
PACO 2017 Extended Abstract

GPU-Accelerated Implementation of the
Storage-Efficient QR Decomposition

Peter Benner1 Martin Köhler2 Carolin Penke3

The LAPACK routines GEQRT2 and GEQRT3 can be used to compute
the QR decomposition of a matrix of size m× n as well as the storage-
efficient representation of the orthogonal factor Q = I−V TV T . A GPU-
accelerated algorithm is presented that expands a blocked CPU-GPU
hybrid QR decomposition to compute the triangular matrix T . The
storage-efficient representation is used in particular to access blocks of
the matrix Q without having to generate all of it. The algorithm runs
on one GPU and aims to use memory efficiently in order to process
matrices as large as possible. Via the reuse of intermediate results the
amount of necessary operations can be reduced significantly. As a result
the algorithm outperforms the standard LAPACK routine by a factor of
3 for square matrices, which goes hand in hand with a reduced energy
consumption.

Along with the LU decomposition, the QR decomposition [5] is one of the basic ma-
trix factorizations used in many numerical linear algebra algorithms. Especially when
orthonormal bases come into play, e.g. in least-squares problems, the QR decomposition
is commonly involved. During the last decades many different strategies to compute the
orthogonal matrix Q ∈ Rm×m and the upper triangular matrix R ∈ Rm×n from a general
matrix A ∈ Rm×n fulfilling QR = A were developed. The most common ones are based
on Householder reflections [6]. These algorithms represent the matrix Q as a product of
orthonormal Householder matrices Hi ∈ Rm×m:

Q = H1 · · ·Hn, (1)

where Hi = Im − 2
viv

T
i

vTi vi
and vi is the i-th Householder vector. Typically Q is not stored

explicitly but implicitly in factored-form representation, where the scaled Householder
vectors vi and the scalar factors τi = 2

vTi vi
are stored explicitly [5, 1].

We consider the case where we are interested in a block partitioning of Q like

Q =

[
Q11 Q12

Q21 Q22

]
, (2)

where Qij ∈ Rm
2
×m

2 . When Q is stored as the product of Householder matrices (1)
in factored-form representation, the explicit setup of the matrix Q is required and the

1Computational Methods in Systems and Control Theory, Max Planck Institute for Dynamics of Com-
plex Technical Systems, Sandtor-Str. 1, 39106 Magdeburg, Germany,
benner@mpi-magdeburg.mpg.de

2Computational Methods in Systems and Control Theory, Max Planck Institute for Dynamics of Com-
plex Technical Systems, Sandtor-Str. 1, 39106 Magdeburg, Germany,
koehlerm@mpi-magdeburg.mpg.de

3Computational Methods in Systems and Control Theory, Max Planck Institute for Dynamics of Com-
plex Technical Systems, Sandtor-Str. 1, 39106 Magdeburg, Germany,
penke@mpi-magdeburg.mpg.de

1

mailto:benner@mpi-magdeburg.mpg.de
mailto:koehlerm@mpi-magdeburg.mpg.de
mailto:penke@mpi-magdeburg.mpg.de


PACO 2017 Extended Abstract

blocks can only be accessed or applied afterwards. If only one or two blocks are required,
e.g. to form a matrix-matrix product, this procedure results in a large overhead. The
compact WY or V TV T variants of the QR decomposition [2, 7, 5] can be used to reduce
this overhead. Here, the Householder product (1) changes to

