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Abstract. In this paper, we derive the energy momentum tensor for the translation invariant noncom-
mutative Tanasa et al. scalar field model. The Wilson regularization procedure is used to improve this
tensor and the local conservation property is recovered. The same question is addressed in the case where
the Moyal star product is deformed including the tetrad fields. It provides us with an extension of the
recent work (J. Phys. A: Math. Theor. 43, 155202 (2010)), regarding the computation and properties of
the Noether currents to the renormalizable models.

1 Introduction

Noncommutative (NC) geometry and its applications to quantum field theory (QFT), namely NCQFT, has received
increasing attention, in the two decades, due to the advent of the class of renormalizable actions [1–11]. NCQFT arises
as a scenario for the Planck scale behavior of physical theories, at which the nonlocality of interactions has to appear
and break down the notion of continuous spacetime [12, 13]. It is most often performed over a Moyal space R

d
θ . This

space is the deformation of d-dimension Euclidean space R
d endowed with a constant Moyal product of functions:

(f � g)(x) = m
{

ei θρσ

2 ∂ρ⊗∂σf(x) ⊗ g(x)
}

, x ∈ R
d, f, g ∈ C∞(Rd), (1)

where m(f ⊗ g) = f · g, and such that the coordinates functions xσ and xρ satisfy the commutation relation

[xρ, xσ]� = iθρσ. (2)

θρσ is a skew symmetric constant tensor and elements have the dimension of the length square. It is possible to
construct the NCQFT in a nontrivial background metric, generally by imposing the nonconstant deformation matrix
θρσ = θρσ(x), which naturally results in the difficulty of finding a suitable explicit closed Moyal-type formula [14–18].
In the context of a dynamical NC field theory, this can be realized by replacing the vector field ∂μ on the tangent space
TxR

d
θ by Xa = eμ

a(x)∂μ, where the tetrad eμ
a(x) is a tensor depending on the coordinate functions. The generalized

Moyal star-product becomes

(f � g)(x) = m
{

ei θab

2 Xa⊗Xbf(x) ⊗ g(x)
}

, x ∈ R
d, f, g ∈ C∞(Rd). (3)

In general, the vector field Xa is noncommutative with respect to the Lie bracket “[·, ·]”. The particular condition
[Xa,Xb] = 0 results in constraints on the tetrad eμ

a and leads to the definition of one new field ϕa, such that the
inverse ea

ν of eν
a is proportional to ∂νϕa. Since Xaϕb = δb

a, the field ϕb can be viewed as new coordinates along the
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Xa-directions and therefore will be taken into account in the redefinition of the functional action [16]. The Moyal
space R

d
θ of this type becomes curved with the background metric gμν = ea

μeb
νδab. Let us mention that the commuting

vector field Xa ensures the associativity of the star product (3), but the loss of the associativity property becomes
evident in the general case where [Xa,Xb] �= 0. Nevertheless, this property may be satisfied in a space with a nearly
Euclidean metric, in which it is natural to choose a tetrad field eμ

a(x) that lies nearly along the coordinate axes
eμ
a(x) = δμ

a + ωμ
a (x), where ωμ

a (x) is a coordinate-dependent small quantity to be determined [19,20].
The basic problem which has accompanied the development of NC field theory is the UV-IR mixing in the pertur-

bation computation [21]. This pathology may be solved by introducing in the scalar field action, i.e. the ϕ4
�-model,

the so-called Grosse-Wulkenhaar (GW) harmonic term [3–5]. The GW model breaks the U(N) symmetry invariance
in the IR regime but is asymptotically safe in the UV regime. The model is also noninvariant under the translation
and rotation of the spacetime. The only known invariance satisfied by the model is the so-called Langman-Szabo du-
ality [22]. The study of the symmetry consequence, such as the Noether current, are addressed for the GW model by
imposing a constraint on the Euler-Lagrange (EL) equations of motion [23–25]. In [26] the same question is addressed
in the case of twisted star product definition in the field theory.

Using the same idea of the perturbative computation of the renormalization procedure, other theoretical model
have been proved to be renormalizable. The theoretical ingredient to perform this issue is the so-called multiscale
analysis, developed by Rivasseau [28]. One of the models we will focus on in this work is the translation invariant
renormalizable scalar model discovered by Gurau-Magnen-Rivasseau-Tanasa (GMRT) [7–11]. The GMRT model comes
from the NC ϕ4 model by adding a new contribution a

θ2p2 on the propagator in the momentum space, and on which the
problem of UV/IR mixing is solved. At any order in perturbation theory, the β functions of the model are given [27].
Despite all these interesting results, the corresponding current derived from the symmetry properties of the Tanasa
model has not yet been given in the literature. Our purpose in this paper is to investigate the computation of the
energy momentum tensor (EMT) of the GMRT model and study its regularization in both ordinary Moyal space and
twisted Moyal space. The Wilson regularization procedure is used to recover the local conservation as given in [29–37].

The paper is organized as follows. In sect. 2 we compute the EMT for translation invariant GMRT model in the
ordinary Moyal space. The regularization of this tensor is also given. In sect. 3 the same computation is performed in
the case of the twisted Moyal plane. Our conclusion and remarks are given in sect. 4.

2 EMT for the renormalizable GMRT model in Moyal space

In this section we derive the EL equation of motion and the EMT for the translation invariant nonlocal functional
action. The renormalization procedure described in [9] is also pointed out. Let us consider the scalar field theoretic
model in which we begin with the Lagrange density, which is a function of the ϕ field, its first partial spacetime
derivatives ∂μϕ, and the inverse derivatives ∂−1

μ ϕ:

S�[ϕ] =
∫

ddxL�(ϕ, ∂μϕ, ∂−1
μ ϕ), ∂−1

μ ϕ(x) :=
∫ x

−∞
dx′μ ϕ(x′), (4)

where L� means that the ordinary product of function in the action S is replaced by the Moyal product, i.e.

