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Gravitational-wave observations of binary black holes currently rely on theoretical models that predict the
dominant multipole radiation during the coalescence. Here we introduce a simple method to include the sub-
dominant multipole contributions to binary black hole gravitational waveforms, given a frequency-domain
model for the dominant (¢ = 2,|m| = 2) multipoles. The amplitude and phase of the original model are
appropriately stretched and rescaled using leading-order post-Newtonian results (for the inspiral), perturba-
tion theory (for the ringdown), and a smooth transition between the two. No additional tuning to numerical-
relativity simulations is required. We apply a variant of this method to the non-precessing PhenomD model.
The result, PhenomHM, constitutes the first higher-multipole model of spinning black-hole binaries, and cur-
rently includes (¢, |m|) = (2,2),(3,3),(4,4),(2,1),(3,2),(4,3). Comparisons with a set of numerical-relativity
waveforms demonstrate that PhenomHM is more accurate than PhenomD for all binary configurations, and using
PhenomHN typically leads to improved measurements of the binary’s properties. Our approach can be extended
to precessing systems, enabling wide-ranging studies of the impact of higher harmonics on gravitational-wave

astronomy, and tests of fundamental physics.

Introduction — Gravitational waves (GWs) are our most
direct means of observing black hole (BH) binary mergers [1—
3]. Measurements from Advanced LIGO (aLIGO) observa-
tions rely on the agreement between experimental data and
theoretical models of the GW signal emitted during the coa-
lescence [3—6]. To date, these models include only the dom-
inant multipoles (£ = 2,|m| = 2) of the signal. This may be
sufficient when the BHs have comparable masses, or the signal
is weak, but for binaries where one BH is more massive than
the other (even by a ratio of only 1:3 [7-10]), modelling the
subdominant multipoles could significantly improve measure-
ment accuracy, and in some cases will be necessary to avoid
large biases.

Currently, higher multipoles have been modelled analyti-
cally for the entire merger only for non-spinning binaries [1 1],
or restricted corners of the parameter space [12]. They can be
calculated for individual binary configurations from Numer-
ical Relativity (NR) simulations (see Fig. 1), but an analyt-
ical, higher-multipole model of spinning binaries would be
extremely valuable. Even an approximate model would make
it possible to assess the importance of higher multipoles in
interpreting a GW observation.

This need has motivated the flexible construction we
present here: starting from an accurate model for the dominant
multipoles, we use a set of basic results from Post-Newtonian
(PN) and perturbation theory to map the dominant multipole
into each of the other multipoles. Our approach can be ap-
plied to any frequency-domain model, and we expect that it
will accelerate the further development of higher-multipole
models. Here we construct an explicit model by extending
PhenomD [ 3], and we demonstrate the accuracy improvement
when higher multipoles are added, particularly for source dis-
tance and orientation.

Figure 2 illustrates the impact of higher multipoles. We
calculate the total GW strain, h = h, — i hy, for the system
shown in Fig. | with a total mass of 50M,, at a distance of
500 Mpc, and at varying inclination angles. We see that as the
inclination changes from face-on (¢« = 0) toward edge-on (¢ =
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Figure 1. A GW signal decomposed into its multipolar contributions,
for a nonspinning binary with a mass ratio of 1:8. Our new model
(PhenomHM) is included as thin black lines. Solid lines are m = ¢
multipoles and dashed lines are m = ¢ — 1. NR multipoles are dis-
played in gray, thick lines.

n/2), the signal develops more structure, and becomes weaker.
We also see that our new model reproduces the signal far more
accurately than the dominant-multipole model. It is important
to emphasize that this level of agreement is achieved without
any tuning to NR waveforms.

Methods — We consider the GW strain decomposed into
spherical harmonics with spin weight —2 [16],

W, 1,6,0)= )" > it D) Vin(0,0), (1)

22 —t<m<{l

where ¢ is the time, A denotes the intrinsic parameters (masses,
spins), 6 and ¢ are the spherical angles in a source-centered
coordinate system in which the z-axis points along the or-
bital angular momentum. We now describe transformations
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Figure 2. The GW signal amplitude of a nonspinning BH binary with
mass ratio 1:8, total mass 90M,,, at a distance of 500 Mpc, optimised
over initial orbital phase ¢y, and inclination angle ¢ equal to 0, /6,
7/3, from top to bottom. In each panel, the NR data are displayed
in gray, thick lines. The PhenomHM and PhenomD models are shown
in think black lines which are continuous and dashed, respectively.
Modelled alLIGO and Einstein Telescope noise spectral densities [ 14,
15] are displayed in dashed-dotted and dotted black lines.

between the Fourier representations 2, and the various sub-
dominant multipoles 7, by using the analytic relationships
of PN and BH perturbation theory. At this stage we make
no further assumptions about the model; our approach can be
applied to any non-precessing waveform model. Noting that
additional refinements can be made once a model for the dom-
inant multipole is chosen, we then present a variation of our
method applied to PhenomD.