Q = Im − V TV T
W=V T
Y=V= Im −WY T , (3)

where V = [v1, . . . , vm] contains the Householder vectors vi. The upper triangular matrix
T can be computed from the Householder vectors and represents the accumulation of the
Householder transformations. When it is additionally stored in explicit form it can be
used to apply Q using level-3 BLAS operations, which are the foundation of fast linear
algebra algorithms on current computer architectures. Furthermore, regarding the block
partitioning of Q in (2), one can extract and apply blocks easily by using T and a parti-
tioned V . The computation of the compact WY representation of the QR decomposition
is part of LAPACK [1] in the GEQRT3 routine. An improved parallel version, employing
a Directed-Acyclic-Graph (DAG) for task scheduling, is part of the PLASMA library [3].
Parts of this algorithm have also entered the recent LAPACK 3.7 as the routine GEQR.
The blocked variant of the QR decomposition typically makes use of the compact repre-
sentation (3) of decomposed panels to update the trailing submatrix using matrix-matrix
products. However, an equivalent of the GEQRT3 routine, that also exploits the GPU’s
capabilities to compute the n × n triangular factor T , does not exist. The MAGMA
library [8, 9] only provides QR decompositions which give the scalar factors τi = 2

vTi vi
of

the elementary reflectors or triangular matrices Ti ∈ Rnb×nb (with nb as the panel width)
that represent the compact QR factorization of the individual panels. To build T from
the Ti, a post-processing step would be necessary. Other GPU-accelerated libraries, such
as ArrayFire [10], cuSOLVER4, or CULATools5, only support the classical representation.

In our contribution, we want to close this gap by presenting a GPU-accelerated approach
to not only compute the QR factorization in factored-form representation but also provide
T from the compact WY representation of the matrix Q.

We implement the blocked variant of the QR decomposition [5] as a CPU-GPU hybrid
with additional operations to compute the T matrix. The matrix A is partitioned into
panels. It generally resides in GPU memory during our computations. The current panel
Ai is sent to the CPU to be factored:

Ai = QiRi. (4)

The LAPACK routines GEQRT2 or GEQRT3 can be used to compute Ti and Vi defining the
compact representation of

Qi = I − ViTiV T
i . (5)

The factored panel, consisting of Vi and Ri, and Ti are sent back to GPU memory. Here,
Ti is used to update the trailing submatrix.

The following Lemma, which is proved by direct calculation, shows how T describ-
ing the compact representation of Q can be computed from the Ti given by the panel
factorizations.

4http://docs.nvidia.com/cuda/cusolver/

5http://www.culatools.com/

2



PACO 2017 Extended Abstract

Algorithm 1 Block Compact QR Decomposition with Reuse of V T T

Require: A ∈ Rm×n

Ensure: V,R, T, S such that A = QR with Q = Im − V TV T , S = V T T .
A is overwritten by V,R. S, T can be stored together in an m× n array.

1: for k = 1, . . . do
2: [Rk, Vk, Tk,k]← QR(Ak:p,k) . by using GEQRT2 on the host
3: Build new block column of T

T1:k−1,k ← −T1:k−1,1:k−1V
T
1:k−1︸ ︷︷ ︸

=ST
1:k−1

VkTk,k

4: Update S1:k−1 which currently holds V1:k−1T
T
1:k−1,1:k−1

S1:k−1 ← S1:k−1 + VkT
T
1:k−1,k

5: Build new block column of S

Sk ← VkT
T
k,k

6: Update trailing submatrix of A

Ak:p,k+1:q ← Ak:p,k+1:q − VkT T
k,k︸ ︷︷ ︸

=Sk

V T
k Ak:p,k+1:q

7: end for

Lemma 1 Let Q1 = Im − V1T1V
T
1 ∈ Rm×m and Q2 = Im − V2T2V

T
2 ∈ Rm×m with

V1 ∈ Rm×j, V2 ∈ Rm×nb and T1 ∈ Rj×j, T2 ∈ Rnb×nb. Then

Q1Q2 = Im − V+T+V T
+ ,

where

V+ =
[
V1 V2

]
∈ Rm×j+nb , T+ =

[
T1 −T1V T

1 V2T2
0 T2

]
.

While the QR factorization is being computed, we continuously build up the block
columns of

T =

T1,1 · · · T1,q
. . .

