anomaly and deformed conservation laws

As was pointed out in the previous subsection, in non-anomalous gauge theories the

effective current L++ obeys the constraints of Grassmann analyticity (3.1b) and harmonic

shortness (3.3). Either of these constraints may, in principle, be violated in theories which

suffer from chiral anomalies depending on which of the gauge transformations, (3.2) or (3.7),

becomes broken. We recall that eq. (3.2) describes the gauge freedom in the V -formulation

while in the M-formulation the gauge freedom is larger and is given by (3.10). In the latter

case the ρ-transformation is compensating and, therefore, non-anomalous [54]. It is the

ξ-transformations which are anomalous in the M-formulation.

In those supersymmetric gauge theories which suffer from chiral anomalies at the quantum

level, the V -formulation and the M-formualtion become non-equivalent as they are described

by two different effective currents which we denote by L++
an and L++

Mez, respectively.

In the V -formulation, the effective current L++
an remains analytic while the harmonic

shortness constraint (3.3) may be broken

D+
αL

++
an = 0 , D++L++

an = A(+4) . (3.28)

In contrast, in the M-formulation the effective current L++
Mez must obey the harmonic short-

ness condition (3.3) while the Grassmann analyticity constraint may be deformed

D++L++
Mez = 0 , D+

αL
++
Mez = A(+3)

α . (3.29)

Here A(+4) and A
(+3)
α are some composite operators of the vector multiplet which, in the non-

abelian case, must obey the Wess-Zumino consistency condition [1] (see the next subsection).

Let us denote the difference between L++
an and L++

Mez by L̃++,

L̃++ = L++
an − L++

Mez . (3.30)

By construction, this superfield obeys

D++L̃++ = A(+4) , D+
α L̃

++ = −A(+3)
α . (3.31)

Thus, given the superfield L̃++, one could transfer the chiral anomaly from one formulation

to the other.

According to the results of the previous section, see eq. (2.29), the admissible deformation

of analyticity of the effective current reads

A(+3)
α = i κ εαβγδW

+βW+γW+δ . (3.32)

One of the aims of this work is to derive this expression for the chiral anomaly by analysing

the short distance behaviour of the hypermultiplet propagator. The explicit form of A(+4)

will be be discussed in section 5.
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3.3 Consistent chiral anomaly in harmonic superspace

In this subsection we make use of theM-formulation in which the variation of the effective

action is given by the full-superspace integral (3.25), and the chiral anomaly appears as a

deformation of the Grassmann analyticity constraint for the effective current (3.29). Since

the V -formulation will not be discussed in this subsection, we omit the subscript ‘Mez’

assuming that we always work with the M-formulation, L++
Mez ≡ L++.

Let us consider the variation of the effective action (3.25), where δM−− is the ξ-gauge

transformation (3.7). The Wess-Zumino consistency condition [1] for this variation implies

(δξ1δξ2 − δξ2δξ1)Γ = δ[ξ1,ξ2]Γ , (3.33)

where ξ1 and ξ2 are two gauge parameters taking values in the Lie algebra of the gauge

group. In the non-abelian case the Wess-Zumino consistency condition (3.33) becomes a

non-trivial constraint for the effective action which may, in principle, be solved using the

descent equation approach [6]. In this section, however, to construct the consistent chiral

anomaly we will follow the ideas of Leutwyler [8] generalised to the superfield formalism.

Note that Leutwyler’s approach has proved to be very efficient for obtaining the consistent

anomalies of 4D N = 1 supersymmetric gauge theories in superspace [23, 24].

Let TA be the generators of the gauge group. The prepotential M−− may be written as

a linear combination of the generators,

M−−(z, u) = M−−
A (z, u)TA . (3.34)

Then, the variation (3.25) can be cast in the form

δΓ[M−−] =

∫

d6|8zdu δM−−
A L++A(M−−) , (3.35)

where

L++A = tr(F)(T
AL++) . (3.36)

Here the effective current L++ is treated as a function of the prepotential M−− (possibly,

with superspace derivatives). The variation (3.35) is integrable provided that the effective

current obeys
δL++B(z2, u2)

δM−−
A (z1, u1)

−
δL++A(z1, u1)

δM−−
B (z2, u2)

= 0 . (3.37)

For such an effective current the variation (3.35) may be formally integrated

Γ[M−−] =

∫

d6|8zduM−−
A

∫ 1

0

dy L++A(yM−−) . (3.38)
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For anomalous gauge theories, however, direct quantum computations usually result in

an effective current which fails to satisfy (3.37) in the non-abelian case. We denote such

a current by L++
cov , emphasising that D+

αL
++
cov = A

(+3)
α is a gauge-covariant superfield. The

corresponding part of the variation of effective action with this current reads

δΓcov[M
−−] =

∫

d6|8zdu δM−−
A L++A

cov (M−−) . (3.39)