L�(ϕ, ∂μϕ, ∂−1
μ ϕ) = L(ϕ, ∂μϕ, ∂μ∂νϕ, ∂μ∂ν∂σϕ, · · ·∞, ∂−1

μ ϕ). (5)

Before starting our investigation on the computation of the EMT, let us provide the following important remark on the
Lagrangian density (5). First of all, the noncommutative fields theories are nonlocal in time and space due to an infinite
number of temporal and spatial derivatives in the Lagrangian. This infinite number of derivatives comes from the
definition of the star product. Despite the fact that the inverse derivative ∂−1

μ ϕ is considered as a nonlocal contribution
in the Lagrangian (5), this Lagrangian remains nonlocal without this contribution. The analysis performed in this work
concerning the computation of the EMT becomes similar to what follows in the previous literature, concerning the
Noether current applied to noncommutative fields theories (see [16,23–26,29–37] and references therein).

Under the translation group, which transforms coordinates as xμ → xμ + aμ (aμ is a constant vector), the ϕ field
is then transformed as ϕ(x) → ϕ(x) + aμ∂μϕ(x); the variation of action (4) gives

S�[ϕ] → S�[ϕ] + δS�[ϕ] = S�[ϕ] + aμ∂μS�[ϕ], (6)

where we have assumed that the ϕ field vanishes when |x| approaches infinity. We will show that the translation
invariance of the nonlocal action, δS�[ϕ] = 0, implies the existence of a conserved current density Jν , such that

δϕ �
δS�

δϕ
+ ∂νJν = 0, (7)
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where the infinitesimal current Jν may be expressed in terms of the EMT as
∫

ddx ∂μJμ := aν

∫
ddx∂μT μ

ν . (8)

Note that the above relation is well satisfied if ∂αϕ ∈ S(Rd), α = [[−2,−1]] ∪ N, where S(Rd) is the space of suitable
Schwartzian functions. The variation of the action S� is written as

δS� =
∫

ddx

[
∂L�

∂ϕ
� δϕ +

∂L�

∂∂μϕ
� ∂μδϕ +

∂L�

∂∂−1
μ ϕ

� ∂−1
μ δϕ

]
. (9)

It turns out that the inverse derivative, which appears in (4), is such that ∂μ∂−1
ν ϕ(x) = δμνϕ(x) and ∂μ(ab) =

(∂μa)b + a(∂μb). Then, the following identity is well satisfied:

d∑
μ=1

∂L�

∂∂−1
μ ϕ

� ∂−1
μ δϕ =

d∑
μ=1

∂μ

[
∂−1

μ

(
∂L�

∂∂−1
μ ϕ

)
� ∂−1

μ δϕ

]
−

d∑
μ=1

∂−1
μ

(
∂L�

∂∂−1
μ ϕ

)
� δϕ. (10)

Note that this relation comes from the Leibniz rule. In the rest of this work, without all confusions the repetitive
“double indices” is summed as Einstein summation. In the case of repetitive “triple indices” or more, the Einstein
summation is not satisfied. If this is not the case, we will specify if this summation holds. Thus, the EL equations of
motion for the Lagrangian density L� become

Eϕ =
∂L�

∂ϕ
− ∂μ

(
∂L�

∂∂μϕ

)
− ∂−1

μ

(
∂L�

∂∂−1
μ ϕ

)
= 0, (11)

and the conserved EMT can be derived by replacing, in relation (7), δϕ by −aμ∂μϕ, such that
∫

ddx (−aρ ∂μTμρ + Eϕ) = 0, (12)

where

Tμρ =
1
2

{
∂L�

∂∂μϕ
, ∂ρϕ

}

�

+
1
2

{
∂−1

μ

(
∂L�

∂∂−1
μ ϕ

)
, ∂−1

μ ∂ρϕ

}

�

− gμρL�. (13)

Consider, as an example, the translation invariant noncommutative field theory [8, 9], which is proposed to take into
account the quantum corrections and to avoid the UV/IR mixing of the noncommutative scalar field theory:

S�[ϕ] =
∫

ddx

[
1
2
∂μϕ � ∂μϕ +

m2

2
ϕ � ϕ +

a

2θ2
∂−1

μ ϕ � ∂−1
μ ϕ +

λ

4!
ϕ4

�

]
, (14)

where

∂−1
μ ϕ(x) :=

∫ x

−∞
dμx′ϕ(x′),

∫ x

−∞

δϕ(x′)
δϕ(y)

dx′ = Θ(x − y), (15)

Θ(x) is the Heaviside function. The following statement holds.

Proposition 1. The GMRT functional action (14) is invariant under spacetime translation. This symmetry implies the
global conservation of the tensor (13) due to relation (12). Moreover the tensor (13) leads to the construction of a
symmetric and locally conserved EMT given by

T s,r
ρμ =

1
2
{∂μϕ, ∂ρϕ}� +

a

4θ2

{
∂−1

μ ∂−1
μ ϕ, ∂−1

μ ∂ρϕ
}

�
+

a

4θ2

{
∂−1

ρ ∂−1
ρ ϕ, ∂−1

ρ ∂μϕ
}

�

− i
λ

4!
θαβgαρ ([∂μϕ,ϕ]� �′ ∂β(ϕ � ϕ)) − i

λ

4!
θαβgαμ ([∂ρϕ,ϕ]� �′ ∂β(ϕ � ϕ))

− gμρL�, (16)

where we have introduced the new star product �′, which is nonassociative and commutative and is given by

f �′ g = m
{

sin(1
2θμν∂μ ⊗ ∂ν)

1
2θμν∂μ ⊗ ∂ν

(f ⊗ g)
}

. (17)
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Proof. The variation principle gives the EL equations of motion (see eq. (11) for more details):

δS�

δϕ
= 0 ⇔ −∂μ∂μϕ + m2ϕ +

λ

3!
ϕ3

� −
a

θ2
∂−1

μ ∂−1
μ ϕ = 0. (18)

Furthermore the EMT becomes

Tμρ =
1
2
{∂μϕ, ∂ρϕ}� +

a

2θ2

{
∂−1

μ ∂−1
μ ϕ, ∂−1

μ ∂ρϕ
}

�
− gμρL�. (19)

The tensor Tμρ is nonsymmetric and nonlocally conserved. Let T s
μρ be the symmetric tensor associated to Tμρ, i.e.,

T s
μρ = (Tμρ + Tρμ)/2, we get

T s
μρ =

1
2
{∂μϕ, ∂ρϕ}� +

a

4θ2

{
∂−1

μ ∂−1
μ ϕ, ∂−1

μ ∂ρϕ
}

�
+

a

4θ2

{
∂−1

ρ ∂−1
ρ ϕ, ∂−1

ρ ∂μϕ
}

�
− gμρL�. (20)