...
0 Tq,q

 . (6)

Lemma 1 gives
T1:k−1,k = −T1:k−1,1:k−1V

T
1:k−1VkTk,k, (7)

where V1:k−1 contains the Householder vectors of the previous panel factorizations and Vk
contains the Householder vectors of the current panel factorization. We aim to implement
this computation efficiently on the GPU employing cuBLAS routines. T1:k−1,1:k−1V

T
1:k−1,

or its transpose V1:k−1T
T
1:k−1,1:k−1, is necessary to compute the k-th block column of T . It

holds

T1:k,1:kV
T
1:k = (V1:kT

T
1:k,1:k)T

=
[
V1:k−1T

T
1:k−1,1:k−1 + VkT

T
1:k−1,k VkT

T
k,k

]T
.

3



PACO 2017 Extended Abstract

DTH
HTD
GPU
CPU

CPU
GPU
HTD
DTH

Time
Iteration k − 1: Iteration k: Iteration k + 1:

Transfer Ak:p,k

Factor Ak:p,k

Transfer Ak:p,k, Tk,k

Update Ak−1:p,k:q Compute T1:k−2,k−1 Update S1:k−2 Compute Sk Update Ak:p,k+1 · · ·

· · · Update Ak:p,k+2:q Compute T1:k−1,k Update S1:k−1

Transfer Ak+1:p,k+1

Factor Ak+1:p,k+1

Transfer
Ak+1:p,k+1, Tk+1,k+1

Compute Sk+1 Update · · ·

Figure 1: Course of events for the asynchronous version of Algorithm 1.

Table 1: Runtime in [s] for the CPU (LAPACK) and the GPU-accelerated version of the
compact WY QR decomposition using a block width of 128.

Dimension CPU GPU Speedup Dimension CPU GPU Speedup
1 000 0.050 0.048 1.04 9 000 8.532 2.404 3.55
2 000 0.228 0.120 1.90 10 000 11.181 3.202 3.49
3 000 0.583 0.212 2.75 11 000 14.504 4.115 3.52
4 000 1.139 0.335 3.40 12 000 18.067 5.182 3.49
5 000 1.984 0.551 3.60 13 000 22.211 6.566 3.38
6 000 3.183 0.852 3.76 14 000 27.064 8.003 3.38
7 000 4.668 1.260 3.70 15 000 32.319 9.768 3.31
8 000 6.373 1.762 3.62

We see that, if V1:k−1T
T
1:k−1,1:k−1 is available from the computation associated to the

previous panel, it can be updated and expanded to provide V1:kT
T
1:k,1:k. This is much

cheaper than recomputing T1:k,1:kV
T
1:k for every panel, which is why we expand our algo-

rithm to successively compute V1:kT
T
1:k,1:k. The reason for the transpose is the fact that

V1:k−1T
T
1:k−1,1:k−1 is lower trapezoidal and can therefore be stored together with T in an

m× n array. The new block column VkT
T
k,k can also be used in the update of the trailing

submatrix.
These ideas are implemented by Algorithm 1 which realizes a QR factorization that

includes the computation of T and V T T . The panel factorization is performed by the
CPU. The following steps are the updates of T , V T T and the trailing submatrix. They
are performed on the GPU by a series of cuBLAS routines, so that leading zeros and
triangular structures are exploited to reduce the total amount of operations. Only a
minimal further work space of size nb × n (nb denoting panel width) is required.

Furthermore we employ asynchronous communication to overlap CPU and GPU work.
Hence, while the GPU is still busy updating the remaining trailing submatrix, the panel
is transferred between device and host and can already be factored by the CPU. This is
visualized by Figure 1. In the optimal case, that is depicted here, it is possible to have
the GPU working to full capacity.

For the performance evaluation of the algorithm we use a dual-socket Intel Xeon E5-

4



PACO 2017 Extended Abstract

2640v3 system (16 cores, 64 GB RAM) and an Nvidia Tesla K20m accelerator. The
results are given in Table 1, where all computations are done in IEEE double precision.
Here, the CPU reference result is computed using GEQRT3 from OpenBLAS 0.2.18. For
the panel factorization in the GPU-CPU hybrid implementation we use GEQRT2 which we
evaluated to be the fastest variant in LAPACK for the panel decomposition on the host.
The GPU code uses the cuBLAS library of CUDA 8.0 and the whole code is compiled
using gcc 4.8. In order to avoid the tuning for a special matrix structure the input square
matrices consist of random entries distributed uniformly between 0 and 1. In Table 1 we
see that the speedup increases very fast with the growing problem dimension to a factor
of up to 3.76 while using only one GPU. For a further increasing problem dimension we
obtain a stagnation caused by the limited memory bandwidth.

