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Abstract.

Matched filtering is a commonly used technique in gravitational wave searches

for signals from compact binary systems and from rapidly rotating neutron stars. A

common issue in these searches is dealing with four extrinsic parameters which do

not affect the phase evolution of the system: the overall amplitude, initial phase,

and two angles determining the overall orientation of the system. The F -statistic

maximizes the likelihood function analytically over these parameters, while the B-
statistic marginalizes over them. The B-statistic, while potentially more powerful and

capable of incorporating astrophysical priors, is not as widely used because of the

computational difficulty of performing the marginalization. In this paper we address

this difficulty and show how the marginalization can be done analytically by combining

the four parameters into a set of complex amplitudes. The results of this paper are

applicable to both transient non-precessing binary coalescence events, and to long lived

signals from rapidly rotating neutron stars.

PACS numbers: 04.70.-s

1. Introduction

Gravitational wave (GW) searches rely on matched filtering in situations where the

expected gravitational wave signal is well known. This is true for both the transient

broad-band signals from compact binary coalescence (CBC) events, and for the long lived

but narrow-band continuous wave (CW) signals expected from rapidly rotating neutron

stars. For both these cases, as we shall explain in more detail later, there are four

parameters which do not affect the phase evolution of the system and are independent

of the gravitational wave detector(s): the overall amplitude of the signal A, the initial

phase of the signal ϕ0, the polarization angle ψ, and the inclination angle of the axis

http://arxiv.org/abs/1707.08163v1
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of symmetry of the system ι ‡ relative to the line of sight between the system and the

detector. There will be other parameters, such as the sky-position, intrinsic parameters

such as the masses and spins in a binary system, and the signal frequency and spindown

in the case of an isolated neutron star. These parameters may or may-not affect the

phase evolution of the signal as seen by a detector, but in any case (A,ϕ0, ψ, ι) will not

do so. The phase evolution on the other hand, is determined by parameters of arguably

greater physical interest such as the masses and spins of the components of a binary

system, and in fact (A,ϕ0, ψ, ι) are sometimes referred to as “nuisance parameters”. We

would prefer to not have to explicitly search over (A,ϕ0, ψ, ι) and to deal with them

analytically as far as possible.

There are two known methods for dealing with such “nuisance” parameters both

of which are based on the likelihood function Λ(A,ϕ0, ψ, ι|x). Here x is a given data

series from a network of GW detectors, and Λ is defined as the ratio

Λ(A,ϕ0, ψ, ι|x) :=
p(x|A,ϕ0, ψ, ι)

p(x|noise) . (1)

The numerator is the probability density for the data x for a specific value of the

nuisance parameters, while the denominator is the same probability density function

in the absence of a signal. We have suppressed the dependence of Λ on other physical

source parameters. The first and more commonly used method, is to maximize Λ over

the nuisance parameters; this is the standard prescription in the Frequentist framework.

This is ultimately motivated by the Neyman-Pearson lemma (see e.g. [1]) which is

applicable when we wish to distinguish between two simple hypotheses; here the two

hypotheses corresponds to the cases when i) there are no signals present (the null

hypothesis), and ii) when we have a signal with fixed values of the nuisance parameters.

Consider the problem of finding a region R in the space of data vectors x such that

the probability of detections is maximized at a fixed false alarm probability. The

Neyman-Pearson lemma tells us that level surfaces of the likelihood function yield the

most powerful test, i.e. the best choice of the region R with the largest detection

probability for a fixed false alarm probability. For composite hypotheses where all

allowed values of the amplitude are included, there is no known analog of the Neyman-

Pearson lemma. However, the Neyman-Pearson lemma still motivates us to look at the

likelihood function, and to find the values of the nuisance parameters which maximizes

it.

In practice for GW searches, one combines the nuisance parameters into quantities

(the so-called amplitude parameters) which appear linearly in the GW signal model.

This linearity enables one to maximize Λ analytically over the amplitude parameters;

in the gravitational wave data analysis context, this was first shown in 1998 [2] for

CW signals and soon generalized to the coherent multi-detector case [3], and for CBC

searches [4, 5, 6]. The analytic maximization allows one to focus computational resources

‡ The analysis in this paper is restricted to non-precessing systems for which the inclination angle is

constant in time.
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on numerically maximizing Λ over the other signal parameters determining the phase

evolution of the signal.

