
PACO 2017 Extended Abstract

Studying mixed precision techniques for the solution of
algebraic Riccati equations

Peter Benner1 Ernesto Dufrechou2 Pablo Ezzatti3 Alfredo Remón4

We evaluate different algorithms and the use of a mixed-precision ap-
proach for the solution of Algebraic Riccati Equations (AREs). The
mixed-precision method obtains an approximation to the solution us-
ing single-precision arithmetic and then, this approximation is improved
via a cheap iterative refinement. Some numerical results show that the
mixed-precision solver reports time and energy savings and also pro-
vides similar or even more accurate solutions than well-known methods
like the Sign Function or SDA on CPU-GPU platforms.

1 Introduction

We consider the solution of the algebraic Riccati equation (ARE)

0 = Rc (X) := Q+ ATX +XA−XGX, (1)

where A, Q and G ∈ Rn×n are given, and X ∈ Rn×n is the sought-after solution. Un-
der certain conditions [8], the ARE (1) has a unique c-stabilizing solution Xc, which is
symmetric positive semidefinite. (Here, Xc c-stabilizing means that Ac := A − GXc is
c-stable; i.e., it has all its eigenvalues in the open left half plane.)

The solution of AREs is required in some scientific and engineering applications, e.g.,
in linear quadratic optimal control (LQOC) and model order reduction problems. It
is a computationally intensive operation that involves O(n3) floating-point operations
(flops) and therefore, the use of high performance computing techniques and hardware is
necessary whenever n takes moderate to large values (n > 1, 000). Software packages as
MESS[1], PLiC[2] or the MATLAB Control System ToolboxTM provide support for the
solution of AREs.

2 Solution of AREs

A number of methods have been proposed for the solution of AREs (e.g., see [6]). In this
section we briefly review two of the more popular, the Sign Function and the Structure-
Preserving Doubling Algorithm (SDA) methods. Additionally, we review an iterative
refinement scheme that mixes single precision (SP) and double precision (DP) arithmetic
computations to get the maximum performance of the underlying hardware.

1Max Planck Institute for Dynamics of Complex Technical Systems, 30.106-Magdeburg, Germany,
benner@mpi-magdeburg.mpg.de

2Facultad de Ingenieŕıa, Universidad de la República, Montevideo, Uruguay,
edufrechou@fing.edu.uy

3Facultad de Ingenieŕıa, Universidad de la República, Montevideo, Uruguay,
pezzatti@fing.edu.uy

4Max Planck Institute for Dynamics of Complex Technical Systems, 30.106-Magdeburg, Germany,
remon@mpi-magdeburg.mpg.de

1

mailto:benner@mpi-magdeburg.mpg.de
mailto:edufrechou@fing.edu.uy
mailto:pezzatti@fing.edu.uy
mailto:remon@mpi-magdeburg.mpg.de

PACO 2017 Extended Abstract

2.1 The Sign Function method

The solution of an ARE (1) can be defined by the invariant subspaces of the pencil

H − λI2n, where H is the Hamiltonian matrix defined as H =

[
A G
−Q −AT

]
. Addition-

ally, it can be shown that from a basis of the H-invariant subspace corresponding to the
n eigenvalues in the open left half of the complex plane, the c-stabilizing solution of the
associated ARE [4] can be obtained. This solution can be computed by the Sign Function

of H, sign(H) = Y =

[
Y00 Y01
Y10 Y11

]
, and then solving an overdetermined system (e.g., via

the least squares method). The procedure is summarized in Algorithm GECRSG.

Algorithm GECRSG

H0 :=

[
A G
−Q −AT

]
for k = 0, 1, 2, . . . until convergence

Hk+1 := 1
2

(
Hk +H−1

k

)
(16n3 flops)

Solve

[
Y11

Y12 + In

]
X =

[
In − Y10
−Y00

]
(13n3 flops)

Note that the dimension of H doubles that of A and hence, a high performance matrix
inversion kernel is mandatory to enable the solution of large problems. However, GECRSG
exhibits a remarkable convergence rate that makes it very appealing. The variant here
evaluated employs a highly tuned CPU-GPU matrix inversion kernel, see [5] for details.

2.2 The Structure-Preserving Doubling Algorithm (SDA)

In the last years, the SDA has received considerable attention as an ARE solver because
of its simplicity, efficiency, and convergence properties [7].