Note that the procedure of regularization of the EMT performed by Gerhold et al. [29] can be used. Consider the star
product �′ given in (17), which satisfies the following identity:

θμν∂μf �′ ∂νg = −i[f, g]�. (21)

Then, after little computation, we get

∂ρT s
ρμ =

λ

4!
[[∂μϕ,ϕ]�, ϕ � ϕ]� = i

λ

4!
θαβ∂α ([∂μϕ,ϕ]� �′ ∂β(ϕ � ϕ)) . (22)

The locally conserved EMT then becomes

T s,r
ρμ =

1
2
{∂μϕ, ∂ρϕ}� +

a

4θ2

{
∂−1

μ ∂−1
μ ϕ, ∂−1

μ ∂ρϕ
}

�
+

a

4θ2

{
∂−1

ρ ∂−1
ρ ϕ, ∂−1

ρ ∂μϕ
}

�

− i
λ

4!
θαβgαρ ([∂μϕ,ϕ]� �′ ∂β(ϕ � ϕ)) − i

λ

4!
θαβgαμ ([∂ρϕ,ϕ]� �′ ∂β(ϕ � ϕ))

− gμρL�. (23)

�
Note that the limit a → 0 gives the EMT for the scalar field theory on Moyal space derived in [29,30], from which

the Belifante PDE can be given. Also by adding the quantity 1
6 (gμρ�− ∂μ∂ρ)(ϕ � ϕ) in expression (20) and by setting

m = 0, we obtain the traceless EMT. The conventional tensor (19) does not have finite matrix elements even to lowest
order in the coupling λ. However, the modified tensor T I

μρ = Tμρ − 1
6 (gμρ� − ∂μ∂ρ)(ϕ � ϕ) has finite matrix elements

to all orders in λ. The improvement term does not contribute to the divergence of the energy-momentum tensor, i.e.

∂μT I
μρ = ∂μTμρ. (24)

The global conservation of the EMT (16) implies the existence of a conserved d-momentum Pρ, such that

∂0Pρ = ∂0

∫
ddxT s,r

0μ = 0. (25)

Due to the presence of the deformation parameter θμν (as a constant, skewsymmetric, fixed tensor), the Lorentz
symmetry is manifestly broken. In the next section we introduce a deformation of the Moyal algebra, so-called dynam-
ical Moyal algebra, in which the tensor θμν depends now on the coordinates. In this situation the Lorentz symmetry
maybe restored and therefore the corresponding EMT becomes Lorentz invariant tensor. Consider the tensor xρμ(a, θ)
given by

xρμ(a, θ) =
a

4θ2

{
∂−1

μ ∂−1
μ ϕ, ∂−1

μ ∂ρϕ
}

�
+

a

4θ2

{
∂−1

ρ ∂−1
ρ ϕ, ∂−1

ρ ∂μϕ
}

�
. (26)

The indices ρ and μ are not summed in the right-hand side of (26). Also we can use the fact that ∂−1
μ ∂ρϕ = δμρϕ and,

therefore, xρμ(a, θ) becomes

xρμ(a, θ) =
a

4θ2

{
∂−1

μ ∂−1
μ ϕ,ϕ

}
�

+
a

4θ2

{
∂−1

ρ ∂−1
ρ ϕ,ϕ

}
�

=
a

4θ2

{∫
dμx

(∫
dμxϕ

)
, ϕ

}

�

+
a

4θ2

{∫
dρx

(∫
dρxϕ

)
, ϕ

}

�

. (27)

Furthermore the tensor tρμ provided by the a dependence on the action (14) is written as

tρμ(a, θ) = xρμ(a, θ) − a

2θ2
gρμ∂−1

σ ϕ � ∂−1
σ ϕ. (28)

We turn to consider this quantity as the regularization contribution of the EMT for the scalar ϕ4
� theory due to the

presence of a term allowing renormalization of the action (14), i.e., ∂−1
μ ϕ � ∂−1

μ ϕ.
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3 The EMT for the GMRT model in the generalized Moyal space

This section is devoted to the computation of the EMT of the generalized type GMRT model. Before defining this
model we give some definitions and identities satisfied by the star product (3). These will be used to calculate the ϕ
and the ϕa variation of the functional action (for more explanation see [16]). Expanding the generalized �-product (3)
as follows,

f � g ≡ eΔ(f, g) =
∞∑

n=0

Δn

n!
(f, g), Δ(f, g) =

i

2
θab(Xaf)(Xbg), (29)

allows us to define the four operators

T (Δ) =
eΔ − 1

Δ
, S(Δ) =

sinh(Δ)
Δ

,

R(Δ) =
cosh(Δ) − 1

Δ
and X̃a =

i

2
θabXb, (30)

such that the following identities hold:

f � g = fg + XaT (Δ)(f, X̃ag), (31)

f � g − g � f = [f, g]� = 2XaS(Δ)(f, X̃ag), (32)

f � g + g � f = {f, g}� = 2fg + 2XaR(Δ)(f, X̃ag). (33)

S(Δ)(·, X̃·) is a bilinear antisymmetric operator, such that

T (Δ)(f, X̃ag) − T (Δ)(g, X̃af) = 2S(Δ)(f, X̃ag). (34)

The integral of the form
∫

ddx (f � g) is not cyclic; even with suitable boundary conditions at infinity, i.e.
∫

ddx (f � g) �=
∫

ddx (g � f). (35)

Using now the measure eddx, where e = det(ea
μ), a cyclic integral can be defined so that, up to boundary terms,

∫
eddx (f � g) =

∫
eddx(fg) =

∫
eddx (g � f). (36)

From now the peculiar Euler Lagrange equations of motion can be readily derived by direct application of the variation
principle and the use of formulas of derivatives and variations given in [16] by

δϕce = eXa(δϕa), δϕce−1 = −e−1Xa(δϕa), eXa(f) = ∂μ(eeμ
af). (37)

To compute δϕc variations, consider the functions f and g, which do not depend on ϕc. It turns out that the following
identity is useful:

δϕc(f � g) = −(δϕcXcf) � g − f � (δϕcXcg) + δϕcXc(f � g). (38)