The second method is to marginalize Λ over the nuisance parameters, i.e. to

compute the integral
∫

Λ(A,ϕ0, ψ, ι|x)p(A) dA dϕ0 dψ d cos ι . (2)

Here p(A) is an astrophysical prior on the amplitude. For CBC searches this depends

primarily on the assumed spatial distribution of sources, while for CW signals this

depends also on properties of neutron stars such as their deformations away from

axisymmetry. The volume element corresponds to an isotropic distribution of the

angles (ϕ0, ψ, ι) which is realistic when we have no other prior information about the

system. The Bayesian approach has some benefits such as allowing one to incorporate

physical priors, and is potentially more powerful than the F -statistic. Moreover, in

the gravitational wave literature it was shown in [7] that if the prior used in the

marginalization is in fact the true distribution found in nature, then indeed, the

marginalized likelihood function is the optimal detection statistic in the Neyman-

Pearson sense (see also Sec. 21.28 of [1]).

However, the above integral is not easy to compute analytically which makes this

method less useful in practice. This was first proposed as a detection statistic for

CW searches in [8], which defined the so called B-statistic (see also [7]). This work

however did not address the critical question of computational cost in evaluating the

integral. This was partially addressed in [9] where a different parametrization of the

amplitude parameters was constructed based on left- and right-circular polarizations.

However useful approximations to the B-statistic integral were found only in the linearly

polarized case (where cos ι = 0). These coordinates were used for CBC searches in [10]

which obtained analytic approximations to the integral above, and presented an initial

numerical comparison of the Bayesian and Frequentist approaches. Here we propose a

new set of complex coordinates (closely related to [9, 10]) for the space of amplitude

parameters motivated by properties of the rotation group, which works for both CW

and CBC waveforms. These coordinates allow for a more detailed understanding the

singularities of the B-statistic and also pave the way for a generalization to include

higher modes of the waveform and e.g. precession effects. The same approach also

allows for a better understanding of the detector beam pattern functions.

A central message of this paper is the following. (ϕ0, ψ, ι) are best thought of as

points on a 3-sphere and we can thus identify the 3-sphere with the group of rotations

in three dimensional Euclidean space. Given the appropriate tensorial structure of the

fields of interest, i.e. fields which transform under rotations as a representation of weight

ℓ, we should use the corresponding matrix elements of the rotation group to expand

functions of (ϕ0, ψ, ι). For gravitational waves, we are dealing with the ℓ = 2 case

and this determines the appropriate basis functions that we should be using to expand

functions of (ϕ0, ψ, ι). While this may be interesting from a theoretical viewpoint, there

is apriori no guarantee that this should help simplify the calculation of the B-statistic,
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but in fact, as we shall show, it does do so.

In the following sections, we start in Sec. 2 with a review of the waveform model, the

response of a GW detector and the F - and B-statistics. The new complex amplitudes

are defined in Sec.3. Sec. 4 demonstrates how the likelihood function is expressed in

terms of the new amplitudes. Sec. 5 shows how Λ can be analytically marginalized

over the complex amplitudes along with some example cases and we finally conclude in

Sec. 6.

2. Preliminaries and notation

Consider a plane gravitational wave (GW) hab and an associated right-handed

orthonormal wave-frame (X,Y,Z) such that the wave is traveling along the Z direction.

In standard linearized general relativity, gravitational waves have two polarizations

states defined by the symmetric-tracefree tensors

(e+)ab = XaXb − YaYb , (e×)ab = XaYb + YaXb . (3)

Then we can write hab as

hab = h+(e+)ab + h×(e×)ab . (4)

In this paper we shall use instead the complex null-vector

m =
1√
2
(X+ iY) . (5)

It is easy to see that m ·m = 0 and m ·m⋆ = 1. In general the gravitational wave hab
can then be written as

hab = h⋆mamb + hm⋆
am

⋆
b , (6)

where the complex scalar h contains the two polarizations h+,×:

h = h+ + ih× . (7)

Using ma instead of Xa and Ya is equivalent to using left and right circular polarizations

instead of linear polarization states. Note that if we perform a counter-clockwise rotation

in the (X,Y) plane by an angle ψ:

X → cosψX+ sinψY , (8)