Algorithm GESDA reflects a basic implementation of the SDA for the solution of an ARE.
The major operations (from the computational point of view) are annotated to their right
with the cost of a basic implementation. Let us consider only the iterative loop:

• The cost of the algorithm is (2/3 + 16)n3 flops per iteration. Its high cost can be
partially compensated by the parallel efficiency of the operations involved in the
routine, namely, matrix-matrix products and linear system solves.

• A practical convergence criterion is to check during the iteration for

‖Yk‖F
‖Xk+1‖F

< τS, (2)

with τS =
√
ε · n, and perform then 2 additional steps. The convergence of the iter-

ation is asymptotically quadratic, which ensures the maximum attainable accuracy.

2

PACO 2017 Extended Abstract

Algorithm GESDA

γ := max(1, 2 ‖A‖F)

Â := A− γIn
Q̂ := QÂ−1 ((2/3 + 2)n3 flops)

Ŵ := (ÂT + Q̂G)−1 (4n3 flops)

A0 := In + 2γŴ T

G0 := 2γ(Â−1G)Ŵ ((2/3 + 4)n3 flops)

X0 := 2γŴ Q̂ (2n3 flops)
for k = 0, 1, 2, . . . until convergence

Ŵ := GkXk (2n3 flops)

Â := (In + Ŵ)−1Ak ((2/3 + 2)n3 flops)

Yk := ÂXkAk (4n3 flops)
Xk+1 := Xk + Yk
if not convergence

Gk+1 := Gk + AkGk(In + Ŵ T)−1AT
k (6n3 flops)

Ak+1 := AkÂ (2n3 flops)
end if

The implementation evaluated in this work executes the most time consuming oper-
ations in the GPU while operations that exhibit a fine-grain parallelism are performed
in the CPU. Whenever it is possible, both processors concurrently perform their tasks,
reporting significant time savings. Finally, the computation of inverses is replaced by the
use of the LU factorization of the related matrix.

3 A mixed-precision ARE solver

In Benner et al. [3], the authors describe a Newton-like method for the solution of an
ARE. Given an approximation to the solution of the ARE, X0, the procedure (Algorithm
GEIR) performs an iterative refinement that successively approximates the solution X
until the desired precision is reached. At every step, GEIR solves a Lyapunov equation.

Algorithm GEIR:

for k = 0, 1, 2, . . . until convergence

Pk := Q+ ATXk +XkA−XkGXk

Solve
(
AT −GXk

)
Nk +Nk

(
AT −GXk

)
= Pk

Xk+1 := Xk +Nk

In practice, provided a relatively accurate X0, a few steps of algorithm GEIR are enough
to get the desired solution as this procedure is a variant of Newton’s method for AREs,
indicating quadratic convergence. The suitability of GEIR requires of a cheap method to
compute X0 and an efficient Lyapunov solver. The initial approximation, X0, can be
efficiently obtained executing some steps of GESDA, which can even be performed using SP
arithmetic. This way, the solver benefits from the larger performance that the hardware
offers in SP arithmetic computations (Intel CPUs are 2× faster and this factor is larger
for NVIDIA GPUs). An economic Lyapunov solver was presented in [5]. The solver
implements the Sign Function and relies on a tuned CPU-GPU matrix inversion kernel.

3

PACO 2017 Extended Abstract

Mojigata Hetfield
Processor NVIDIA K40 “Kepler” GK110B NVIDIA TitanX “Maxwell” GM220
Cores 2,880 3,072

G
P

U

Memory 12 GB GDDR5 12 GB GDDR5

C
P

U

Processor i7-4770 i7-6700
Cores 4 4
Frequency 3.40 GHz 3.40 GHz
Main memory 16 GB DDR3 64 GB DDR3
Compiler icc 14.0.0 icc 14.0.0

S
W

CUDA Version 6.5 8.0

Table 1: Platforms employed in the evaluation

4 Experimental evaluation

The evaluation focuses on two aspects, the time to solution and the energy consumption.
The test-cases evaluated were extracted from the Oberwolfach5 benchmark collection. In
particular, two instances of the steel profile (with n = 1, 357 and 5, 177) and another
from the flow meter problem (n = 9, 669). Although the three cases permit the use of
a low-rank solver, only the Sign Function implementation takes advantage of this feature.
Table 1 describes the hardware employed in this evaluation. A remarkable difference
between both platforms is that the performance of the GPU in Hetfield is 32× larger
when using SP arithmetic than using DP, while this factor reduces to 3× in Mojigata.
However, when using hybrid (CPU-GPU) variants these ratios can be smoothed.