Given the effective current L++
cov , one can still construct a functional Γ[M−−] by the rule

(3.38),

Γ[M−−] =

∫

d6|8zduM−−
A

∫ 1

0

dy L++A
cov (yM−−) . (3.40)

The general variation of this functional differs from (3.39) by the consistency terms which

we denote here by δΓcons,

δΓ[M−−] = δΓcov[M
−−] + δΓcons[M

−−] , (3.41)

where

δΓcons[M
−−] =

∫ 1

0

dy X(y) , (3.42a)

X(y) = y

∫

d6|8z1du1d
6|8z2du2 δM

−−
A (z1, u1)M

−−
B (z2, u2)

×

[

δL++B
cov (yM−−(z2, u2))

δ(yM−−
A (z1, u1))

−
δL++A

cov (yM−−(z1, u1))

δ(yM−−
B (z2, u2))

]

. (3.42b)

Obviously, the variation (3.41) is integrable as it is derived from the functional (3.40). Thus,

given an effective current L++
cov which does not satisfy the consistency condition (3.37), it

is always possible to construct the consistency terms (3.42) such that the variation (3.41)

becomes integrable.

The relation between the analytic and Mezincescu’s prepotentials (3.6) may be used to

prove the useful identity
δL++B(z2, u2)

δM−−
A (z1, u1)

=
δL++B(z2, u2)

δV ++
A (z1, u1)

. (3.43)

This identity allows us to represent the consistency terms (3.42b) in the equivalent form

X(y) = y

∫

d6|8z1du1d
6|8z2du2 δM

−−
A (z1, u1)M

−−
B (z2, u2)

×

[

δL++B
cov (yV ++(z2, u2))

δ(yV ++
A (z1, u1))

−
δL++A

cov (yV ++(z1, u1))

δ(yV ++
B (z2, u2))

]

. (3.44)

Here we consider the effective current as a function of the analytic prepotential V ++ rather

than the generalised Mezincescu prepotential M−−.
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In this subsection, we have so far been considering the general variation δM−−. The

consistent chiral anomaly appears when the ξ-gauge variation (3.7) is substituted in (3.41).

In particular, eq. (3.39) turns into

δξΓcov =

∫

d6|8zdu ξ
(−3)α
A A(+3)A

α , (3.45)

where

A(+3) = D+
αL

++
cov , (3.46)

and ξ(−3)α = ξ
(−3)α
A TA. The consistency terms δξΓcons have the form (3.42a) with

X(y) = −y

∫

d6|8z1du1d
6|8z2du2 ξ

(−3)α
A (z1, u1)M

−−
B (z2, u2)

δA
(+3)A
α (yV ++(z1, u1))

δ(yV ++
B (z2, u2))

. (3.47)

The relation (3.47) follows from (3.44) upon substituting the ξ-gauge variation (3.7), inte-

grating by parts the derivative D+
α and taking into account that only the last term in brackets

in (3.44) may contribute since the other term is analytic in (z1, u1) by construction. The

equation (3.46) has also been applied.

We emphasise that in this section we discussed the properties of chiral anomaly for general

N = (1, 0) supersymmetric gauge theories in harmonic superspace. In the next section we

will explicitly compute the covariant anomaly A
(+3)
α and the corresponding consistency terms

for the model of a hypermultiplet interacting with an external vector multiplet.

4 Chiral anomaly for the hypermultiplet effective ac-

tion

In this section we analyse the short-distance behaviour of the propagator for the hy-

permultiplet coupled to a background vector multiplet, and then apply the results of this

analysis to compute the covariant and consistent chiral anomalies.

4.1 Hypermultiplet effective action

In harmonic superspace, the hypermultiplet is described by an analytic superfield q+,

D+
α q

+ = 0, and its tilde-conjugate q̃+. The classical action of the hypermultiplet interacting

with the gauge superfield V ++ has the standard form [44, 41]

S = −

∫

dζ (−4) q̃+D++q+ , D++ = D++ + iV ++ . (4.1)
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This action is invariant under infinitesimal gauge transformations (3.2) with hypermultiplets

transforming as

δq+ = iλ q+ , δq̃+ = −i q̃+λ , (4.2)

where λ is analytic gauge parameter. The hypermultiplet is assumed to transform in some

representation of the gauge group.