Y → − sinψX+ cosψY , (9)

then m → e−iψm, and thus h → e−2iψh; ma is, by definition, assigned a spin weight +1,

and h = mambhab is said to have spin-weight +2. For an elliptically polarized wave, it

is always possible to choose the wave frame aligned with the principal directions of the

polarization ellipse. In this case h+ and h× have a π/2 offset in phase:

h+(t) = A+(t) cosΦ(t) , h×(t) = A×(t) sin Φ(t) . (10)

Here the amplitudes A+,× are slowly varying functions of time while the phase Φ(t)

is rapidly varying. We shall assume that the wave-frame is aligned with the principal

polarization directions in this way.
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Consider now an interferometric GW detector on Earth. We shall work in the

long-wavelength approximation (appropriate for current ground based detectors) where

the GW wavelength λ is much larger than the interferometer arm-length. In this

approximation, the strain h(t) measured by the detector will be given as

h(t) = habD
ab (11)

where Dab is the detector tensor

Dab =
1

2
(uaub − vavb) . (12)

(we refer the reader to e.g. [11] for further details, and to e.g. [12, 13] when it is

necessary to go beyond the long-wavelength approximation). Here u,v are unit-vectors

along the detector arms, and we follow the convention that (u,v, z) forms a right handed

coordinate system with z pointing away from Earth’s center. Let us also take the angle

between u and v to be 2ζ . Take a frame (x,y) such that x bisects the arms of the

detector. In this case Dab = 1
2
sin 2ζ(xayb + yaxb). Unless mentioned otherwise, we

henceforth take the arms to be perpendicular and keep in mind that an overall factor

of sin 2ζ suffices to account for it if necessary.

Introduce spherical polar coordinates (θ, φ) associated with the detector frame

(x,y, z) in the usual way, and the corresponding unit vectors (eθ, eφ). The direction of

propagation of the GW, i.e. Z is pointed towards the detector. We can take (eθ,−eφ,Z)

as a reference wave frame and m(0) = (eθ − ieφ)/
√
2 as a reference null spin vector.

The wave-frame (X, Y ) will be related to (−eθ, eϕ) by a counter-clockwise rotation (as

determined by Z being inward pointing). This implies that we can rotate m(0) and align

it with m: m = e−iψm(0). With these conventions, we can rewrite hab from Eq. (6) as

hab = h⋆e−2iψm(0)
a m

(0)
b + he2iψm(0)⋆

a m
(0)⋆
b . (13)

The detector response can be written in terms of a complex beam pattern function

F(θ, φ, ψ) as

h(t) =
1

2
hF⋆(θ, φ, ψ) +

1

2
h⋆F(θ, φ, ψ) (14)

with F = F+ + iF×. The factor of 1/2 has been chosen so that the above is equivalent

to h = F+h+ + F×h×. From Eqs. (13) and (11) we get

F(θ, φ, ψ) = 2Dabmamb = 2e−2iψDabm(0)
a m

(0)
b (15)

=

(
1 + cos2 θ

2
sin 2φ− i cos θ cos 2φ

)
e−2iψ . (16)

We often write Eq. (15) as

F(θ, φ, ψ) = f(θ, φ)e−2iψ . (17)

This separates the polarization angle ψ from the sky-position. As in [2], it is useful to

define the ψ independent beam pattern functions a(θ, φ) and b(θ, φ) as

f(θ, φ) = a(θ, φ) + ib(θ, φ) . (18)
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This leads to

F+ = a cos 2ψ + b sin 2ψ , F× = b cos 2ψ − a sin 2ψ . (19)

When dealing with multiple detectors, one refers (θ, φ, ψ) to a common coordinate

system such a geocentric or a solar system barycenter based system. In this case we can

still separate the sky-positions from the polarization angle.

The time parameter t appearing in Eq. (14) is the arrival time of wavefronts at the

detector. It is related to the time of arrival at the origin of coordinates τ according

to t = τ − r · n/c where r is the position of the detector, and n the direction to the

source and c the speed of light. For transient signals it is common to use a geocentric

system while for CW sources a solar-system barycentric system is more natural. For

long duration signals this leads to the periodic Doppler shifting of the signal frequency as

Earth rotates around its axis and orbits the Sun, and furthermore, it is often necessary

to take into account the relativistic Einstein and Shapiro time delays [2].

