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Abstract

In this paper, we derive the energy momentum tensor for the translation invariant noncom-
mutative Tanasa scalar field model. The Wilson regularization procedure is used to improve
this tensor and the local conservation property is recovered. The same question is addressed in
the case where the Moyal star product is deformed including the tetrad fields. It provides with
an extension of the recent work [J. Phys. A: Math. Theor. 43 (2010) 155202], regarding the
computation and properties of the Noether currents to the renormalizable models.
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1 Introduction

Noncommutative (NC) geometry and its applications to quantum field theory (QFT) namely NC-
QFT receives an increasing attention this two decades due to the advent of the class of renormal-
izable actions [1]-[10]. The NCQFT arises as a scenario for the Planck scale behavior of physical
theories, at which the non-locality of interactions has to appear and break down the notion of
continuous spacetime [11]-[12]. It is most often performed over a Moyal space R

d
θ. This space is

the deformation of d-dimension Euclidean space R
d endowed with a constant Moyal product of

functions:

(f ⋆ g)(x) = m

{
ei

θρσ

2
∂ρ⊗∂σf(x)⊗ g(x)

}
, x ∈ R

d, f, g ∈ C∞(Rd). (1)

wherem(f⊗g) = f ·g, and such that the coordinates functions xσ and xρ satisfied the commutation
relation

[xρ, xσ]⋆ = iθρσ. (2)
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θρσ is a skew symmetric constant tensor and elements have the dimension of lenght square. It is
possible to construct the NCQFT in a nontrivial background metric, generally by imposing the
non-constant deformation matrix θρσ = θρσ(x), which naturally results in the difficulty of finding a
suitable explicit closed Moyal-type formula [13]-[17]. In the context of a dynamical NC field theory
this can be realized by replaced the vector field ∂µ on the tangent space TxR

d
θ by Xa = eµa(x)∂µ,

where the tetrad eµa(x) is a tensor depending on the coordinate functions. The generalized Moyal
star-product becomes

(f ⋆ g)(x) = m

{
ei

θab

2
Xa⊗Xbf(x)⊗ g(x)

}
, x ∈ R

d, f, g ∈ C∞(Rd). (3)

In general case the vector field Xa are noncommutative, respect to the Lie bracket “[·, ·]”. The
particular condition [Xa,Xb] = 0 results in the constraints on the tetrad eµa and leads to the
definition of one new field ϕa such that the inverse eaν of e

ν
a is proportional to ∂νϕ

a. Since Xaϕ
b = δba,

the field ϕb can be viewed as new coordinates along the Xa directions and therefore will be taking
into account in the redefinition of the functional action [15]. The Moyal space R

d
θ of this type

becomes curve with the background metric gµν = eaµe
b
νδab. Let us mention that the commuting

vector field Xa ensures the associativity of the star product (3). But the loss of the associativity
propertie becomes evident in the general case where [Xa,Xb] 6= 0. Nevertheless, this propertie
maybe satisfy in a space with a nearly Euclidean metric in which it is natural to choose a tetrad
field eµa(x) that lies nearly along the coordinate axes eµa(x) = δµa +ωµ

a (x) where ω
µ
a (x) is a coordinate

dependent small quantity to be determined [18]-[19].
The basis problem, which has accompanied the development of NC field theory is the UV-IR

mixing in the perturbation computation. This pathology maybe solved by introducing in the scalar
field action, i.e. the ϕ4

⋆-model, the so called Grosse-Wulkenhaar (GW) harmonic term [3]-[5]. The
GW model breaks the U(N) symmetry invariance in the IR regime but is asymptotically safe in
the UV regime. The model is also non-invariant under the translation and rotation of spacetime.
The only know invariance satisfied by the model is the so called Langman-Szabo duality [20]. The
study of the symmetry consequence such as the Noether current are addressed for the GW model
by imposing a constrainte on the Euler-Lagrange (EL) equations of motion [21]-[23]. In [24] the
same question is addressed in the case of twisted star product definition in the field theory.

Using the same idea of the perturbative computation of the renormalization procedure, other
theoretical model have been proved renormalizable. The theoretical ingredient to perform this issue
is the so call multiscale analysis, developed by Rivasseau [26]. One of these models which we will
focus in this work is the translation invariant renormalizable scalar model discovered by Tanasa et al
[6]-[10]. The Tanasa model comes from the NC ϕ4 model by adding a new contribution a

θ2p2
on the

propagator in the momentum space, and on which the problem of UV/IR mixing is solved. At any
order in perturbation theory, the β functions of the model are given [25]. Despite all these interesting
results, the corresponding current derived from the symmetry properties of the Tanasa model is
not yet be given in the litteratures. Our purpose in this paper is to investigate the computation
of the energy momentum tensor (EMT) of the Tanasa model and study its regularization in both
ordinary Moyal space and twisted Moyal space. The Wilson regularization procedure is used to
recover the local conservation as given in [27]-[36].