The effective action in the hypermultiplet model (4.1) is given by

Γ = iTr lnD++ = −i Tr lnG(1,1) , (4.3)

where the functional trace ‘Tr’ corresponds to the space of analytic superfields of U(1) charge

+1, and G(1,1) is the hypermultiplet propagator obeying the equation

D++
1 G(1,1)(1|2) = δ

(3,1)
A (1|2)1 . (4.4)

Here 1 is the unit matrix, and δ
(3,1)
A (1|2) is the analytic delta-function which is related to

the full superspace delta-function δ6|8(z1 − z2) as

δ
(q,4−q)
A (1|2) = (D+

1 )
4δ6|8(z1 − z2)δ

(q−4,4−q)(u1, u2) , (D+)4 := −
1

96
εαβγδD+

αD
+
β D

+
γ D

+
δ .

(4.5)

The solution to (4.4) is derived in complete analogy with the 4D N = 2 and 5D N = 1 cases

[47, 51]. The solution [35] is

G(1,1)(1|2) =
1
⌢

�

(D+
1 )

4(D+
2 )

4 δ
6|8(z1 − z2)

(u+
1 u

+
2 )

3
1 , (4.6)

where
⌢

� is the gauge covariant d’Alembertian operator which maps the space of covariantly

analytic superfields into itself,

⌢

�=
1

2
(D+)4D−−D−− . (4.7)

Acting on an analytic superfield ΦA, D+
αΦA = 0, it can equivalently be written as [35]

⌢

� ΦA =

(

DaDa −W+αD−
α +

1

4
(D−

αW
+α)−

1

4
(D+

αW
+α)D−−

)

ΦA . (4.8)

It is instructive to compare this expression for the 6D N = (1, 0) analytic d’Alembertian
⌢

�

with its 4D N = 2 and 5D N = 1 cousins [47, 55].

The definition of the effective action (4.3) is purely formal, since the operator D++ maps

the space of covariantly analytic superfields of U(1) charge +1 into the space of covariantly

analytic superfields of U(1) charge +3. However, the variation of the effective action

δΓ = −Tr
{

δV ++G(1,1)
}

(4.9)
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makes sense. Explicitly, it can be written in the form

δΓ = tr(F)

∫

dζ (−4)δV ++L++
an , (4.10a)

L++
an = −G(1,1)(1|2)|1=2 . (4.10b)

The definition (4.9) is completely analogous to those in the 4D N = 2 [50] and 5D N = 1

cases [51]. The specific feature of the 6D case is that the variation (4.9) is not integrable

due to chiral anomalies.

We point out that the effective current (4.10b) is analytic owing to the analyticity of

Green’s function (4.6) with respect to both arguments. Starting from this expression for the

propagator, it is possible to construct the effective current L++
Mez which is not analytic but

satisfies the harmonic shortness constraint (3.29). For this purpose we revisit the form of

the propagator in harmonic superspace developed in [50].

Recall that in the τ -frame the covariant spinor derivative D+
α is linear in harmonic vari-

ables, D+
α = Di

αu
+
i . For this derivative one can prove a simple identity

D+
2αδ

6|8(z1 − z2) = [−(u+
1 u

+
2 )D

−
1α + (u−

1 u
+
2 )D

+
1α]δ

6|8(z1 − z2) . (4.11)

This identity, together with the algebra of gauge covariant derivatives (A.3), allows one to

derive the useful property

(D+
1 )

4(D+
2 )

4 δ
6|8(z1 − z2)

(u+
1 u

+
2 )

q
1 = (D+

1 )
4

[

1

(u+
1 u

+
2 )

q−4
(D−

1 )
4 +

(u−
1 u

+
2 )

(u+
1 u

+
2 )

q−3
∆−−

1 (4.12)

+
⌢

�1
(u−

1 u
+
2 )

2

(u+
1 u

+
2 )

q−2
+

3− q

4

(u−
1 u

+
2 )

3

(u+
1 u

+
2 )

q−1
(D+

αW
+α)

]

δ6|8(z1 − z2)1 ,

where

∆−− = −
i

4
(γ̃a)αβDaD

−
αD

−
β −W−αD−

α +
1

4
(D−

αW
−α) . (4.13)

Setting q = 3 in (4.12), we get the following equivalent form for the hypermultiplet propa-

gator (4.6)

G(1,1)(1|2) = −

∫ ∞

0

d(is)(is)ǫeis
⌢

�1(D+
1 )

4

[

(D−
1 )

4(u+
1 u

+
2 ) + ∆−−

1 (u−
1 u

+
2 )

+
⌢

�1
(u−

1 u
+
2 )

2

(u+
1 u

+
2 )

]

δ6|8(z1 − z2)1 . (4.14)

Here we have applied Schwinger’s proper-time representation for the inverse d’Alembertian

operator with ǫ being the ultraviolet regularisation parameter which should be set to zero

at the end of computations. The expression (4.14) is manifestly covariantly analytic with

respect to the first argument but the analyticity with respect to the other argument is

implicit. It is an instructive exercise to check that (4.14) obeys D+
2αG

(1,1)(1|2) = 0.
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It is natural to represent (4.14) as a sum of two terms