In view of all these considerations, let us suppose now, and in the following, that the field theory is defined by the
so-called generalized GMRT model, which is described by the functional action

S�[ϕ] =
∫

eddx

{
1
2
∂μϕ � ∂μϕ +

a

2θ2
∂−1

μ ϕ � ∂−1
μ ϕ +

m2

2
ϕ � ϕ +

λ

4!
ϕ � ϕ � ϕ � ϕ

+
1
2
∂μϕc � ∂μϕc +

a

2θ2
∂−1

μ ϕc � ∂−1
μ ϕc

}
� e−1

=
∫

eddx (L� � e−1). (39)

Using expression (36), the action (39) can also be written as S�[ϕ] =
∫

ddxL�, and then we can easily show that (39) is
invariant under spacetime translations. The application of the Noether method to this action which admit continuous
symmetrie yields locally conserved EMT, such that the following result holds.
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Proposition 2. The symmetric locally conserved EMT derived from the translation invariance of the action (39) is given
by the following relation:

T s
νσ =

e

4
[
(∂νϕ){∂σϕ, e−1}� + (∂νϕc){∂σϕc, e−1}� + (∂σϕ){∂νϕ, e−1}� + (∂σϕc){∂νϕc, e−1}�

]

+
a

4θ2

[
∂−1

σ (∂νϕ)∂−1
σ

(
e{∂−1

σ ϕ, e−1}�

)
+ ∂−1

σ (∂νϕc)∂−1
σ

(
e{∂−1

σ ϕc, e−1}�

)

+ ∂−1
ν (∂σϕ)∂−1

ν

(
e{∂−1

ν ϕ, e−1}�

)
+ ∂−1

ν (∂σϕc)∂−1
ν

(
e{∂−1

ν ϕc, e−1}�

)]

− e

2

{
gρσeρ

b

[
L� � (e−1∂νϕb) + T (Δ)

(
XcL�, X̃

b(e−1∂νϕc)
)]

+ gρνeρ
b

[
L� � (e−1∂σϕb) + T (Δ)

(
XcL�, X̃

b(e−1∂σϕc)
)]}

. (40)

As mentioned in the last section, the triple index appearing in (40) is not summed. Using the fact that ∂−1
μ ∂ρϕ =

δμρϕ, the tensor x̃νσ corresponding to xνσ given in (27) by replacing the Moyal product (1) by (3) is

x̃νσ(a, θ) =
a

4θ2

[
ϕ

∫
dσx

(
e

{∫
dσxϕ, e−1

}

�

)
+ ϕc

∫
dσ x

(
e

{∫
dσxϕc, e−1

}

�

)

+ ϕ

∫
dνx

(
e

{∫
dνxϕ, e−1

}

�

)
+ ϕc

∫
dνx

(
e

{∫
dνxϕc, e−1

}

�

)]
. (41)

Then the tensor t̃νσ providing from the a dependence on the action (39) is written as

t̃νσ(a, θ) = x̃νσ(a, θ) − e

2

{
gρσeρ

b

[
L(a)

� � (e−1∂νϕb) + T (Δ)
(
XcL(a)

� , X̃b(e−1∂νϕc)
)]

+ gρνeρ
b

[
L(a)

� � (e−1∂σϕb) + T (Δ)
(
XcL(a)

� , X̃b(e−1∂σϕc)
)]}

, (42)

where
L(a)

� =
a

2θ2

(
∂−1

μ ϕ � ∂−1
μ ϕ + ∂−1

μ ϕc � ∂−1
μ ϕc

)
.

The rest of this paper is devoted to the prove of proposition 2. Let us recall that the case where a = 0 in (39)
is reduced to the well-known scalar field theory in the literature (see [16] for more details). Then we will focus our
attention on the ϕ and ϕc variation of the quantity

S∂ =
a

2θ2

∫
eddx

[
∂−1

μ ϕ � ∂−1
μ ϕ + ∂−1

μ ϕc � ∂−1
μ ϕc

]
� e−1. (43)

See the appendix for more details.
The ϕ variation of action (39) gives the EL equations of motion of the ϕ field as

Eϕ = −1
2
∂μ(e{∂μϕ, e−1}�) −

a

2θ2
∂−1

μ (e{∂−1
μ ϕ, e−1}�) +

m2

2
e{ϕ, e−1}� +

λ

4!
e{ϕ � ϕ, {ϕ, e−1}�}� = 0, (44)

which is reduced to (18) in the limit where Xa → ∂a. Hence, the corresponding current is

Kσ =
a

2θ2

[
(∂−1

σ δϕ)∂−1
σ (e{∂−1

σ ϕ, e−1}�) + eeσ
b T (Δ)(∂−1

μ δϕ, X̃b({∂−1
μ ϕ, e−1}�))

+ 2eeσ
b S(Δ)(∂−1

μ ϕ, X̃b(∂−1
μ δϕ � e−1))

]
+

eδϕ

2
· {∂σϕ, e−1}�

+ eeσ
b

[
T (Δ)

(
δ∂μϕ,

X̃b

2
{∂μϕ, e−1}�

)
+ S(Δ)

(
∂μϕ, X̃b(∂μδϕ � e−1)

)]

+ eeσ
b

[
m2

2
T (Δ)

(
δϕ, X̃b{ϕ, e−1}�

)
+ m2S(Δ)

(
ϕ, X̃b(δϕ � e−1)

)]

+ eeσ
b

[
λ

4!
T (Δ)

(
δϕ, X̃b{ϕ � ϕ, {ϕ, e−1}�}�

)
+

λ

12
S(Δ)

(
ϕ, X̃b(δϕ � ϕ � ϕ � e−1)

)

+
λ

12
S(Δ)

(
ϕ � ϕ, X̃b(δϕ � ϕ � e−1)

)
+

λ

12
S(Δ)

(
ϕ � ϕ � ϕ, X̃b(δϕ � e−1)

)]
, (45)
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such that
δϕS� =

∫
ddx[δϕEϕ + ∂σKσ]. (46)