The paper is organized as follows. In section (2) we compute the EMT for translation invariant
Tanasa model in the ordinary Moyal space. The regularization of this tensor is also given. In
the section (3) the same computation is performed in the case of the twisted Moyal plane. Our
conclusion and remarks are given in section (4).
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2 EMT for renormalizable Tanasa model in Moyal space

In this section we derive the EL equation of motion and the EMT for the translation invariant
nonlocal functional action. Let us consider the scalar field theoretic model in which we begin with
the Lagrange density, which is a function of the field ϕ, its first partial spacetime derivatives ∂µϕ,
and the inverse derivatives ∂−1

µ ϕ :

S⋆[ϕ] =

∫
ddxL⋆(ϕ, ∂µϕ, ∂

−1
µ ϕ), ∂−1

µ ϕ(x) =

∫
dµx′ ϕ(x′), (4)

where L⋆ mean that the ordinary product of function in the action S is replaced by the Moyal
product i.e.:

L⋆(ϕ, ∂µϕ, ∂
−1
µ ϕ) = L(ϕ, ∂µϕ, ∂µ∂νϕ, ∂µ∂ν∂σϕ, · · ·∞, ∂−1

µ ϕ). (5)

Under the translation group which transform coordinates as: xµ → xµ+aµ (aµ is a constant vector),
the field ϕ is then transform as ϕ(x) → ϕ(x) + aµ∂µϕ(x), the variation of the action (4) gives

S⋆[ϕ] → S⋆[ϕ] + δS⋆[ϕ] = S⋆[ϕ] + aµ∂µS⋆[ϕ], (6)

where we have assumed that the field ϕ vanishes when |x| approaches infinity. The translation
invariant of the action δS⋆[ϕ] = 0, implies the existence of current densities Jν such that:

δϕ ⋆
δS⋆

δϕ
+ ∂νJν = 0. (7)

Thus, the EL equations for the Lagrangian density L⋆ becomes

Eϕ =
∂L⋆

∂ϕ
− ∂µ

( ∂L⋆

∂∂µϕ

)
− ∂−1

µ

( ∂L⋆

∂∂−1
µ ϕ

)
= 0, (8)

and the conserved EMT can be derived by replacing in the relation (7): δϕ by −aµ∂µϕ, such that

∫
ddx

(
− aρ ∂µTµρ +Eϕ

)
= 0, (9)

where

Tµρ =
1

2

{ ∂L⋆

∂∂µϕ
, ∂ρϕ

}
⋆
+

1

2

{
∂−1
µ

( ∂L⋆

∂∂−1
µ ϕ

)
, ∂−1

µ ∂ρϕ
}
⋆
− gµρL⋆. (10)

Consider as an example the translation invariant noncommutative field theory [8], defined by

S⋆[ϕ] =

∫
ddx

[1
2
∂µϕ ⋆ ∂µϕ+

m2

2
ϕ ⋆ ϕ+

a

2θ2
∂−1
µ ϕ ⋆ ∂−1

µ ϕ+
λ

4!
ϕ4
⋆

]
, (11)

where

∂−1
µ ϕ(x) :=

∫ x

−∞

dµx′ϕ(x′),

∫ x

−∞

δϕ(x′)

δϕ(y)
dx′ = Θ(x− y). (12)

Θ(x) is the Heaviside function. The variation principle gives the EL equations of motion

δS⋆

δϕ
= 0 ⇔ −∂µ∂µϕ+m2ϕ+

λ

3!
ϕ3
⋆ −

a

θ2
∂−1
µ ∂−1

µ ϕ = 0 (13)
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in which the Einstein summation holds, and the EMT becomes,

Tµρ =
1

2

{
∂µϕ, ∂ρϕ

}
⋆
+

a

2θ2

{
∂−1
µ ∂−1

µ ϕ, ∂−1
µ ∂ρϕ

}
⋆
− gµρL⋆. (14)