G(1,1)(1|2) = G(1,1)
reg (1|2) +G

(1,1)
sing (1|2) , (4.15a)

G(1,1)
reg (1|2) = −

∫ ∞

0

d(is)(is)ǫeis
⌢

�1(D+
1 )

4
[

(D−
1 )

4(u+
1 u

+
2 ) + ∆−−

1 (u−
1 u

+
2 )
]

δ6|8(z1 − z2)1 ,(4.15b)

G
(1,1)
sing (1|2) = −

∫ ∞

0

d(is)(is)ǫeis
⌢

�1(D+
1 )

4
⌢

�1
(u−

1 u
+
2 )

2

(u+
1 u

+
2 )

δ6|8(z1 − z2)1 . (4.15c)

The idea of this splitting is that, at coincident superspace points, G
(1,1)
reg can have UV quantum

divergences, but has no singularity in the harmonic distribution. In contrast, G
(1,1)
sing contains

a harmonic singularity at coincident superspace points which is potentially dangerous, since

there is no unambiguous procedure for regularising such divergencies. For the 4D N = 2 and

5D N = 1 hypermultiplet models, it was shown in [50, 51] that these harmonic singularities

are not dangerous because all contributions to the effective action from the term like (4.15c)

are vanishing owing to properties of the analytic delta-function at coincident superspace

points. However, we will show below that the 6D distribution (4.15c) does give non-vanishing

contributions to the effective action which are non-analytic and which correspond to the

chiral anomaly.

The two parts of the hypermultiplet propagator (4.15b) and (4.15c) obey the following

differential equations for ǫ = 0

D++
1 G(1,1)

reg (1|2) = −2(u−
1 u

+
2 )(D

+
1 )

4δ6|8(z1 − z2) , (4.16a)

D++
2 G(1,1)

reg (1|2) = 0 , (4.16b)

D++
1 G

(1,1)
sing (1|2) = δ

(3,1)
A (1|2) + 2(u−

1 u
+
2 )(D

+
1 )

4δ6|8(z1 − z2) , (4.16c)

D++
2 G

(1,1)
sing (1|2) = −δ

(1,3)
A (1|2) . (4.16d)

The expression in the right-hand side of (4.16a) contains no harmonic singularity and, thus,

(4.16a) vanishes at coincident superspace points because of insufficient number of Grassmann

derivatives acting on the superspace delta-function. The expressions (4.16c) and (4.16d), in

contrast, contain harmonic singularities due to the harmonic delta-functions, see (4.5). These

harmonic singularities require a regularisation which may make the expressions (4.16c) and

(4.16d) non-trivial at coincident points. Such singular terms should be removed from the

propagator in order to properly define the effective current L++
Mez which has to obey the

harmonic shortness constraint (3.29). Therefore, comparing (4.16) with (3.28) and (3.29),

we conclude that at coincident superspace points G
(1,1)
reg is responsible for the effective current

L++
Mez,

L++
Mez = −G(1,1)

reg (1|2)|1=2 , (4.17a)
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while G
(1,1)
sing generates L̃++,

L̃++ = −G
(1,1)
sing (1|2)|1=2 . (4.17b)

While (4.17a) can be seen to contain no harmonic singularities, a harmonic regularisation is

still required to give meaning to (4.17b).

According to eqs. (3.28) and (3.29), the anomalies A(+4) and A
(+3)
α corresponding to the

V - and M-formulations of the theory are defined by the following formal expressions

A(+4) = −D++[G(1,1)(1|2)|1=2] = −D++[G
(1,1)
sing (1|2)|1=2] , (4.18a)

A(+3)
α = −D+

α [G
(1,1)
reg (1|2)|1=2] = D+

α [G
(1,1)
sing (1|2)|1=2] . (4.18b)

Below, we compute the chiral anomaly A
(+3)
α by analysing the short distance behaviour of

the hypermultiplet propagator. The structure of A(+4) in the abelian case will be discussed

in section 5.

4.2 Covariant chiral anomaly

According to (4.18b), the chiral anomaly in Mezincescu’s formulation of the gauge the-

ory is defined by the part of the hypermultiplet propagator (4.15c). Using the identity

(D+)4
⌢

�=
⌢

� (D+)4 the latter may be represented in the equivalent form

G
(1,1)
sing (1|2) = ǫ

∫ ∞

0

d(is)(is)ǫ−1eis
⌢

�1
(u−

1 u
+
2 )

2

(u+
1 u

+
2 )

(D+
1 )

4δ6|8(z1 − z2)1 . (4.19)

Note that this expression is analytic only in the first argument. Hence, eq. (4.18b) implies

A(+3)
α = D+

2αG
(1,1)
sing (1|2)|1=2

= −ǫ

∫ ∞

0

d(is)(is)ǫ−1eis
⌢

�1(u−
1 u

+
2 )

2(D+
1 )

4D−
1αδ

6|8(z1 − z2)1|1=2 , (4.20)

where we applied the identity (4.11) to achieve the last line.