If we look at the example in Fig. 1, we see that all of the
multipole amplitudes are qualitatively similar; an appropriate
scaling and stretching of the dominant (2,2) amplitude could
conceivably be sufficient to approximately reproduce each of
the other multipoles. A similar observation applies to the
phase of the signal (or the phase derivative, which is often a
more instructive quantity [17]). We construct a simple trans-
formation that achieves this.

We separate each GW multipole into amplitude A, (f) and

phase @ (f),
ilfm(f) = A[m(f) X exp “p[m(f) ()

~ Ben(ffy) Ana(fin) X exp (i [Kem @22(f5) + Aam]} -
(3)

Equation (3) is written to emphasize that we construct &, by
mapping the leading multipole radiation into the higher mul-
tipoles in a manner that will operate separately on the fre-
quency domain values, fz,,(f), and the related amplitude and
phase functions, Ay, and ¢;,. As we will show below, the
frequency, amplitude and phase mappings are simple scaling
relations. For compactness, we therefore refer to our proce-
dure as dominant-multipole scaling.

Our construction is motivated by three aspects of PN and
Quasi-Normal Mode (QNM) theory. First, we note that during
inspiral, the oscillation frequency of each (£, m) multipole (in
the time-domain) is approximately m€2, where Q is the orbital
frequency of the binary. Therefore, the frequency f of each

multipole corresponds to a (2,2)-mode frequency of 2f/m.
This relationship is exact in the low-frequency limit of closed
circular orbits, from the symmetry of the system.

Second, the stationary phase approximation (SPA) allows
the association of these frequencies with values in the From( i)
domain [18]. Simultaneously, the SPA predicts to leading-
order in f the amplitude scaling of each multipole (relative
to the £ = |m| = 2 multipole), B¢, (f), which approximately
relates the amplitudes of different Bm’s.
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and where we define 6 = |[m; — mp|/M, M = my + mp, n =
mymy/M?*, F = M f. Here, an additional scaling factor (/2
to the leading order frequency power of each multipole) has
been added to recover correct overall scaling in Equation (3).

Lastly, we note that in the vicinity of the multipole’s fun-
damental ringdown frequency, QNM theory implies that the
frequencies of different ;,, are related by a simple linear shift.

To bridge the “gap” between the PN and QNM regimes, we
find that linear interpolation is sufficient. The result of this
choice is a piecewise-linear mapping,

2f’ foO
fon(f) = fnm%/m fF-f)+2, fo<f<fR O
f=Tow + 12 f> -

We optimized the agreement with NR simulations by allow-
ing different values of f; for the amplitude and phase, hence
the distinction between f[m and f[ in Equation (3). Here
we use fi = 0.018f8P/fRP, N= 0.014 5D/ 3P,

RD = wemo/2m, where weyo is the real-valued frequency of
the fundamental QNM.

The frequency mapping above is sufficient to relate the
frequency-domain phase derivatives of all multipoles to each
other, ¢, (f) = ¢3,[ftm(f)]. Integrating once yields the
phase relation that contains the inverse of the derivative of
fom (Where we understand the derivative at each boundary as
the limit from lower frequencies toward that boundary). The
additional, multipole-dependent phase offsets are determined
from PN theory and by imposing continuity. The resulting
coefficients read

1
Kfm—m,
T[3¢+mod(l+m2)]-m, f<fS

(piecewise constant) (6)

Aow =3 eem(f) = kem el f5, D), S << (D)
‘pim(f[ D) ‘p22[fgm(fgm )] f fgm .

The phase shifts introduced explicitly for f < f0 reflect mass
and current multipole separation (see e.g., Equation 326 of
[19]) as well as the necessary symmetry properties of each
multipole [19, 20].

Equations (3-7) constitute a minimalistic model-agnostic
method to map the dominant into subdominant multipoles.
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Figure 3. Matches (faithfulness) between PhenomHM and NR for (Left) m/my = 2, x1; = x2. = —0.5 and (Right) m;/my = 4, 1 = x> = 0.5
binary BH systems. Each case has a total mass of 90 M, with a minimum frequency of 20 Hz. In both cases, the black lines show volume
weighted average matches, and the grey bands display the range of possible values with varying signal polarization and orbital phase. Here the
NR waveform contains all mutlipoles up to £ = 5, while PhenomHM contains multipoles with £ = |m| < 4 and |m| = € — 1.

Application to PhenomD — Upon choosing a model for the
dominant multipole waveform, further refinements may be ap-
plied. Here we consider PhenomD [13, 17].