The tensor Tµρ is nonsymmetric and nonlocally conserved. Let T s
µρ be the symmetric tensor asso-

ciated to Tµρ i.e. T s
µρ = (Tµρ + Tρµ)/2, we get

T s
µρ =

1

2

{
∂µϕ, ∂ρϕ

}
⋆
+

a

4θ2

{
∂−1
µ ∂−1

µ ϕ, ∂−1
µ ∂ρϕ

}
⋆
+

a

4θ2

{
∂−1
ρ ∂−1

ρ ϕ, ∂−1
ρ ∂µϕ

}
⋆
− gµρL⋆. (15)

Note that the procedure of regularization of the EMT performed by Gerhold et al [27] can be used.
Consider the star product ⋆′ given by

f ⋆′ g = m

{
sin

(
1

2
θµν∂µ ⊗ ∂ν

)

1

2
θµν∂µ ⊗ ∂ν

(f ⊗ g)

}
, (16)

which satisfy the following identity: θµν∂µf ⋆′ ∂νg = −i[f, g]⋆. Then after few computation we get

∂ρT s
ρµ =

λ

4!

[
[∂µϕ,ϕ]⋆, ϕ ⋆ ϕ

]

⋆
= i

λ

4!
θαβ∂α

(
[∂µϕ,ϕ]⋆ ⋆

′ ∂β(ϕ ⋆ ϕ)
)
. (17)

The locally conserved EMT becomes

T s,r
ρµ =

1

2

{
∂µϕ, ∂ρϕ

}
⋆
+

a

4θ2

{
∂−1
µ ∂−1

µ ϕ, ∂−1
µ ∂ρϕ

}
⋆
+

a

4θ2

{
∂−1
ρ ∂−1

ρ ϕ, ∂−1
ρ ∂µϕ

}
⋆

−i
λ

4!
θαβgαρ

(
[∂µϕ,ϕ]⋆ ⋆

′ ∂β(ϕ ⋆ ϕ)
)
− gµρL⋆. (18)

Note that the limite a → 0 gives the EMT for the scalar field theory on Moyal space derived in
[27] and [28] from which the Belifante PDE can be given. Also by adding the quantity 1

6
(gµρ� −

∂µ∂ρ)(ϕ ⋆ ϕ) in the expression (15) and by setting m = 0, we obtain the traceless EMT.

3 The EMT for the Tanasa model in the twisted Moyal space

This section is devoted to the computation of the EMT of the twisted Tanasa model. Before defined
this model we give some definitions and identities satisfied by the star product (3). These will be
used to calculate the ϕ and the ϕa variation of the functional action (for more explanation see [15]).
Expanding the dynamical ⋆-product (3) as follows

f ⋆ g ≡ e∆(f, g) =
∞∑

n=0

∆n

n!
(f, g), ∆(f, g) =

i

2
θab(Xaf)(Xbg), (19)

allows us to defined the four operators:

T (∆) =
e∆ − 1

∆
S(∆) =

sinh(∆)

∆

R(∆) =
cosh(∆)− 1

∆
and X̃a =

i

2
θabXb, (20)

such that the following identities hold:

f ⋆ g = fg +XaT (∆)(f, X̃ag) (21)

f ⋆ g − g ⋆ f = [f, g]⋆ = 2XaS(∆)(f, X̃ag) (22)

f ⋆ g + g ⋆ f = {f, g}⋆ = 2fg + 2XaR(∆)(f, X̃ag). (23)
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S(∆)(., X̃ .) is a bilinear antisymmetric operator such that

T (∆)(f, X̃ag)− T (∆)(g, X̃af) = 2S(∆)(f, X̃ag). (24)

The integral of the form
∫

ddx (f ⋆ g) is not cyclic; even with suitable boundary conditions at
infinity, i.e.

∫
ddx (f ⋆ g) 6=

∫
ddx (g ⋆ f). (25)

Using now the measure eddx where e = det(eaµ), a cyclic integral can be defined so that, up to
boundary terms:

∫
eddx (f ⋆ g) =

∫
eddx(fg) =

∫
eddx (g ⋆ f). (26)

From now the peculiar Euler Lagrange equations of motion can be readily derived by direct appli-
cation of the variational principle and the use of formulas of derivatives and variations given in [15]
by:

δϕce = eXa(δϕ
a), δϕce−1 = −e−1Xa(δϕ

a), eXa(f) = ∂µ(ee
µ
af). (27)

To compute δϕc variations, consider the functions f and g, which do not depend on ϕc. It turns
out that the following identity is useful:

δϕc(f ⋆ g) = −(δϕcXcf) ⋆ g − f ⋆ (δϕcXcg) + δϕcXc(f ⋆ g). (28)

In view of these considerations, the following NC scalar invariant model, so called the twisted
Tanasa model is described by the functional action