In the other hand the ϕc variation of (39) gives the EL-equations of motion

Eϕϕc

= Eϕc

∂ − XcϕEϕ + XcLΩ
� − 1

2
Xcϕ∂μ

(
e{∂μϕ, e−1}�

)
− e

Ω2

2
ϕXcx̃ · {x̃ϕ, e−1}�

− e

2
Xc∂μϕ · {∂μϕ, e−1}� −

e

2
Xc∂μϕa · {∂μϕa, e−1}� − ∂μ

(
e

2
{∂μϕc, e

−1}�

)
= 0 (47)

and the corresponding current

J σ = J σ
∂ + Kσ(δϕ → −δϕcXcϕ) +

eδϕc

2
Xcϕ · {∂σϕ, e−1}� +

eδϕc

2
· {∂σϕc, e

−1}�

+ eeσ
b

{
− L� � (δϕbe−1) + δϕb(L� � e−1) + T (Δ)

(
Xc(L�), X̃b(δϕce−1)

)

+
1
2
T (Δ)

(
∂μ(δϕceρ

c)∂ρϕ, X̃b{∂μϕ, e−1}�

)
+ S(Δ)

(
∂μϕ, X̃b((∂μ(δϕceρ

c)∂ρϕ) � e−1)
)}

+
1
2
eeσ

b

{
−T (Δ)

(
δϕcXc∂μϕa, X̃b{∂μϕa, e−1}�

)
− 2S(Δ)

(
∂μϕa, X̃b((δϕcXc∂μϕa) � e−1)

)

+ 2S(Δ)
(
∂μϕa, X̃b(∂μδϕa � e−1)

)
+ T (Δ)

(
∂μδϕa, X̃b{∂μϕa, e−1}�

)}
, (48)

such that
δϕcS� =

∫
ddx

(
δϕc Eϕϕc

+ ∂σJ σ
)

. (49)

Now using the results in the previous paragraph where we studied the general properties of the total variation
of the Lagrangian, we discuss the translation invariant symmetry of the model and compute the conserved current,
namely, the EMT. In general, a symmetry of the action involves a certain change of variables. Performing a functional
variation of the fields and a coordinates transformations

ϕ′(x) = ϕ(x) + δϕ(x), ϕ′c(x) = ϕc(x) + δϕc(x), x′μ = xμ + aμ, (50)

and by using the identity dDx′ = [1 + ∂μaμ + O(a2)]dDx, leads to the following variation of the action, to first order
in δϕ(x), δϕc(x) and aμ:

δS� =
∫

eddx

{∣∣∣∣
∂x′

∂x

∣∣∣∣ � (L′
� � e−1)

}
−
∫

eddx (L� � e−1)

=
∫

ddx
{
δϕ

(
(L� � e−1)e

)
+ δϕc

(
(L� � e−1)e

)
+ aμ � ∂μ[(L� � e−1)e] + ∂μaμ � (L� � e−1)e

}
. (51)

Now by integrating on a submanifold M ⊂ R
D with nonvanishing fields at the boundary (so that the total derivative

terms do not disappear), we get

δS� =
∫

M

ddx ∂σ

[
Kσ + J σ + aσ �

(
(LΩ

� � e−1)e
)]

, (52)

coupled to the transformations δϕ = −aν∂νϕ, δϕc = −aν∂νϕc, aν = constant, that we substitute into (52) and, taking
into account the identities δϕcXc∂μϕ = ∂μ(δϕcXcϕ) − ∂μ(δϕceρ

c)∂ρϕ, such that δϕcXc∂μϕ = ∂μδϕ = −aν∂ν∂μϕ, and
the fact that ea

ν = ∂νϕa, we come to the relation

0 = δS� = −aν

∫

M

ddx ∂σT σ
ν , (53)

where the EMT takes the form

T σ
ν =

e

2
[
(∂νϕ){∂σϕ, e−1}� + (∂νϕc){∂σϕc, e−1}�

]

+
a

2θ2

[
∂−1

σ (∂νϕ)∂−1
σ

(
e{∂−1

σ ϕ, e−1}�

)
+ ∂−1

σ (∂νϕc)∂−1
σ

(
e{∂−1

σ ϕc, e−1}�

)]

− eeσ
b

[
L� � (e−1∂νϕb) + T (Δ)

(
XcL�, X̃

b(e−1∂νϕc)
)]

. (54)
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This tensor is not symmetric and nonlocally conserved. Note that to recover the EMT given in (19) we write Tνρ =
gσρT σ

ν and take the limit eμ
a → δμ

a . Expression (54) can be symmetrized as

T s
νσ =

e

4
[
(∂νϕ){∂σϕ, e−1}� + (∂νϕc){∂σϕc, e−1}� + (∂σϕ){∂νϕ, e−1}� + (∂σϕc){∂νϕc, e−1}�

]

+
a

4θ2

[
∂−1

σ (∂νϕ)∂−1
σ

(
e{∂−1

σ ϕ, e−1}�

)
+ ∂−1

σ (∂νϕc)∂−1
σ

(
e{∂−1

σ ϕc, e−1}�

)

+ ∂−1
ν (∂σϕ)∂−1

ν

(
e{∂−1

ν ϕ, e−1}�

)
+ ∂−1

ν (∂σϕc)∂−1
ν

(
e{∂−1

ν ϕc, e−1}�

)]

− e

2

{
gρσeρ

b

[
L� � (e−1∂νϕb) + T (Δ)

(
XcL�, X̃

b(e−1∂νϕc)
)]

+ gρνeρ
b

[
L� � (e−1∂σϕb) + T (Δ)

(
XcL�, X̃

b(e−1∂σϕc)
)]}

. (55)

Now we can regularize the EMT (54). Due to the very complex form of expression in the general case, we focus
our attention on the case where the coordinates base eμ

a(x) is to be eμ
a = δμ

a + ωμ
abx

b, such that the tensor (ωμ
ab) is

symmetric between the index a and b, i.e. ωμ
ab = ωμ

ba. The commutation relation between the vectors fields Xa is

[Xa,Xb] = (ωμ
ba − ωμ

ab)∂μ = 0, (56)

and therefore the dynamical star product is associative. We adequately choose the elements of the matrix (ωμ
ab), such

that the matrix representation of (eμ
a) is given in dimension d = 4 by

(e)μ
a =

⎛
⎜⎜⎜⎜⎝

1 + ω1
11x

1 + ω1
12x

2 ω2
11x

1 + ω2
12x

2 0 0

ω1
12x

1 + ω1
22x

2 1 + ω2
12x

1 + ω2
22x

2 0 0

0 0 1 + ω3
33x

3 + ω3
34x

4 ω4
33x

3 + ω4
34x

4

0 0 ω3
34x

3 + ω3
44x

4 1 + ω4
34x

3 + ω4
44x

4

⎞
⎟⎟⎟⎟⎠

. (57)