In (4.20), one has to expand the exponent of the operator (4.8) in a series and accumulate

eight Grassmann derivatives to apply the identity

(D+)4(D−)4δ8(θ1 − θ2)|1=2 = 1 . (4.21)

It is sufficient to consider a covariantly constant on-shell vector multiplet

DaW
+α = 0 , D+

αW
+α = D−

αW
+α = 0 . (4.22)
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For such a background, the form of the operator (4.8) simplifies:
⌢

�= DaDa −W+αD−
α . (4.23)

Taking this into account, from (4.20) we find

A(+3)
α = −

2

3
ǫ

∫ ∞

0

d(is)(is)ǫ+2εαβγδW
+βW+γW+δeisD

aDaδ6(x1 − x2)1|1=2

= −
i

96π3
εαβγδW

+βW+γW+δǫ

∫ ∞

0

d(is)(is)ǫ−1 . (4.24)

Here, in the last line, we applied the identity

ei ǫD
aDaδ6(x1 − x2)1|x1=x2

=

∫

d6k

(2π)6
ei ǫ (D

a+ika)(Da+ika)
1 = −

1

64π3ǫ3
+O(ǫ−2) , (4.25)

where the terms O(ǫ−2) are irrelevant for small ǫ.

The integration over the proper time always assumes the exponent e−αs, α > 0, in the

integrand which makes the integral convergent. In the limit of small ǫ, the identity

lim
ǫ→0

ǫ

∫ ∞

0

d(is)(is)ǫ−1e−αs = 1 (4.26)

yields

A(+3)
α = −

i

96π3
εαβγδW

+βW+γW+δ . (4.27)

The Lie-algebra valued field strength W+α and gauge parameter ξ(−3)α may be written

as linear combinations of the generators TA of the gauge group,

W+α = W+α
A TA , ξ(−3)α = ξ

(−3)α
A TA . (4.28)

In terms of the superfields W+α
A , the anomaly (4.27) reads

A(+3)A
α = str(TAA(+3)

α ) = −
i

96π3
dABCDεαβγδW

+β
B W

+γ
C W+δ

D , (4.29)

where dABCD is the gauge-invariant tensor (2.26). Comparing (4.29) with (2.29) we find the

value of the coefficient κ for the model of hypermultiplet in external gauge superfield

κ = −
1

96π3
. (4.30)

The covariant chiral anomaly manifests itself as a deformation of the analyticity of the

effective current (3.29) which is expressed through the part of the hypermultiplet propagator

(4.16d) with harmonic singularities at coincident points. In the four-dimensional case, it was

proved in [50] that all contributions to the hypermultiplet effective action from such a term

are vanishing, and the analyticity of the effective current is preserved. In this paper, we

demonstrate that in the six-dimensional case this term in the hypermultiplet propagator

plays an important role since it generates the anomalous part of the hypermultiplet effective

action.

21



4.3 Consistency terms

The procedure for constructing the consistent chiral anomaly in harmonic superspace is

described in sect. 3.3. The consistency terms are given by the non-local functional (3.47).

Substituting the covariant chiral anomaly in the form (4.29) into this functional we get

X(y) =
i

32π3
dABCDy

∫

d6|8z1du1d
6|8z2du2 ξ

(−3)α
A (z1, u1)εαβγδM

−−
E (z2, u2)

×

(

W
+β
B (z1, u1)W

+γ
C (z1, u1)

δW+δ
D (z1, u1)

δV ++
E (z2, u2)

)
∣

∣

∣

∣

V ++→yV ++

. (4.31)

Note that the harmonic zero-curvature equation (A.12) implies the relation

δV −−(z1, u1)

δV ++(z2, u2)
= eib(z1,u1)(D+

2 )
4

[

e−ib(z2,u2)
δ6|8(z1 − z2)

(u+
1 u

+
2 )

2

]

, (4.32)

where b(z, u) = bA(z, u)T
A is the Lie-algebra-valued bridge superfield (see eq. (A.7)). Taking

advantage of (4.32) and (A.15), the variational derivative of the superfield strengthW+α may

be brought to the form

δW+α
D (z1, u1)

δV ++
E (z2, u2)

=
i

24
εαβγδD+

1βD
+
1γD

+
1δ(D

+
2 )

4

[

eib(z1,u1)e−ib(z2,u2)
δ6|8(z1 − z2)

(u+
1 u

+
2 )

2

]

DE

. (4.33)