S⋆[ϕ] =

∫
eddx

{1

2
∂µϕ ⋆ ∂µϕ+

a

2θ2
∂−1
µ ϕ ⋆ ∂−1

µ ϕ+
m2

2
ϕ ⋆ ϕ+

λ

4!
ϕ ⋆ ϕ ⋆ ϕ ⋆ ϕ

+
1

2
∂µϕc ⋆ ∂

µϕc +
a

2θ2
∂−1
µ ϕc ⋆ ∂

−1
µ ϕc

}
⋆ e−1

=

∫
eddx (L⋆ ⋆ e

−1). (29)

Before start the investigation of the EMT, let us recall that the case where a = 0 in (29) is reduced
to the well know scalar field theory in the litterature (see [15] for more details). Then we will focus
our attention on to the ϕ and ϕc variation of the quantity

S∂ =
a

2θ2

∫
eddx

[
∂−1
µ ϕ ⋆ ∂−1

µ ϕ+ ∂−1
µ ϕc ⋆ ∂

−1
µ ϕc

]
⋆ e−1. (30)

Recall that the field ϕc do not depend for ϕ. We get

δϕS∂ =
a

2θ2

∫
eddx

[
∂−1
µ δϕ ⋆ ∂−1

µ ϕ ⋆ e−1 + ∂−1
µ ϕ ⋆ ∂−1

µ δϕ ⋆ e−1

]

=
a

2θ2

∫
eddx

[
∂−1
µ δϕ ⋆ {∂−1

µ ϕ, e−1}⋆ + 2XaS(∆)(∂−1
µ ϕ, X̃a(∂−1

µ δϕ ⋆ e−1))
]

=
a

2θ2

∫
eddx

[
(∂−1

µ δϕ){∂−1
µ ϕ, e−1}⋆ +XaT (∆)(∂−1

µ δϕ, X̃a({∂−1
µ ϕ, e−1}⋆))

+2XaS(∆)(∂−1
µ ϕ, X̃a(∂−1

µ δϕ ⋆ e−1))
]
, (31)
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where we have used the identities

∂−1
µ ϕ ⋆ ∂−1

µ δϕ ⋆ e−1 = ∂−1
µ δϕ ⋆ e−1 ⋆ ∂−1

µ ϕ+ 2XaS(∆)(∂−1
µ ϕ, X̃a(∂−1

µ δϕ ⋆ e−1)) (32)

(∂−1
µ δϕ) ⋆ {∂−1

µ ϕ, e−1}⋆ = (∂−1
µ δϕ){∂−1

µ ϕ, e−1}⋆ +XaT (∆)(∂−1
µ δϕ, X̃a({∂−1

µ ϕ, e−1}⋆)). (33)

Consider the following relation in which the index µ is suppose to satisfied the Einstein summation:

e(∂−1
µ δϕ){∂−1

µ ϕ, e−1}⋆ = ∂µ

[
(∂−1

µ δϕ)∂−1
µ (e{∂−1

µ ϕ, e−1}⋆)
]
− δϕ∂−1

µ (e{∂−1
µ ϕ, e−1}⋆). (34)

Therefore we get the ϕ variation of S∂ as

δϕS∂ =

∫
ddx

[
δϕEϕ

∂ + ∂σK
σ
∂ ], (35)

where E∂ contribute to the EL equations of motion and Kµ
∂ to the current:

Eϕ
∂ = −

a

2θ2
∂−1
µ (e{∂−1

µ ϕ, e−1}⋆), (36)

Kσ
∂ =

a

2θ2

[
(∂−1

σ δϕ)∂−1
σ (e{∂−1

σ ϕ, e−1}⋆) + eeσb T (∆)(∂−1
µ δϕ, X̃b({∂−1

µ ϕ, e−1}⋆))

+2eeσb S(∆)(∂−1
µ ϕ, X̃b(∂−1

µ δϕ ⋆ e−1))
]
. (37)

Using the same technical computation to the remain expression of the functional action (29) the
EL equations of motion of the field ϕ become

Eϕ = −
1

2
∂µ(e{∂

µϕ, e−1}⋆)−
a

2θ2
∂−1
µ (e{∂−1

µ ϕ, e−1}⋆) +
m2

2
e{ϕ, e−1}⋆

+
λ

4!
e{ϕ ⋆ ϕ, {ϕ, e−1}⋆}⋆ = 0, (38)

which is reduced to (13) in the limit where Xa → ∂a. Hence, the corresponding current is