2.1. The relation between the beam pattern functions and representations of the

rotation group

It is interesting to note that, as first done in [14], F can be written in the following way:

F = ie−2iφ (1− cos θ)2

4
e−2iψ − ie2iφ

(1 + cos θ)2

4
e−2iψ . (20)

As shown in [14] the two terms appearing here are essentially matrix elements of the

rotation group, which in turn are related to the spin-weighted spherical harmonics

[15, 16] (see Appendix A). It is in fact generally true that the detector response function

can be expanded in terms of the matrix elements of the rotation group. To see this we

briefly review some results from the representation theory of the rotation group in 3-

dimensional Euclidean space. We later apply the same approach to the emitted GW

signal emitted by a CBC or CW source. We shall mostly follow [17].

Let G denote the group of rotations in R
3 and let g ∈ G be a particular rotation.

Let the matrix elements of g be gij (satisfying g⊺g = 1) which transforms a vector

xi as x
′
i =

∑3
j=1 gijxj . It will be convenient to use the Euler angles to represent a

general rotation. We use the ’zxz’ convention where a general rotation is composed

of three rotations: i) a rotation around the z-axis by an angle ϕ, ii) a rotation by an

angle θ around the x-axis, and finally, iii) a rotation by an angle ψ around the z-axis.

Thus, we write g(ϕ, θ, ψ) for a general rotation. The inverse of g(ϕ, θ, ψ) is seen to be

g(π − ψ, θ, π − ϕ). We take all transformations to be active.

Consider now an irreducible representation of G of weight ℓ. Thus, we have a

2ℓ+1 dimensional complex vector space, and each rotation g is represented by a 2ℓ+1

dimensional unitary matrix T ℓmn(g), with −ℓ ≤ m,n ≤ ℓ. We shall often drop the

superscript ℓ when it is obvious what the weight is, and we shall also write T ℓmn(ϕ, θ, ψ),

i.e. as functions on G. The product of two rotations is written as a matrix multiplication

T ℓmn(g1g2) =
ℓ∑

k=−ℓ

T ℓmk(g1)T
ℓ
kn(g2) . (21)
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This equation can be viewed in the following way: under the transformation g → gg1,

the rotation group acts on the matrix elements themselves. Thus, each row of the matrix

T ℓmn (i.e. for fixed m) transforms as an irreducible representation of the rotation group.

The general expression for the matrix elements are summarized in Appendix A.

An important fact we shall use is the following: The functions T ℓmn(ϕ, θ, ψ) form a

complete orthogonal basis in the Hilbert space of square integrable functions f(ϕ, θ, ψ)

on G. This fact can be used to expand a general tensor on the 2-sphere S2 (such as a

gravitational wave arriving from different sky-directions and with different polarization

angles) by the following construction. Start with the standard triad at the north-pole i.e.

the basis vectors along the x, y, z directions. Let us denote this triad as ei (i = 1, 2, 3)

and consider a gravitational wave arriving from a sky-position P with coordinates (θ, φ),

and with a polarization angle ψ. The rotation g(π, θ, φ+π/2) takes the north pole to the

point (θ, φ) and the triad at the north-pole is transformed to (−eφ, eθ, er). The inverse

rotation g(π/2 − φ, θ, 0) takes the point P to the north pole and takes the wave-frame

with ψ = 0 to the triad at the north pole. To go to the wave-frame with a polarization

angle ψ, the transformation is g(π − ψ, θ, φ + π/2). This construction yields a triad

for every group element, i.e. for all values of (ϕ, θ, ψ). By definition then, each of

the basis vectors then transforms as a scalar on G under the transformation g → gg1.

The components of any tensor field in this basis are then to be viewed as functions of

(ϕ, θ, ψ) and thus can be expanded in terms of T ℓmn. An important ingredient here is

the spin-weight: any quantity with spin weight s can be expanded in terms of T ℓsm. A

scalar corresponds to s = 0, and in fact the functions T ℓ0m are just the usual spherical

harmonics Yℓm. This is just the familiar observation that any scalar function can be

expanded in terms of the spherical harmonics. For gravitational waves, the relevant

tensorial structure is that of symmetric trace-free tensors and, we shall see that the

appropriate basis functions are T ℓ−2,m.