Substituting this variation into (4.31) and integrating over z2 we get the final expression for

the consistency terms

X(y) =
dABCD

128π3
y

∫

d6|8zdudu′ V
++
E (z, u′)

(u+u+′)2

×
{

D+
αD

+
β D

+
γ [ξ

(−3)α
A W

+β
B W

+γ
C ]

(

eib(z,u)e−ib(z,u′)
)

DE

}
∣

∣

∣

V ++→yV ++
. (4.34)

At the end of this section we give the resulting expression for the consistent chiral anomaly

in the N = (1, 0) superspace, which is a sum of the covariant anomaly (3.45) with A
(+3)A
α as

in (4.29), and the consistency term (3.42a) with X(y) given by (4.34)

δξΓ = −
i

96π3
dABCD

∫

d6|8zdu ξ
(−3)α
A εαβγδW

+β
B W

+γ
C W+δ

D

+
dABCD

128π3

∫ 1

0

dy y

∫

d6|8zdudu′ V
++
E (z, u′)

(u+u+′)2

×
{

D+
αD

+
β D

+
γ [ξ

(−3)α
A W

+β
B W

+γ
C ]

(

eib(z,u)e−ib(z,u′)
)

DE

}
∣

∣

∣

V ++→yV ++
. (4.35)

An interesting feature of this expression is that it is local in the superspace coordinates

zA = (xa, θαi ), but is non-local in the harmonics u. This resembles the SYM classical action

in the harmonic superspace which is also non-local in the harmonic variables [42].
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4.4 Abelian limit

The field strength W+α depends linearly on the harmonic connection V −−, in accordance

with (A.15), while V −− is a non-linear function of the analytic prepotential V ++ in the non-

abelian case. The explicit expression for V −− in terms of V ++ was given in [43]. Modulo

a τ -gauge transformation, the bridge superfield b(z, u) is also a non-linear function of V ++

which was presented in [56]. The formula (4.34) suggests that in all these non-linear functions

the analytic prepotential V ++ should be replaced with yV ++, making X(y) a highly non-

trivial function of y. However, in the abelian case this dependence on y simplifies such

that the integration over y may be easily done in (3.42a). Indeed, in the abelian case the

variational derivative (4.33) reduces to

δW+α(z1, u1)

δV ++(z2, u2)
=

i

24
εαβγδD+

1βD
+
1γD

+
1δ(D

+
2 )

4 δ
6|8(z1 − z2)

(u+
1 u

+
2 )

2
, (4.36)

so that the consistency term (4.31) reads

X(y) =
1

128π3
y3

∫

d6|8z1du1d
6|8z2du2 ξ

(−3)α(z1, u1)W
+β(z1, u1)W

+γ(z1, u1)

×M−−(z2, u2)D
+
1βD

+
1γD

+
1δ(D

+
2 )

4 δ
6|8(z1 − z2)

(u+
1 u

+
2 )

2

=
i

32π3
y3

∫

d6|8zdu ξ(−3)αεαβγδW
+βW+γW+δ . (4.37)

After integrating (4.37) over dy and adding the abelian version of (4.29), we get

δξΓ = −
i

384π3

∫

d6|8zdu ξ(−3)αεαβγδW
+βW+γW+δ . (4.38)

It shows that the consistent anomaly differs from the covariant anomaly (4.27) in the abelian

limit by the factor 1
4
. This interplay between the coefficients in the covariant and consis-

tent anomalies is the same as in the non-supersymmetric case [6, 7]. This is a non-trivial

check that the result (4.35) is the correct expression for consistent chiral anomaly in (1, 0)

superspace.

5 Concluding comments

In this paper, the chiral anomalies in general 6D N = (1, 0) supersymmetric gauge the-

ories realised in harmonic superspace have been computed. We started by recalling that

there exist two different (but related) approaches to formulate such gauge theories which are

based on the use of either the analytic gauge connection V ++ or the generalised Mezincescu
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prepotential M−−. Since the gauge prepotentials V ++ and M−− are different off-shell super-

multiplets, the gauge transformations in the V - and M-formulations are also different. They

are described by eqs. (3.2) and (3.10), respectively. This difference implies that the chiral

anomaly manifests itself quite differently in the two formulations: either as a deformation

of the harmonic shortness constraint of the effective current (3.28) in the V -formulation or

as a deformation of the Grassmann analyticity of the effective current, eq. (3.29), in the

M-formulation. In the M-formulation, the covariant anomaly is given by eq. (4.27). We

constructed consistency terms such that the full chiral anomaly obeys the Wess-Zumino con-

sistency condition. The procedure of constructing these consistency terms is a generalisation

of Leutwyler’s ideas [8] to gauge theories in 6D N = (1, 0) harmonic superspace.