Then, the determinants e−1 and the inverse e become

e−1 = 1 + ωμxμ, e = 1 − ωμxμ, (58)

where the components of the vector ωμ are

ω1 = ω1
11 + ω2

12, ω2 = ω2
22 + ω1

12, ω3 = ω3
33 + ω4

34, ω4 = ω4
44 + ω3

34. (59)

The noncommutative tensor takes the form θμν(x) = θe−1Jμν , where (J) stands for the symplectic matrix in four
dimensions. Besides, the inverse matrix ea

μ can be written as ea
μ = δa

μ + ωab
μ xb, where ωab

μ = −ωμ
ab, and the solution of

the field equation ea
μ = ∂μφa is given by

φa = xa +
1
2
ωab

μ xb xμ. (60)

Using all these considerations, after little algebraic computation, we come to the relation

∂νT s
νσ =

2eλ

4!
XaS(Δ)([∂σϕ,ϕ]�, X̃a(ϕ � ϕ � e−1))

=
2λ

4!
∂γ

(
eeγ

aS(Δ)([∂σϕ,ϕ]�, X̃a(ϕ � ϕ � e−1))
)

, (61)

where the following identities are used

{∂σϕ, e−1}� = 2e−1∂σϕ, (62)

e−1∂σϕc = δc
σ + δc

σωμxμ + ωcd
σ xd, (63)

T (Δ)
(
XcL�, X̃

b(e−1∂σϕc)
)

= 0. (64)

As the ordinary Moyal plane, the EMT defined on the dynamical Moyal space can be regularized. We get the symmetric
tensor

T s,r
νσ = T s

νσ − 2λ

4!
gγν

(
eeγ

aS(Δ)([∂σϕ,ϕ]�, X̃a(ϕ � ϕ � e−1))
)
− 2λ

4!
gγσ

(
eeγ

aS(Δ)([∂νϕ,ϕ]�, X̃a(ϕ � ϕ � e−1))
)

. (65)

By incorporating noncommutativity in the coordinates, the gravitation interaction can be taken into account in
QFTs. However, the computation of the EMTs is based around a prejudice for writing the Einstein field equations as
Gνσ = κT s,r

νσ with gravity on the left and matter on the right. Due to the fact that ∂νGνσ = 0, we need improve the
EMT such that ∂νT s,r

νσ = 0. As in [29,30,37] we have explicitly shown that the standard local conservation law of the
EMT is always modified due to noncommutative effects and that tensor can always be redefined so as to be conserved.
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4 Conclusion and remarks

In conclusion, we summarize our results. We have developed the variation techniques for the determination of the EL
equations of motion of a Lagrangian that depends on ∂−1

μ ϕ. We have computed the EMT for the GMRT model, in
ordinary and dynamical Moyal spaces. The Wilson regularization procedure is also given to improve the corresponding
tensors.

Let us remark the following.

i) The invariance of the action (14) under spacetime translation involves the locally conserved EMT, which needs not
be symmetric and in a massless theory, it needs not be traceless either. The Lorentz symmetry in noncommutative
theory is broken for D > 2, since the constant skewsymmetric tensor θμν is not a Lorentz invariant tensor. As
is explaned in [16], one way to restore this symmetry is to generalized the Moyal product defined by a set of a
commuting vector field Xa = eμ

a(x)∂μ. Therefore the EMT given with the translation invariant renormalizable
action (the GMRT model) in the generalized Moyal space seems to be Lorentz invariant tensor.

ii) Introducing x dependence in the deformation matrix (θμν) of the star product leads to the definition of nontrivial
background metric. Then the EMT associated to translation invariant field theory may provided from the core of
the Einstein equation, when we assume that gravity can be incorporated in the noncommutativity. Also, the EMT
given in (40) can be regularized without choosing the tetrad as eμ

a = δμ
a + ωμ

abx
b. In the general case of the tetrad

eμ
a(x), the same computation can be made easily, thanks to the example proposed in this paper.
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allowed to improve this manuscript. The work of EB is partially supported by the Abdus Salam International Centre for
Theoretical Physics (ICTP, Trieste, Italy) through the Office of External Activities (OEA)-Prj-15. The ICMPA is in partnership
with the Daniel Lagolnitzer Foundation (DIF), France. The research of DOS at Max-Planck Institute is supported by the
Alexander von Humboldt foundation.

Appendix A. Formal variation principle of a nonlocal action L�

In this section we derive the variation principle in a formal way, which allows us to compute the EMT (13). The
nonlocal Lagrangian we consider here is of the form L�(ϕ, ∂μϕ, ∂−1

μ ϕ). As mentioned in sect. 2, the nonlocality of L�

comes not only from the star product, but also from the inverse derivative of the field ϕ denoted by ∂−1ϕ. There are
two ways for investigating this Lagrangian. The first is to expand the star product and get a quantity of the form

L�(ϕ, ∂μϕ, ∂−1
μ ϕ) = L(ϕ, ∂μϕ, · · · ,∞, ∂−1ϕ, θ). (A.1)

The right-hand side of this expression can be treated using the generalization of the Ostrogradski calculus for n
derivative Lagragian, see [38–41] for more explanations about this method. On the other hand, the left-hand side
may be treated as nonlocal noncommutative Lagrangian, and then the computation of the EMT is similar to what
follows in [29–37], apart from the fact that the inverse derivative needs to be considered carefully. Let S�[ϕ] =∫

ddxL�(ϕ, ∂μϕ, Ψ) be the nonlocal action coming from the nonlocal Lagrangian (A.1), in which the quantity ∂−1ϕ
is considered as a new field denoted by Ψ ; we get the following variation:

δS�[ϕ] =
∫

ddx

(
∂L�

∂ϕ
� δϕ +

∂L�

∂∂μϕ
� δ∂μϕ +

∂L�

∂Ψ
� δΨ

)
. (A.2)