Power/energy was measured via RAPL to gauge the consumption from the server’s
package and DRAM, and the NVML library to obtain the dissipation from the GPU.

We first evaluate the computational performance of the Sign Function and the SDA
fixing the number of iterations of each solver so that they reach comparable accuracy
results. The residual error is computed as

RRes = ‖Rc (X∗)‖F /(‖Q‖F + 2 ‖A‖F ‖X
∗‖F + ‖G‖F ‖A‖

2
F). (3)

The results summarized in Tables 2 and 3 show that both solvers behave differently
in the two platforms. While in Hetfield the Sign Function solver is clearly faster,
Mojigata seems to slightly favor the SDA solver. This behavior is explained by noting
that the implementation in SDA is more suitable to the GPU architecture, and the GPU
in Mojigata is more powerful (when using DP arithmetic). On the other hand, the Sign
Function implementation features a better CPU-GPU load-balance.

Mojigata Hetfield
problem # steps sign func. solver total sign func. solver total rel. res.

rail 1357 10 3.63 0.37 4.05 4.78 0.30 5.09 1.51E-17
rail 5177 11 71.81 10.45 82.81 154.52 11.76 166.55 4.96E-17
flow 9669 13 411.34 74.90 488.19 1093.64 72.59 1167.12 2.12E-10

Table 2: Run-times (in sec.) of the Sign Function solver.

For the mixed-precision scheme, we execute the proposal modifying the number of SDA
and iterative refinement and steps. At every step of the iterative refinement, a Lyapunov
equation is solved via the Sign Function method. Once again we fixed the parameters so
that a comparable accuracy is reached. The results, summarized in Table 4, demonstrate

5Available at https://portal.uni-freiburg.de/imteksimulation/downloads/benchmark

4

PACO 2017 Extended Abstract

problem # steps Mojigata Hetfield rel. res.

rail 1357 24 1.85 6.37 4.96E-16
rail 5177 27 75.89 316.67 4.61E-16
flow 9669 24 401.79 1805.26 7.99E-12

Table 3: Run-times (in sec.) of the SDA solver.

that the mixed-precision strategy is more effective in Hetfield, where the GPU exhibits
a higher performance in SP arithmetic. But it also outperforms the DP solvers (except for
the small case of SDA) on Mojigata. Regarding the parametrization of the solver, the
experiments show that the effect of the number of steps performed by the SP solver on the
accuracy reached diminishes as the dimension of the problem grows. As a consequence,
the refinement steps have a strong impact on the final accuracy. This is specially relevant
in the larger instance.

#steps Mojigata Hetfield
problem GESDA Newton Lyap. GESDA It. ref. total GESDA It. ref. total Rel. res.

rail 1357

10 1 10 0.7 1.5 2.2 0.5 1.9 2.4 1.75E-14
10 2 8 0.7 2.1 2.9 0.6 2.6 3.2 1.62E-14
15 1 9 0.9 1.3 2.3 0.6 1.8 2.4 9.10E-15
15 2 8 0.9 2.2 3.2 0.7 3.0 3.8 1.78E-15
20 1 9 1.2 1.3 2.5 0.8 2.0 2.8 6.92E-16
20 2 8 1.1 2.2 3.3 0.9 3.2 4.1 3.70E-16

rail 5177

10 1 10 19.8 30.1 50.0 13.0 61.0 74.0 6.53E-15
10 2 9 19.0 42.4 61.41 12.6 104.3 117.0 4.99E-15
15 1 10 26.6 23.7 50.08 17.4 61.8 79.1 1.44E-15
15 2 9 26.4 44.2 70.60 17.3 104.9 122.3 1.00E-15
20 1 10 33.3 30.2 63.56 21.8 62.0 83.8 7.42E-16
20 2 9 33.3 39.4 72.66 21.8 105.2 127.0 1.31E-16

flow 9669

10 1 7 111.4 113.7 225.12 72.9 291.5 364.4 2.44E-09
10 2 7 107.6 167.4 275.0 70.7 527.4 598.1 3.94E-13
15 1 7 149.1 100.4 249.5 99.7 291.7 391.4 2.15E-09
15 2 7 151.5 164.0 315.5 101.0 529.5 630.6 3.73E-13
20 1 10 189.1 149.8 339.0 130.5 374.7 505.2 5.39E-10
20 2 8 178.9 187.0 365.9 129.4 585.3 714.8 7.21E-15

Table 4: Run-times (in sec.) and relative residuals reported by the mixed-precision solver.