Our results remain valid for the higher-derivative N = (1, 0) supersymmetric gauge

theory constructed in [57]. At the component level, the chiral anomalies in this theory were

discussed in [58].

In this section, we will discus in some detail the issue of constructing the chiral anomaly

in the V -formulation of gauge theory. In particular, we deduce an expression for the chiral

anomaly A(+4) in the abelian case. To construct this anomaly, we will follow the procedure

proposed in our recent work [29] which allows one to restore A(+4) when the expression for

A
(+3)
α is known.

In the M-formulation, the gauge theory is described by the effective current L++
Mez(z, u) =

u+
i u

+
j L

ij
Mez(z) obeying

D+
αL

++
Mez = i κ εαβγδW

+βW+γW+δ , (5.1)

where κ is given by (4.30) for the model of hypermultiplet interacting with background vector

multiplet. Let us introduce a superfield F++(z, u) as a solution of the equation

D+
αF

++ = i κ εαβγδW
+βW+γW+δ (5.2)

and defined modulo arbitrary shift of the form

F++ → F++ +H++ , D+
αH

++ = 0 . (5.3)

A particular solution of (5.2) is

F++ = −
i

2
κVαβW

+αW+β −
i

64
κ εαβγδVαβVγδD

+W+ , (5.4)

where Vαβ is the connection defined in (A.14b). This solution has the following important

property

D++F++ = −
i

2
κG++αβ∂αβV

++ , (5.5)
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where

G++αβ = W+αW+β +
1

16
εαβγδVγδD

+W+ , D+
γ G

++αβ = 0 . (5.6)

The property (5.5) shows that D++F++ is analytic and, thus, may appear as a part of the

anomaly superfield A(+4) in the V -formulation of the gauge theory.

Let us now introduce the following superfield

L
++ = L++

Mez − F++ , (5.7)

which is analytic due to the properties (5.1) and (5.2),

D+
αL

++ = 0 . (5.8)

However, unlike L++
Mez, this superfield is no longer holomorphic on CP 1,

D++
L
++ = A

(+4) , D+
αA

(+4) = 0 . (5.9)

Thus, the chiral anomaly is completely encoded in the analytic superfield A(+4) which is

defined modulo shifts

A
(+4) → A

(+4) −D++H++ , (5.10)

which follow from the freedom in the definition of F++, see (5.3).

For the choice of F++ as in eq. (5.4), the superfield A(+4) reads

A
(+4) =

i

2
κG++αβ∂αβV

++ . (5.11)

However, this superfield is not yet the anomaly A(+4) which corresponds to the V -formulation

of the gauge theory with effective current L++
an obeying (3.28). The problem is that (5.11)

does not satisfy the Wess-Zumino consistency condition. Indeed, it varies under the gauge

transofrmation (3.2) as

δλA
(+4) = −

i

2
κD++(G++αβ∂αβλ) . (5.12)

This implies that A(+4) cannot appear as the gauge variation of an effective action, δλΓ =
∫

dζ (−4)λA(+4), since δλ1
δλ2

Γ 6= δλ2
δλ1

Γ.

To resolve this problem, the arbitrariness (5.10) should be employed. Indeed, we propose

the following non-local expression for H++

H++(ζ) = −

∫

dζ ′(−4)G(2,0)(ζ, ζ ′)B(+4)(ζ ′) , (5.13a)

B
(+4) =

i

2
κ ∂αβ(V

++G++αβ) , (5.13b)
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where G(2,0)(ζ, ζ ′) is Green’s function

G(2,0)(ζ, ζ ′) =
1

�
(D+)4(D+′)4

[

δ6|8(z − z′)
(u+u−′)

(u+u+′)3

]

(5.14)

with the property

D++G(2,0)(ζ, ζ ′) = δ
(4,0)
A (ζ, ζ ′) . (5.15)

The expression (5.13) is chosen such that the superfield

A(+4) = A
(+4) −D++H++ = A

(+4) + B
(+4)

= i κG++αβ∂αβV
++ +

i

2
κV ++∂αβG

++αβ (5.16)

is analytic, D+
αA

(+4) = 0, and obeys the Wess-Zumino consistency condition. Indeed, we can

consistently associate with (5.16) an effective action Γ, since the variation defined by

δλΓ =

∫

dζ (−4)λA(+4) (5.17)

is integrable,

(δλ1
δλ2

− δλ2
δλ1

)Γ = 0 . (5.18)

We stress that the integrability condition (5.18) is nontrivial already in the abelian case since

the function (5.16) is not gauge invariant. This confirms that this function can consistently

describe the chiral anomaly in the V -formulation of the gauge theory.