Kσ =
a

2θ2

[
(∂−1

σ δϕ)∂−1
σ (e{∂−1

σ ϕ, e−1}⋆) + eeσb T (∆)(∂−1
µ δϕ, X̃b({∂−1

µ ϕ, e−1}⋆))

+2eeσb S(∆)(∂−1
µ ϕ, X̃b(∂−1

µ δϕ ⋆ e−1))
]
+

eδϕ

2
.{∂σϕ, e−1}⋆

+eeσb

[
T (∆)

(
δ∂µϕ,

X̃b

2
{∂µϕ, e−1}⋆

)
+ S(∆)

(
∂µϕ, X̃

b(∂µδϕ ⋆ e−1)
)]

+eeσb

[m2

2
T (∆)

(
δϕ, X̃b{ϕ, e−1}⋆

)
+m2S(∆)

(
ϕ, X̃b(δϕ ⋆ e−1)

)]

+eeσb

[ λ
4!
T (∆)

(
δϕ, X̃b{ϕ ⋆ ϕ, {ϕ, e−1}⋆}⋆

)
+

λ

12
S(∆)

(
ϕ, X̃b(δϕ ⋆ ϕ ⋆ ϕ ⋆ e−1)

)

+
λ

12
S(∆)

(
ϕ ⋆ ϕ, X̃b(δϕ ⋆ ϕ ⋆ e−1)

)
+

λ

12
S(∆)

(
ϕ ⋆ ϕ ⋆ ϕ, X̃b(δϕ ⋆ e−1)

)]
. (39)

In the other hand we are interessed to the ϕc variation of (30). This variation is subdived into
two contributions namely A∂ and B∂ such that

δϕcS∂ =
a

2θ2
δϕc

{∫
eddx ∂−1

µ ϕ ⋆ ∂−1
µ ϕ ⋆ e−1

}
+

a

2θ2
δϕc

{∫
eddx ∂−1

µ ϕc ⋆ ∂
−1
µ ϕc ⋆ e−1

}

= A∂ +B∂ (40)
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where

A∂ =
a

2θ2

∫
ddx (δϕce) (∂−1

µ ϕ ⋆ ∂−1
µ ϕ ⋆ e−1) +

a

2θ2

∫
eddx δϕc(∂−1

µ ϕ ⋆ ∂−1
µ ϕ ⋆ e−1)

=
a

2θ2

∫
ddx

{
∂σ

(
eeσaδϕ

a∂−1
µ ϕ ⋆ ∂−1

µ ϕ ⋆ e−1

)
− eeσaδϕ

a∂σ(∂
−1
µ ϕ ⋆ ∂−1

µ ϕ ⋆ e−1)
}

+
a

2θ2

∫
eddx

{
− δϕaXa∂

−1
µ ϕ{∂−1

µ ϕ, e−1}⋆ −XbT (∆)(δϕaXa∂
−1
µ ϕ, X̃b{∂−1

µ ϕ, e−1}⋆)

− 2XbS(∆)(∂−1
µ ϕ, X̃bδϕaXa∂

−1
µ ϕ ⋆ e−1)−Xa(∂

−1
µ ϕ ⋆ ∂−1

µ ϕ ⋆ δϕae−1)

+ Xa(∂
−1
µ ϕ ⋆ ∂−1

µ ϕ)δϕae−1 +XbT (∆)(Xa(∂
−1
µ ϕ ⋆ ∂−1

µ ϕ), X̃bδϕae−1)

+ δϕaXa(∂
−1
µ ϕ ⋆ ∂−1

µ ϕ ⋆ e−1)
}

(41)

and

B∂ =
a

2θ2

∫
ddx(δϕce)

(
∂−1
µ ϕc ⋆ ∂

−1
µ ϕc ⋆ e−1

)
+

a

2θ2

∫
eddx δϕc

(
∂−1
µ ϕc ⋆ ∂

−1
µ ϕc ⋆ e−1

)

=
a

2θ2

∫
ddx

{
∂σ

(
(eeσaδϕ

a)∂−1
µ ϕc ⋆ ∂

−1
µ ϕc ⋆ e−1

)
− eeσaδϕ

a∂σ(∂
−1
µ ϕc ⋆ ∂

−1
µ ϕc ⋆ e−1)

}

+
a

2θ2

∫
ddx

{
− δϕc∂

−1
µ (e{∂−1

µ ϕc, e−1}⋆) + ∂µ

(
∂−1
µ δϕc∂

−1
µ (e{∂−1

µ ϕ, e−1}⋆)
)

+ 2∂σ

(
eeσaS(∆)(∂−1

µ ϕc, X̃
aδϕc ⋆ e−1)