Let us now return to the beam pattern function and write it in terms of the

matrix elements which are listed in Appendix A. The relevant matrix elements of this

transformation are

T ℓmn(π − ψ, θ, φ+ π/2) = (−1)m+nineimψP ℓ
mn(cos θ)e

−inφ . (22)

The complex antenna pattern of Eq. (20) can be written as

F(θ, φ, ψ) = iT 2
−2,−2(π − ψ, θ, φ+ π/2)− iT 2

−2,2(π − ψ, θ, φ+ π/2) . (23)

If we go back to the more general expression Eq. (17) for the beam pattern function,

we see that F is best viewed as a function on G or, equivalently, the 3-sphere S3. In

addition, F is seen to have spin weight -2 because of the factor of e2iψ. This implies that

in general F can be expanded in terms of T ℓ−2,m. Typically, only the ℓ = 2 components

are considered in the literature. There are some exceptions such as [18] which considers

the ℓ = 3 contributions.

As an example of the utility of this formalism, consider a situation when we use a

coordinate system not centered on the detector. For a detector on Earth, it is useful

to consider a geocentric coordinate system. Thus, let (ΘI ,ΦI) be the position of an
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interferometric detector, and let ΨI be the orientation of its arms with respect to the

lines of latitude. Let g be the transformation from the geocentric system to the wave

frame, and let gI be the transformation from the geocentric system to the detector

frame. Then, the transformation g ∗ g−1
I takes us from the detector to the wave-frame.

From Eq. (21) we get for example

T 2
−2,−2(gg

−1
I ) =

2∑

s=−2

T 2
−2,s(g)T

2
s,−2(g

−1
I ) (24)

=
2∑

s=−2

T 2
−2,s(π − ψ, θ, φ+ π/2)T 2

s,−2(π/2− ΦI ,ΘI ,ΨI) . (25)

Viewed as an expansion on the sky, this is an expansion in the five dimensional space

spanned by T 2
−2,s for −2 ≤ s ≤ 2 and the coefficients of the expansion depend on the

location and orientation of the detector. Using the expressions in Appendix A, it is

straightforward to obtain analytic expressions for these coefficients and thus for the

beam pattern functions.

2.2. The F- and B-statistics

We now summarize the conventional approach to matched filtering in GW data analysis

using the so-called F and B statistics. Let us consider M detectors labeled by an index

I = 1, 2 . . .M . As in Eq. (10) taking Φ(t) = 2ϕ0 + 2ϕ(t), we write h+,× in terms of a

slowly varying amplitude A(t) and a rapidly varying phase ϕ(t):

h+ = A+(t) cos(2ϕ0 + 2ϕ(t)) ,

h× = A×(t) sin(2ϕ0 + 2ϕ(t)) . (26)

Here we include a factor of 2 with the phase as is natural for GW sources, and ϕ0

is an initial phase which depends on a choice of frame attached with the source. For

CBC systems, ϕ(t) is the orbital phase of the binary system while in the CW case this

is the rotational phase of the neutron star. For the dominant ℓ = m = 2 mode for

non-precessing systems, including both CW and CBC sources, we write the amplitudes

A+,× as

A+ = Aη(t)
1 + cos2 ι

2
, A× = Aη(t) cos ι . (27)

Here η(t) is a slowly varying function of time, ι is the angle between the line of sight to

the system and the system’s axis of rotation; for non-precessing systems ι would not be

time dependent.

For CW sources, A+,×(t) are in fact constants over time and are written in terms

of an overall amplitude h0. Thus, A = h0 and η(t) = 1. The amplitude h0 depends

inversely on the distance and additionally it depends on physical properties of say the

neutron star crust, the fluid motion in the interior etc. For the non-precessing CBC

case, we have the same dependence on the angle ι. In addition, the amplitude will

depend on the masses and spins of the binary components and the distance D to the
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binary. Furthermore, η is no longer constant, but instead will increase as the separation

between the binary components decreases (see e.g. [19]). It is convenient, as in [5], to

write this as A = D0/D where D0 is a fiducial distance.