It is very tempting to derive A(+4) by direct supergraph computations in the harmonic

superspace.6 Another important issue is to construct a generalisation of (5.16) to the case

of non-abelian chiral anomaly. We leave these issues for future studies.
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A Vector multiplet in harmonic superspace

Supersymmetric Yang-Mills theory in 6DN = (1, 0) harmonic superspace was formulated

in [41, 42, 43]. Here we briefly review this formulation following the harmonic superspace

notation of [45].

Let u+
i and u−

i be standard SU(2) harmonic variables, (u−
i , u+

i ) ∈ SU(2),

u+i = u−
i , u+iu−

i = 1 , (A.1)

with u+
i = εiju

+j. Let D++, D−− and D0 be the associated harmonic derivatives defined

as in [45]. Using the harmonics we introduce a new basis for the gauge-covariant spinor

derivatives

D±
α = u±

i D
i
α = D±

α + iV ±
α , V ±

α = u±
i V

i
α . (A.2)

In accordance with (2.2) the operators (A.2) obey the following (anti)commutation relations

{D+
α ,D

+
β } = 0 , (A.3a)

{D+
α ,D

−
β } = 2 i (γa)αβDa , (A.3b)

[Da,D
±
α ] = i (γa)αβW

±β , (A.3c)

[Da,Db] = iFab , (A.3d)

where W±α are the irreducible U(1) components of the field strength W iα,

W±α = u±
i W

iα . (A.4)

In the harmonic superspace setting, it is useful to combine the superspace gauge-covariant

derivatives with the harmonic ones,

DÂ = (Da,D
±
α ,D

++,D−−,D0) := (Da,D
±
α , D

++, D−−, D0) = DÂ + iVÂ . (A.5)

The gauge transformation of DÂ is analogous to (2.6),

DÂ −→ D′
Â
= eiτDÂe

−iτ . (A.6)

Since the gauge superfield parameter τ is harmonic independent, the harmonic derivatives

(D±±, D0) are gauge covariant.

The equation (A.3a) is the integrability condition for covariantly analytic superfields to

exist. This equation can be solved in terms of a bridge superfield b = b(z, u) defined by the

rule

D+
α = e−ibD+

α e
ib . (A.7)
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The introduction of the bridge superfield leads to a new gauge freedom, in addition to the

τ -gauge transformations (2.6). The complete gauge transformation law of b is

eib
′

= eiλeibe−iτ , (A.8)

where λ is a U(1) neutral analytic superfield, D+
αλ = 0.

The representation (A.5) for the gauge-covariant derivatives is called the τ -frame. When

it is important, we will attach a label ‘(τ)’ to the covariant derivatives in this representa-

tion, D(τ)Â. Using the bridge superfield one can introduce another representation for these

derivatives, which is usually referred to as the λ-frame,

D(τ)Â −→ D(λ)Â = eibD(τ)Âe
−ib = DÂ + iV(λ)Â . (A.9)

Below, we will consider all relations in the λ-frame, and we will omit the label ‘(λ)’. In the

λ-frame, the derivative D+
α is short, D+

α = D+
α , and hence V +

α = 0. However, two of the

three harmonic derivatives acquire gauge connections:

D++ = D++ + iV ++ , D−− = D−− + iV −− . (A.10)

As follows from the commutation relation [D+
α ,D

++] = 0, the gauge connection V ++ is

analytic,

D+
αV

++ = 0 . (A.11)

The connection V −− can be expressed via V ++ as a unique solution of the zero-curvature

condition

[D++,D−−] = D0 ⇐⇒ D++V −− −D−−V ++ + i [V ++, V −−] = 0 . (A.12)

The explicit expression for V −− in terms of V ++ was originally found by Zupnik [43]. In the

λ-frame, no τ -gauge freedom remains. Under the λ-gauge group, the connections V ++ and

V −− transform as

V ′±± = eiλV ±±e−iλ − i eiλD±±e−iλ . (A.13)

The λ-frame counterparts of the (anti-)commutation relations (A.3b) and (A.3c), in con-

junction with the identity [D−−,D+
α ] = D−

α , allow one to express the gauge connections

V −
α and Va and the field strength W+α in terms of V −−. The explicit expressions for the

connections are

V −
α = −D+

αV
−− , (A.14a)

Va =
i

8
(γ̃a)

αβD+
αD

+
β V

−− ⇐⇒ Vαβ = (γa)αβVa =
i

2
D+

αD
+
β V

−− . (A.14b)
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The expression for the field strength is

W+α =
i

24
εαβγδD+

β D
+
γ D

+
δ V

−− . (A.15)

As mentioned above, V −− is uniquely expressed in terms of the analytic connection V ++.

Thus, the superfield V ++ is a single prepotential in terms of which all the connections are

determined, in complete analogy with the 4D case [44, 43]. This prepotential is analytic,

but otherwise unconstrained.
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