)
+ ∂σ

(
eeσaT (∆)(∂−1

µ δϕc, X̃
a{∂−1

µ ϕc, e−1}⋆)
)}

+
a

2θ2

∫
eddx

{
− δϕaXa∂

−1
µ ϕc{∂

−1
µ ϕc, e−1}⋆ −XbT (∆)(δϕaXa∂

−1
µ ϕc, X̃

b{∂−1
µ ϕc, e−1}⋆)

− 2XbS(∆)(∂−1
µ ϕc, X̃

bδϕaXa∂
−1
µ ϕc ⋆ e−1)−Xa(∂

−1
µ ϕc ⋆ ∂

−1
µ ϕc ⋆ δϕae−1)

+ δϕae−1Xa(∂
−1
µ ϕc ⋆ ∂

−1
µ ϕc) +XbT (∆)(Xa(∂

−1
µ ϕc ⋆ ∂

−1
µ ϕc), X̃bδϕae−1)

+ δϕaXa(∂
−1
µ ϕc ⋆ ∂

−1
µ ϕc ⋆ e−1)

}
. (42)

Taking into account all of these quantities, the contribution to the EL equations of motion is

Eϕϕc

∂ =
a

2θ2

[
− eXa∂

−1
µ ϕ{∂−1

µ ϕ, e−1}⋆ +Xa(∂
−1
µ ϕ ⋆ ∂−1

µ ϕ)− eXa∂
−1
µ ϕc{∂

−1
µ ϕc, e−1}⋆

+ Xa(∂
−1
µ ϕc ⋆ ∂

−1
µ ϕc)− ∂−1

µ (e{∂−1
µ ϕc, e−1}⋆)

]
. (43)

The contribution to the current Jσ denote by Jσ
∂ takes the form

Jσ
∂ =

a

2θ2

[
eeσb δϕ

b∂−1
µ ϕ ⋆ ∂−1

µ ϕ ⋆ e−1 − eeσb T (∆)(δϕaXa∂
−1
µ ϕ, X̃b{∂−1

µ ϕ, e−1}⋆))

−2eeσb S(∆)(∂−1
µ ϕ, X̃bδϕaXa∂

−1
µ ϕ ⋆ e−1)− eeσb (∂

−1
µ ϕ ⋆ ∂−1

µ ϕ ⋆ δϕbe−1)

+eeσb T (∆)(Xa(∂
−1
µ ϕ ⋆ ∂−1

µ ϕ), X̃bδϕae−1) + eeσb δϕ
b(∂−1

µ ϕc ⋆ ∂
−1
µ ϕc ⋆ e−1)

+(∂−1
σ δϕc)∂

−1
σ (e{∂−1

σ ϕc, e−1}⋆) + 2eeσb S(∆)(∂−1
µ ϕc, X̃

bδϕce−1)

+eeσb T (∆)(∂−1
µ δϕc, X̃

b{∂−1
µ ϕc, e−1}⋆)− eeσb T (∆)(δϕaXa∂

−1
µ ϕc, X̃

b({∂−1
µ ϕc, e−1}⋆))

−2eeσb S(∆)(∂−1
µ ϕc, X̃

bδϕaXa∂
−1
µ ϕc ⋆ e−1)− eeσb (∂

−1
µ ϕc ⋆ ∂

−1
µ ϕc ⋆ δϕae−1)

+eeσb T (∆)(Xa(∂
−1
µ ϕc ⋆ ∂

−1
µ ϕc), X̃bδϕae−1)

]
. (44)

By performing the same computation to the other terms in the action (29) we get the EL equations
of motion

Eϕϕc

= Eϕc

∂ −XcϕEϕ +XcL
Ω
⋆ −

1

2
Xcϕ∂µ

(
e{∂µϕ, e−1}⋆

)
− e

Ω2

2
ϕXcx̃.{x̃ϕ, e

−1}⋆

7



−
e

2
Xc∂µϕ.{∂

µϕ, e−1}⋆ −
e

2
Xc∂µϕa.{∂

µϕa, e−1}⋆ − ∂µ

(e
2
{∂µϕc, e

−1}⋆

)
= 0 (45)

and the current

J σ = J σ
∂ +Kσ(δϕ → −δϕcXcϕ) +

eδϕc

2
Xcϕ.{∂

σϕ, e−1}⋆ +
eδϕc

2
.{∂σϕc, e

−1}⋆

+eeσb

{
−L⋆ ⋆ (δϕ

be−1) + δϕb(L⋆ ⋆ e
−1) + T (∆)