Comparison with NR data shows that the phase that results
from Equation (5) is least accurate for frequencies just below
fRP. For frequencies below fRP, f,(f)’s linear interpolation
does not ensure a simple shift from f3° to fR°, but rather
a shift with some non-unity slope. This could be improved
by using a different frequency mapping in the intermediate
region, but a linear mapping has the advantage that we can
analytically integrate the phase derivative. Alternatively, we
can modify the underlying PhenomD phase ansatz.

We find that a simple extension of the PhenomD phase
ansatz as well as a compatible adjustment of f,(f) for f >

}i}) are sufficient to impart the correct behavior prior to the
ringdown frequency. In the merger-ringdown phase ansatz,
Eq. (14) of Ref. [13], we add factors of f3°/fRP to the last
term, and use the appropriate damping frequency for each
mode. The modified parts of the model are,

% ’ > fRD
Jom(f) = Jom Jo 1> Jun (8)

see (5) otherwise,
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Equations (3-9) define a GW signal model extended to
higher multipoles via the mapping of PhenomD. We refer to
this extended multipole model as PhenomHM.

Results — We assess the accuracy and utility of PhenomHM
through comparisons with NR simulations. We use NR sim-
ulations over the same parameter range that was used in the
calibration of the dominant-multipole PhenomD model, which
includes simulations performed with the BAM [21, 22] and
SpEC [23] codes; the latter were taken from the public SXS
waveform catalog [24]. These cover mass ratios from 1:1 to
1:18, and spin magnitudes up to 0.85 (and up to 0.98 for equal-
mass configurations). The tests we perform of the PhenomHM

model are threefold. The first is a basic check that an inverse
Fourier transform produces qualitatively correct time-domain
waveforms without pathological features. Such features are
sometimes only cosmetic, but their absence serves as an el-
ementary assessment of the robustness of our method. Sec-
ondly, we calculate a noise-weighted inner product (match)
between the NR waveforms and the model, for a range of bi-
nary inclinations, waveform polarisations, and choice of ini-
tial phase. This allows us to approximately estimate the ac-
curacy of the model, which is crucial for gravitational-wave
(GW) search and parameter-estimation purposes. Finally, we
perform a suite of parameter-estimation calculations in order
to gauge the impact of higher-multipoles on GW measure-
ments. We discuss a representative sample of our match and
parameter-estimation results below.

To quantify how PhenomHM compares to NR, we calcu-
late the match weighted by the aLIGO noise power spectrum,
S.(f); we use the anticipated zero detuned, high power, de-
sign sensitivity [14]. A binary source configuration is defined
by (M, n, x1,Xx2), Where y; and y, denote the projections of the
dimensionless spins of the two BHs onto the direction of the
orbital angular momentum. For a signal with some choice of
inclination ¢, polarisation s, and initial orbital phase ¢os, the
match against NR data is calculated for a PhenomHM template
waveform with the same parameters (M, n, x1,x2,t), but op-
timised over the time of arrival #,, the template’s polarization
¥y and initial orbital phase ¢y Specifically, we compute the
inner product

Smax
(i) = 4Re f

‘min

ham(f) B ()

d 10
Sa(f) / 1o

normalised by V(humlham)(AnrlAing), and then maximised
with respect to (¥, dom, to) [25, 26]. The NR waveforms
contain all multipoles with £ < 5 and the PhenomHM wave-
forms include multipoles with £ = |m| < 4 and |m| = £— 1. We
choose fmin = 20 Hz.

Figure 3 presents the result for two example binary BH sys-
tems. As the matches vary with the source’s polarisation and



orbital phase angles, we show average values after appropri-
ately accounting for variations in the signal strength, i.e., we
volume-weight them by the signal-to-noise ratio (SNR) cubed
(see, e.g., Ref. [8]). For face-on (¢ = 0) and face-off inclina-
tions (¢ = m), we observe the match to marginally decrease
with respect to PhenomD due to inaccuracies in the PhenomHM
(I,m) = (3,2) and (4,4) multipoles. However, in both cases
we see that PhenomHM displays consistently higher matches
than PhenomD for inclined systems. As the mass ratio in-
creases, the performance of the dominant-multipole PhenomD
model rapidly degrades for edge-on configurations, but re-
mains high for PhenomHM.

We find that for nonspinning systems, PhenomHM typically
has matches higher than 0.99 for all mass ratios. The matches
degrade for high-mass-ratio, high-aligned-spin systems with
edge-on inclination, and the match average over polarisation
and initial phase can be as low as 0.93, for a mass-ratio 1:8
system with y; = 0.85. However, the worst matches corre-
spond to choices of both polarisation and inclination that sup-
press the dominant mode, making these signals significantly
weaker, and therefore less likely to be observed.