Now, by considering the following identities,

∂μ∂−1
ν ϕ(x) = δμνϕ(x), ∂μ(a � b) = (∂μa) � b + a � (∂μb), (A.3)

we can simply deduce that

∂L�

∂∂μϕ
� ∂μδϕ = ∂μ

(
∂L�

∂∂μϕ
� δϕ

)
− ∂μ

(
∂L�

∂∂μϕ

)
� δϕ, (A.4)

∂L�

∂Ψ
� δΨ = ∂μ

[
∂−1

μ

(
∂L�

∂Ψ

)
� δΨ

]
− ∂−1

μ

(
∂L�

∂Ψ

)
� δϕ1μ, (A.5)

where the vector notation 1μ = δμμ is used to point out the fact that the Einstein summation holds. Then (A.2)
becomes

δS�[ϕ] =
∫

ddx (Eϕδϕ + ∂μJμ) , (A.6)
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where the quantities Eϕ and Jμ are, respectively, given by

Eϕ : =
∂L�

∂ϕ
− ∂μ

(
∂L�

∂∂μϕ

)
− ∂−1

μ

(
∂L�

∂Ψ

)
1μ, (A.7)

Jμ : =
(

∂L�

∂∂μϕ
� δϕ

)
+ ∂−1

μ

(
∂L�

∂Ψ

)
� δΨ. (A.8)

The current Jμ involves the infinite number of derivatives respect to the field ϕ due to the definition of the star product,
also the inverse derivative of the form ∂−1

μ ϕ, ∂−2
μ ϕ appears in this quantity. Let ∂αϕ ∈ S(Rd), α = [[−2,−1]] ∪ N,

where S(Rd) is the space of suitable Schwartzian functions. With this condition, the surface term vanishes, i.e.∫
ddx ∂μJμ = 0, and the EL equation of motion Eϕ = 0 is well satisfied. In the case of translation invariant action,

the coordinates and field are transformed as

x′μ = xμ + aμ, ddx′ = [1 + ∂μaμ + O(a2)]ddx, δϕ = −aμ∂μϕ, (A.9)

such that the variation of the action S� becomes (aμ is a constant vector):

δS� =
∫

ddx

∣∣∣∣
∂x′

∂x

∣∣∣∣ � L′
� −
∫

ddxL�

=
∫

ddx (δϕL� + aμ∂μL�) . (A.10)

Finally, taking into account the fact that Eϕ = 0, we come to

δS� =
∫

ddx [∂νJν(δϕ = −aμ∂μϕ) + aμgμν∂νL�]

= −aμ

∫
ddx ∂ν

[(
∂L�

∂∂νϕ
� ∂μϕ

)
+ ∂−1

ν

(
∂L�

∂Ψ

)
� ∂μΨ − gμνL�

]

= −aμ

∫
ddx ∂ν

[
1
2

{
∂L�

∂∂νϕ
, ∂μϕ

}

�

+
1
2

{
∂−1

ν

(
∂L�

∂Ψ

)
, ∂μΨ

}

�

− gμνL�

]

= −aμ

∫
ddx ∂νTνμ. (A.11)

Appendix B. Proof of relations (46) and (49)

In this appendix we give the proof of the variation principle, which leads to the EL equations of motion and the
corresponding current and therefore contribute to the proof of relations (46) and (49). Consider the action (43). Recall
that the ϕc field does not depend on ϕ. We get

δϕS∂ =
a

2θ2

∫
eddx

[
∂−1

μ δϕ � ∂−1
μ ϕ � e−1 + ∂−1

μ ϕ � ∂−1
μ δϕ � e−1

]

=
a

2θ2

∫
eddx

[
∂−1

μ δϕ � {∂−1
μ ϕ, e−1}� + 2XaS(Δ)(∂−1

μ ϕ, X̃a(∂−1
μ δϕ � e−1))

]

=
a

2θ2

∫
eddx

[
(∂−1

μ δϕ){∂−1
μ ϕ, e−1}� + XaT (Δ)(∂−1

μ δϕ, X̃a({∂−1
μ ϕ, e−1}�))

+ 2XaS(Δ)(∂−1
μ ϕ, X̃a(∂−1

μ δϕ � e−1))
]
, (B.1)

where we have used the identities

∂−1
μ ϕ � ∂−1

μ δϕ � e−1 = ∂−1
μ δϕ � e−1 � ∂−1

μ ϕ + 2XaS(Δ)(∂−1
μ ϕ, X̃a(∂−1

μ δϕ � e−1)), (B.2)

(∂−1
μ δϕ) � {∂−1

μ ϕ, e−1}� = (∂−1
μ δϕ){∂−1

μ ϕ, e−1}� + XaT (Δ)(∂−1
μ δϕ, X̃a({∂−1

μ ϕ, e−1}�)). (B.3)

Consider the following relation, in which the repetitive indices in the right-hand side are now summed:

e(∂−1
μ δϕ){∂−1

μ ϕ, e−1}� =
∑

μ

∂μ

[
(∂−1

μ δϕ)∂−1
μ (e{∂−1

μ ϕ, e−1}�)
]
− δϕ ∂−1

μ (e{∂−1
μ ϕ, e−1}�). (B.4)
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By replacing this identity in (B.1), we get the ϕ variation of S∂ as

δϕS∂ =
∫

ddx[δϕEϕ
∂ + ∂σKσ

∂ ], (B.5)

where E∂ contributes to the EL equations of motion and Kμ
∂ to the current:

Eϕ
∂ = − a

2θ2
∂−1

μ (e{∂−1
μ ϕ, e−1}�), (B.6)

Kσ
∂ =

a

2θ2

[
(∂−1

σ δϕ)∂−1
σ (e{∂−1

σ ϕ, e−1}�) + eeσ
b T (Δ)(∂−1

μ δϕ, X̃b({∂−1
μ ϕ, e−1}�))

+ 2eeσ
b S(Δ)(∂−1

μ ϕ, X̃b(∂−1
μ δϕ � e−1))

]
. (B.7)

Using the same technical computation to the remain expression of the functional action (39) the EL equations of
motion of the ϕ field, i.e. Eϕ = 0 and the corresponding current Kσ given, respectively, in relations (44) and (45) are
well satisfied, and then

δϕS� =
∫

ddx[δϕEϕ + ∂σKσ]. (B.8)