(
Xc(L⋆), X̃

b(δϕce−1)
)

+
1

2
T (∆)

(
∂µ(δϕ

ceρc)∂ρϕ, X̃
b{∂µϕ, e−1}⋆

)
+ S(∆)

(
∂µϕ, X̃

b((∂µ(δϕ
ceρc)∂ρϕ) ⋆ e

−1)
)}

+
1

2
eeσb

{
− T (∆)

(
δϕcXc∂µϕa, X̃

b{∂µϕa, e−1}⋆

)
− 2S(∆)

(
∂µϕa, X̃

b((δϕcXc∂µϕ
a) ⋆ e−1)

)

+2S(∆)
(
∂µϕa, X̃

b(∂µδϕa ⋆ e−1)
)
+ T (∆)

(
∂µδϕa, X̃

b{∂µϕa, e−1}⋆

)}
, (46)

such that

δϕcS⋆ =

∫
ddx

(
δϕc Eϕϕc

+ ∂σJ
σ
)
. (47)

Now using the results in the previous paragraph where we studied the general properties of
the total variation of the Lagrangian, we discuss the translation invariant symmetry of the model
and compute the conserve current namely the EMT. In general, a symmetry of the action involves
a certain change of variables. Performing a functional variation of the fields and a coordinates
transformations

ϕ′(x) = ϕ(x) + δϕ(x), ϕ′c(x) = ϕc(x) + δϕc(x), x′µ = xµ + aµ, (48)

and by using the identity dDx′ = [1 + ∂µa
µ + O(ǫ2)]dDx, leads to the following variation of the

action, to first order in δϕ(x), δϕc(x) and aµ:

δS⋆ =

∫
edDx

{∣∣∣
∂x′

∂x

∣∣∣ ⋆ (L′
⋆ ⋆ e

−1)
}
−

∫
edDx (L⋆ ⋆ e

−1)

=

∫
dDx

{
δϕ

(
(L⋆ ⋆ e

−1)e
)
+ δϕc

(
(L⋆ ⋆ e

−1)e
)

+aµ ⋆ ∂µ[(L⋆ ⋆ e
−1)e] + ∂µa

µ ⋆ (L⋆ ⋆ e
−1)e

}
. (49)

Now by integrating on a submanifold M ⊂ R
D with fields non vanishing at the boundary (so that

the total derivative terms do not disappear), we get:

δS⋆ =

∫

M

dDx ∂σ

[
Kσ + J σ + aσ ⋆

(
(LΩ

⋆ ⋆ e−1)e
)]

(50)

coupled to the transformations δϕ = −aν∂νϕ, δϕc = −aν∂νϕ
c, aν = constant, that we subtitute

into (50) and taking into account the identities δϕcXc∂µϕ = ∂µ(δϕ
cXcϕ)−∂µ(δϕ

ceρc)∂ρϕ such that
δϕcXc∂µϕ = ∂µδϕ = −aν∂ν∂µϕ and the fact that eaν = ∂νϕ

a, we come from the relation

0 = δS⋆ = −aν
∫

M

dDx ∂σT
σ
ν , (51)

where the EMT takes the form

T σ
ν =

e

2

[
(∂νϕ){∂

σϕ, e−1}⋆ + (∂νϕc){∂
σϕc, e−1}⋆

]

8



+
a

2θ2

[
∂−1
σ (∂νϕ)∂

−1
σ

(
e{∂−1

σ ϕ, e−1}⋆

)
+ ∂−1

σ (∂νϕc)∂
−1
σ

(
e{∂−1

σ ϕc, e−1}⋆

)]

−eeσb

[
L⋆ ⋆ (e

−1∂νϕ
b) + T (∆)

(
XcL⋆, X̃

b(e−1∂νϕ
c)
)]

. (52)

This tensor is neither symmetric and non locally conserved. Note that to recovered the EMT given
in (14) we write Tνρ = gσρT

σ
ν and takes the limit eµa → δµa . The expression (52) can be symetrized

as

T s
νσ =

e

4

[
(∂νϕ){∂σϕ, e

−1}⋆ + (∂νϕc){∂σϕ
c, e−1}⋆ + (∂σϕ){∂νϕ, e

−1}⋆ + (∂σϕc){∂νϕ
c, e−1}⋆

]

+
a

4θ2

[
∂−1
σ (∂νϕ)∂

−1
σ

(
e{∂−1

σ ϕ, e−1}⋆

)
+ ∂−1

σ (∂νϕc)∂
−1
σ

(
e{∂−1

σ ϕc, e−1}⋆

)