1,024 4,096 7,168 10,240 13,312
0

100

200

300

400

500

600

Matrix Size n

Performance in GFLOPS/s

1,024 4,096 7,168 10,240 13,312
0

0.5

1

1.5

2

2.5

Matrix Size n

Energy Efficiency in GFLOPS/J

QR factorization on the GPU

QR factorization on the CPU using GEQRT3

Figure 2: Comparison of approximate performance and energy efficiency of CPU-based
and GPU-accelerated algorithm for square matrices.

The performance achieved by the GPU is also highlighted by Figure 2. We approximate
the performance by assuming the number of FLOPs to be well represented by 5

3
n3. This

includes 4
3
n3 from the QR factorizations and 1

3
n3 from the computation of T ignoring

lower order terms. The high performance is due to the GPU’s capacities to perform many
operations in parallel with little overhead. This also explains its higher energy efficiency
which is depicted in the figure as well. Using the same amount of energy the GPU can
perform up to 4.75 times as many operations as the CPU. This is achieved for large ma-
trices with sizes of about 10000× 10000, because here the GPU cores can be used to full
capacity. To explain the following decline for even larger matrices further investigations
are necessary.

We showed that the GPU is an excellent tool to compute the storage-efficient QR
factorization. This is true with regards to classical FLOP performance as well as energy
efficiency. An essential part of our implementation is the simultaneous computation of
the V T T matrix, which to our knowledge is new. To see how this approach compares

5



PACO 2017 Extended Abstract

to the conventional ones implemented in LAPACK [4], an experimental setup is required
that implements both variants on the same computer system, i.e., on the GPU or on the
CPU. Future research will investigate this relation and provide further insight into the
efficiency of the new approach.

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK
Users’ Guide, SIAM, Philadelphia, PA, third ed., 1999.

[2] C. Bischof and C. Van Loan, The WY representation for products of House-
holder matrices, SIAM J. Sci. Statist. Comput., 8 (1987), pp. S2–S13.

[3] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, Parallel tiled QR
factorization for multicore architectures, Concurr. Comput., 20 (2008), pp. 1573–
1590.

[4] E. Elmroth and F. G. Gustavson, Applying recursion to serial and parallel QR
factorization leads to better performance, IBM J. Res. Dev., 44 (2000), pp. 605–624.

[5] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins Uni-
versity Press, Baltimore, fourth ed., 2013.

[6] A. S. Householder, The Theory of Matrices in Numerical Analysis, Dover Publi-
cations (original Blaisdall 1964), New York, 1975.

[7] R. S. Schreiber and C. Van Loan, A storage-efficient WY representation for
products of Householder transformations, SIAM J. Sci. Statist. Comput., 10 (1989),
pp. 53–57.

[8] S. Tomov, J. Dongarra, and M. Baboulin, Towards dense linear algebra for
hybrid GPU accelerated manycore systems, Parallel Comput., 36 (2010), pp. 232–240.

[9] S. Tomov, R. Nath, H. Ltaief, and J. Dongarra, Dense linear algebra solvers
for multicore with GPU accelerators, in Proc. of the IEEE IPDPS’10, Atlanta, GA,
Apr. 2010, IEEE Computer Society, pp. 1–8.

[10] P. Yalamanchili, U. Arshad, Z. Mohammed, P. Garigipati, P. Entschev,
B. Kloppenborg, J. Malcolm, and J. Melonakos, ArrayFire - A high per-
formance software library for parallel computing with an easy-to-use API, 2015.

6