In a second experiment, we measure the energy consumption related with the best
configuration of each method in Mojigata. Tables 5 and 6 show the energy consumption
of the three solvers. In the mixed-precision case, the SP and DP stages are distinguished.
From the reported results, it can be noticed that the savings in energy consumption of the
mixed-precision method is slightly higher than the run-time counterpart. Furthermore,
the improvement seems to increase with the dimension of the problem.

solver problem # steps time (s) energy (j)

sign func.
rail 1357 10 4.0 563.88
rail 5177 11 85.65 14493.7
flow 9669 13 487.29 94516.5

sda
rail 1357 24 2.16 437.2
rail 5177 27 78.12 17730.2
flow 9669 24 467.22 101077.1

Table 5: Energy and run-time evaluation of the double precision solvers.

5

PACO 2017 Extended Abstract

problem
#steps GESDA It. Refinement Total

GESDA Newton Lyap. time (s) energy (j) time (s) energy (j) Energy (j)

rail 1357 10 2 9 0.71 118.3 2.04 309.4 427.7
rail 5177 10 2 10 19.55 3342.7 33.72 6554.0 9896.7
flow 9669 10 2 7 104.95 16459.0 115.97 24536.0 40995.0

Table 6: Energy and run-time evaluation of the mixed precision solver.

5 Concluding remarks

In this work we presented and evaluated a mixed precision variant for the solution of the
Algebraic Riccati Equation. The experimental evaluation showed that the mixed-precision
variant offers an interesting reduction on the execution time, compared to traditional
methods like the Sign Function and SDA. In addition, the savings in energy consump-
tion reported are even more important than the savings in run-time, what reinforces the
convenience of the mixed-precision solver over DP solvers.

As future work, we will study a low rank variant of the mixed precision solver. Specif-
ically, a combination of a low rank variant of the SDA or the Sign Function algorithm to
obtain the initial solution and a low rank Lyapunov solver in the iterative refinement.

References

[1] Matrix Equation Sparse Solver (MESS) library (www. mpi-magdeburg. mpg. de/
projects/ mess/).

[2] PLiC library (www3. uji. es/ ~ quintana/ plic/ plic/).

[3] P. Benner and R. Byers, An exact line search method for solving generalized
continuous-time algebraic Riccati equations, IEEE Trans. Autom. Control., 43 (1998),
pp. 101–107.

[4] P. Benner, R. Byers, E. Quintana-Ort́ı, and G. Quintana-Ort́ı, Solving
algebraic Riccati equations on parallel computers using Newton’s method with exact
line search, Parallel Computing, 26 (2000), pp. 1345 – 1368.

[5] P. Benner, P. Ezzatti, E. Quintana-Ort́ı, and A. Remón, Matrix inversion
on CPU-GPU platforms with applications in control theory, Concurrency and Com-
putation: Practice and Experience, 25 (2013), pp. 1170–1182.

[6] D. Bini, B. Iannazzo, and B. Meini, Numerical Solution of Algebraic Riccati
Equations, Society for Industrial and Applied Mathematics, 2011.

[7] E.-W. Chu, H.-Y. Fan, and W.-W. Lin, A structure-preserving doubling algorithm
for continuous-time algebraic riccati equations, Linear Algebra and its Applications,
396 (2005), pp. 55–80.

[8] P. Lancaster and L. Rodman, Algebraic Riccati Equations, Oxford University
Press, 1995.

6

www.mpi-magdeburg.mpg.de/projects/mess/
www.mpi-magdeburg.mpg.de/projects/mess/
www3.uji.es/~quintana/plic/plic/

	Introduction
	Solution of AREs
	The Sign Function method
	The Structure-Preserving Doubling Algorithm (SDA)

	A mixed-precision ARE solver
	Experimental evaluation
	Concluding remarks