+∂−1
ν (∂σϕ)∂

−1
ν

(
e{∂−1

ν ϕ, e−1}⋆

)
+ ∂−1

ν (∂σϕc)∂
−1
ν

(
e{∂−1

ν ϕc, e−1}⋆

)]

−
e

2

{
gρσe

ρ
b

[
L⋆ ⋆ (e

−1∂νϕ
b) + T (∆)

(
XcL⋆, X̃

b(e−1∂νϕ
c)
)]

+gρνe
ρ
b

[
L⋆ ⋆ (e

−1∂σϕ
b) + T (∆)

(
XcL⋆, X̃

b(e−1∂σϕ
c)
)]}

. (53)

Now we can regularize the EMT (52). Due to the very complex form of expression in the general
case we focus our attention to the case where the coordinates base eµa(x) is to be eµa = δµa + ωµ

abx
b

such that the tensor (ωµ
ab) is symmetric between the index a and b, i.e. ωµ

ab = ωµ
ba. The commutation

relation between the vectors fields Xa is:

[Xa,Xb] = (ωµ
ba − ωµ

ab)∂µ = 0, (54)

and therefore the twisted star product is associative. We adequately choose the elements of the
matrix (ωµ

ab) such that the matrix representation of (eµa) is given in dimension d = 4 by

(e)µa =




1 + ω1
11
x1 + ω1

12
x2 ω2

11
x1 + ω2

12
x2 0 0

ω1
12x

1 + ω1
22x

2 1 + ω2
12x

1 + ω2
22x

2 0 0
0 0 1 + ω3

33x
3 + ω3

34x
4 ω4

33x
3 + ω4

34x
4

0 0 ω3
34x

3 + ω3
44x

4 1 + ω4
34x

3 + ω4
44x

4


 . (55)

Then, the determinants e−1 and the inverse e becomes

e−1 = 1 + ωµx
µ, e = 1− ωµx

µ, (56)

where the components of the vector ωµ are

ω1 = ω1
11 + ω2

12, ω2 = ω2
22 + ω1

12, ω3 = ω3
33 + ω4

34, ω4 = ω4
44 + ω3

34. (57)

The noncommutative tensor takes the form θµν(x) = θe−1Jµν where (J) stands for the sym-
plectic matrix in four dimensions. Besides, the inverse matrix eaµ can be written as eaµ = δaµ +

ωab
µ xb, where ωab

µ = −ωµ
ab, and the solution of the field equation eaµ = ∂µφ

a is well given by

φa = xa +
1

2
ωab
µ xb x

µ. (58)

Using all these considerations, after few algebraic computation we come to the relation

∂νT s
νσ =

2eλ

4!
XaS(∆)([∂σϕ,ϕ]⋆, X̃

a(ϕ ⋆ ϕ ⋆ e−1))

=
2λ

4!
∂γ

(
eeγaS(∆)([∂σϕ,ϕ]⋆, X̃

a(ϕ ⋆ ϕ ⋆ e−1))
)
, (59)
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where the followings identities are used

{∂σϕ, e
−1}⋆ = 2e−1∂σϕ, (60)

e−1∂σϕ
c = δcσ + δcσωµx

µ + ωcd
σ xd, (61)

T (∆)
(
XcL⋆, X̃

b(e−1∂σϕ
c)
)
= 0. (62)

As the ordirary Moyal plane the EMT defined on the twisted Moyal space can be regularized. We
get

T s,r
νσ = T s

νσ −
2λ

4!
gγν

(
eeγaS(∆)([∂σϕ,ϕ]⋆, X̃

a(ϕ ⋆ ϕ ⋆ e−1))
)
. (63)

4 Conclusion and remarks

In conclusion, we summarize our results. We have developed the variational techniques for the
determination of the EL equations of motion of a Lagrangian that depends on ∂−1

µ ϕ. We have
computed the EMT for the Tanasa model, in ordinary and twisted Moyal spaces. The Wilson
regularization procedure is also given to improve the corresponding tensors.

Let us remark that introducing x-dependence in the deformation matrix (θµν) of the star prod-
uct leads to the definition of nontrivial background metric. Then the EMT associated to translation
invariant field theory may provided from the core of the Einstein equation, when we assume that
gravity can be incorporated in the noncommutativity. Also, the EMT given in (53) can be regular-
ized without choosing the tetrad as eµa = δµa + ωµ

abx
b. Due to the very complex and lengthy form of

the results this computation is not given in this paper, but maybe deduced, thanks to the example
proposed in this paper.
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