We expect that the main value of PhenomHM will be in pa-
rameter recovery. To assess this, we performed an analysis
similar to the one carried out in Ref. [27]: we injected NR
waveforms into zero noise [28], and then estimated the pa-
rameters using the same Bayesian inference codes employed
in GW observations [4, 29, 30], and compared results obtained
using PhenomHM as recovery model against ones obtained us-
ing PhenomD. For configurations with a variety of mass ratios
and spins, we found that the inaccuracies in PhenomHM did not
lead to appreciable biases in recovering masses and spins for
SNRs of ~25; a more detailed parameter-estimation study is
in preparation.

In comparisons between PhenomD and PhenomHM, the most
striking result was that the higher-multipole PhenomHM model
can lead to a significant improvement in measurements of the
source inclination. This is not surprising: as we see in Fig. 2,
different binary orientations are much more clearly distin-
guishable when higher multipoles are included in the signal.
In Fig. 4 we show an example of a 90 M, binary with mass
ratio 4 and spins y; = y» = 0.5, at a distance of 583 Mpc.
Since face-on systems are the most likely to be detected (they
are roughly twice as strong as edge-on systems, meaning that
they can be observed in a volume of the universe eight times
larger), we inject the signal face-on to the detector. Using
PhenomD, we recover only our prior expectation of the incli-
nation, and the 90% credible region for the distance runs from
300 Mpc to 746 Mpc. All GW observations to date display
results similar to this [2—4]. When using PhenomHM, how-
ever, the opening angle of the binary is recovered with an un-
certainty of only 0.24 radians (14 degrees), although there is
some degeneracy between face-on and face-away signals. The
uncertainty in distance is approximately reduced by 20%, with
the 90% credible region ranging from 489 Mpc to 831 Mpc.
The uncertainty in the distance is now due predominantly to
the uncertainty in the sky localisation; sky localisation will
typically be far better with a three-detector network [31]. Both
models recover the injected distance.

Discussion — We have presented a simple and flexible
method to transform the dominant GW multipole into higher
multipoles for non-precessing binary BH systems. This may
be applied to any dominant-multipole-only frequency-domain
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Figure 4. Parameter recovery for a 90 M, mass-ratio 4 binary, with
aligned spins y; = y2 = 0.5, optimally oriented to the detector at a
distance of 583 Mpc. Use of the higher-multipole PhenomHM model
allows us to correctly identify the source orientation, and the uncer-
tainty in the distance is reduced by approximately 20%.

model. We also introduced the first application of this method,
by taking the phenomenological model PhenomD [ 13, 17] and
producing a more accurate higher-multipole model, which we
call PhenomHM.

For inclined systems, we find that the PhenomHM model
agrees better with NR waveforms than the dominant-
multipole-only PhenomD model, across the entire calibration
region of the underlying PhenomD, mass ratios up to 1:18,
and spins up to 0.85. For high-mass-ratio systems, matches
between NR data and PhenomD waveforms can be as low as
0.7, for particular edge-on orientations, while PhenomHNM typ-
ically yields an average match above 0.95. In a first suite of
parameter-estimation tests, we have found that even for face-
on systems, where the higher-multipole contribution to the
signal is weak, PhenomHM produces a dramatic improvement
over PhenomD in recovering the source inclination and also
improvement in distance.



It is striking that simple approximations can be used to
model the subdominant multipoles. In particular, we stress
that a single overall scaling factor is sufficient to capture the
qualitative behaviour of the signal amplitude, throughout the
inspiral, merger, and ringdown. This approach suggests that
any frequency-domain model for the dominant multipole can
be easily extended to higher multipoles (including models that
treat precession), and suggests a means to rapidly improve
current waveform models. An extension of PhenomHN to pre-
cession will be presented in the near future.

Despite its encouraging performance in the tests we have
performed, further studies are needed to fully quantify the
value of PhenomHM in GW astronomy. There are also many
avenues for improvement. It may be possible to make better
choices for the transition frequencies between the mapping
regions, and to improve on the linear frequency interpolation
between the inspiral and merger-ringdown regimes. Beyond
that, the most obvious next step is to use PhenomHM as the
basis for a precise tuning of the subdominant multipoles to
NR waveforms. This work is underway. Several physical
features are also absent from this model. The most notable
of these is the mixing between the [m| = € and |m| = € - 1
multipoles through merger and ringdown [32]. An obvious
extension to precessing systems, following the prescription
of PhenomP [33], would also neglect to model the multipole
asymmetry between the m > 0 and m < O multipoles that
leads to out-of-plane recoil [34].

However, given that the model captures the phenomenol-
ogy of the subdominant multipoles across the binary BH pa-
rameter space, and shows mismatch errors of at most a few

percent, and for much of the parameter space less than 1%,
PhenomHM will make it possible to assess the importance of
subdominant multipoles in GW observations, and improve the
accuracy and reduce the uncertainties in parameter estimates.
For high-mass binaries, where the merger and ringdown domi-
nate the signal, it will also be valuable in strengthening current
tests of general relativity.
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