On the other hand, we are interested in the ϕc variation of (43). This variation is subdivided into two contributions,
namely A∂ and B∂ , such that

δϕcS∂ =
a

2θ2
δϕc

{∫
eddx ∂−1

μ ϕ � ∂−1
μ ϕ � e−1

}
+

a

2θ2
δϕc

{∫
eddx ∂−1

μ ϕc � ∂−1
μ ϕc � e−1

}

= A∂ + B∂ (B.9)

where

A∂ =
a

2θ2

∫
ddx (δϕce) (∂−1

μ ϕ � ∂−1
μ ϕ � e−1) +

a

2θ2

∫
eddx δϕc(∂−1

μ ϕ � ∂−1
μ ϕ � e−1)

=
a

2θ2

∫
ddx

{
∂σ

(
eeσ

aδϕa∂−1
μ ϕ � ∂−1

μ ϕ � e−1
)
− eeσ

aδϕa∂σ(∂−1
μ ϕ � ∂−1

μ ϕ � e−1)
}

+
a

2θ2

∫
eddx

{
− δϕaXa∂−1

μ ϕ{∂−1
μ ϕ, e−1}� − XbT (Δ)(δϕaXa∂−1

μ ϕ, X̃b{∂−1
μ ϕ, e−1}�)

− 2XbS(Δ)(∂−1
μ ϕ, X̃bδϕaXa∂−1

μ ϕ � e−1) − Xa(∂−1
μ ϕ � ∂−1

μ ϕ � δϕae−1)

+ Xa(∂−1
μ ϕ � ∂−1

μ ϕ)δϕae−1 + XbT (Δ)(Xa(∂−1
μ ϕ � ∂−1

μ ϕ), X̃bδϕae−1)

+ δϕaXa(∂−1
μ ϕ � ∂−1

μ ϕ � e−1)
}

(B.10)

and

B∂ =
a

2θ2

∫
ddx(δϕce)

(
∂−1

μ ϕc � ∂−1
μ ϕc � e−1

)
+

a

2θ2

∫
eddx δϕc

(
∂−1

μ ϕc � ∂−1
μ ϕc � e−1

)

=
a

2θ2

∫
ddx

{
∂σ

(
(eeσ

aδϕa)∂−1
μ ϕc � ∂−1

μ ϕc � e−1
)
− eeσ

aδϕa∂σ(∂−1
μ ϕc � ∂−1

μ ϕc � e−1)
}

+
a

2θ2

∫
ddx

{
−δϕc∂

−1
μ (e{∂−1

μ ϕc, e−1}�) + ∂μ

(
∂−1

μ δϕc∂
−1
μ (e{∂−1

μ ϕ, e−1}�)
)

+ 2∂σ

(
eeσ

aS(Δ)(∂−1
μ ϕc, X̃

aδϕc � e−1)
)

+ ∂σ

(
eeσ

aT (Δ)(∂−1
μ δϕc, X̃

a{∂−1
μ ϕc, e−1}�)

)}

+
a

2θ2

∫
eddx

{
− δϕaXa∂−1

μ ϕc{∂−1
μ ϕc, e−1}� − XbT (Δ)(δϕaXa∂−1

μ ϕc, X̃
b{∂−1

μ ϕc, e−1}�)

− 2XbS(Δ)(∂−1
μ ϕc, X̃

bδϕaXa∂−1
μ ϕc � e−1) − Xa(∂−1

μ ϕc � ∂−1
μ ϕc � δϕae−1)

+ δϕae−1Xa(∂−1
μ ϕc � ∂−1

μ ϕc) + XbT (Δ)(Xa(∂−1
μ ϕc � ∂−1

μ ϕc), X̃bδϕae−1)

+ δϕaXa(∂−1
μ ϕc � ∂−1

μ ϕc � e−1)
}

. (B.11)
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Taking into account all of these quantities, the contribution to the EL equations of motion is

Eϕϕc

∂ =
a

2θ2

[
−eXa∂−1

μ ϕ{∂−1
μ ϕ, e−1}� + Xa(∂−1

μ ϕ � ∂−1
μ ϕ) − eXa∂−1

μ ϕc{∂−1
μ ϕc, e−1}�

+ Xa(∂−1
μ ϕc � ∂−1

μ ϕc) − ∂−1
μ (e{∂−1

μ ϕc, e−1}�)
]
. (B.12)

The contribution to the current Jσ denoted by Jσ
∂ takes the form

Jσ
∂ =

a

2θ2

[
eeσ

b δϕb∂−1
μ ϕ � ∂−1

μ ϕ � e−1 − eeσ
b T (Δ)(δϕaXa∂−1

μ ϕ, X̃b({∂−1
μ ϕ, e−1}�))

− 2eeσ
b S(Δ)(∂−1

μ ϕ, X̃bδϕaXa∂−1
μ ϕ � e−1) − eeσ

b (∂−1
μ ϕ � ∂−1

μ ϕ � δϕbe−1)

+ eeσ
b T (Δ)(Xa(∂−1

μ ϕ � ∂−1
μ ϕ), X̃bδϕae−1) + eeσ

b δϕb(∂−1
μ ϕc � ∂−1

μ ϕc � e−1)

+ (∂−1
σ δϕc)∂−1

σ (e{∂−1
σ ϕc, e−1}�) + 2eeσ

b S(Δ)(∂−1
μ ϕc, X̃

bδϕce−1)

+ eeσ
b T (Δ)(∂−1

μ δϕc, X̃
b{∂−1

μ ϕc, e−1}�) − eeσ
b T (Δ)(δϕaXa∂−1

μ ϕc, X̃
b({∂−1

μ ϕc, e−1}�))

− 2eeσ
b S(Δ)(∂−1

μ ϕc, X̃
bδϕaXa∂−1

μ ϕc � e−1) − eeσ
b (∂−1

μ ϕc � ∂−1
μ ϕc � δϕae−1)

+ eeσ
b T (Δ)(Xa(∂−1

μ ϕc � ∂−1
μ ϕc), X̃bδϕae−1)

]
. (B.13)

By performing the same computation to the other terms in action (39) we get the EL equations of motion (47) and
the current (48), such that

δϕcS� =
∫

ddx
(
δϕc Eϕϕc

+ ∂σJ σ
)

. (B.14)
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