We can write h+ and h× as

h+ = A+(t) cos 2ϕ0 cos 2ϕ(t)− A+(t) sin 2ϕ0 sin 2ϕ(t) ,

h× = A×(t) sin 2ϕ0 cos 2ϕ(t) + A+(t) cos 2ϕ0 sin 2ϕ(t) . (28)

Combining h+,× and the beam pattern functions F+,×, and separating out the

polarization angle explicitly, it is easy to show that the signal in detector I can be

written as

hI(t) =
4∑

µ=1

AµhIµ(t) , (29)

where Aµ, µ = 1, 2, 3, 4 are amplitudes depending on the distance to the source, initial

phase ϕ0, polarization angle ψ and the inclination angle ι of the source and are given

by:

A1 = A+ cos 2ϕ0 cos 2ψ −A× sin 2ϕ0 sin 2ψ ,

A2 = A+ cos 2ϕ0 sin 2ψ + A× sin 2ϕ0 cos 2ψ ,

A3 = − A+ sin 2ϕ0 cos 2ψ −A× cos 2ϕ0 sin 2ψ ,

A4 = − A+ sin 2ϕ0 sin 2ψ + A× cos 2ϕ0 cos 2ψ , (30)

It is important to note that the Aµ are detector independent; for multiple detectors they

are defined in a common coordinate system (geocentric or solar system barycenter). The

detector dependent basis signals hIµ(t) are defined by,

hI1(t) = aIη(t) cos 2ϕ(tI) , hI2 = bIη(t) cos 2ϕ(tI) , (31)

hI3(t) = aIη(t) sin 2ϕ(tI) , hI4 = bIη(t) sin 2ϕ(tI) . (32)

where tI is the retarded time in detector I. It is conventional in the CBC literature to

define ho(t) = η(t) cos 2ϕ(t) and hπ/2 = η(t) sin 2ϕ(t).

The data in detector I with signal present is:

xI(t) = hI(t) + nI(t) , (33)

where nI(t) is the noise in detector I. The multi-detector data vector is then x(t). A

scalar product can be defined for each detector I on two data trains xI and yI as,

(xI |yI)I = 4ℜ
(∫ ∞

0

df
x̃I(f)ỹI∗(f)

SIn(f)

)
, (34)

where SIn(f) is the one sided PSD of the noise in detector I. If the noises between

detectors are uncorrelated then a useful multi-detector scalar product between vectors

x and y can be defined for the network as:

(x|y) =
∑

I

(xI |yI)I . (35)
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We do not attach any subscript to the network scalar product - it may be understood

from the context. The multi-detector log-likelihood is then given by:

ln Λ(Aµ|x) = (x|h)− 1

2
(h|h) = Aµxµ −

1

2
AµMµνAν , (36)

where

xµ = (x|hµ) , and Mµν = (hµ|hν) . (37)

The log-likelihood then may be maximized with respect to the amplitudes Aµ to obtain

the maximum likelihood or the F statistic:

F ≡ [ln Λ(x)]max =
1

2
xµMµνxν , (38)

where Mµν is the inverse of Mµν when the inverse exists - that is when M is non-

singular. The usual coherent multi-detector statistic is the coherent signal to noise ratio

(SNR) which is just 2F . That we have a maximum of Λ rather than an extremum

requires that the eigenvalues ofMµν be positive definite. We shall discuss this explicitly

later.

The M matrix consists of the antenna pattern functions and the noise variances.

For the first matrix element, consider first the CBC case. Here the duration of the

signal can be considered short enough that aI and bI are, to a very good approximation,

constant in time. This approximation starts breaking down only when the duration

cannot be considered to be much smaller than a sidereal day. Also, it is not difficult to

see that (hI0|hI0) ≈ (hIπ/2|hIπ/2), and (hI0|hIπ/2) ≈ 0. Thus, the structure of this matrix (in

the long-wavelength limit) is:

M =




A C 0 0

C B 0 0

0 0 A C

0 0 C B


 , (39)

where A = a · a, B = b · b and C = a · b, where a is the M dimensional vector

whose components are aI , I = 1, 2, ...,M and b is defined similarly. The dot product is

weighted by the noise variance in each detector. For example, a ·b :=
∑

I σ
2
Ia

IbI where

σ2
I := (hI0|hI0) = (hIπ/2|hIπ/2).

For CW waveforms, η(t) is a constant, and the signals are narrow band. If the

signal frequency is f0, and in the time domain the data duration is T0 centered at the

origin, then using Parseval’s inequality and that sin2(2ϕ(t)) averages to 1/2 over many

cycles, we get for example

(hI1|hI1)I ≈
2

SIn(f0)

∫ ∞

−∞

h̃I⋆1 (f)h̃I1(f)df ≈ 1

SIn(f0)

∫ T0/2

−T0/2

(aI(t))2dt . (40)

Thus,

M11 =
∑

I

1

SIn(f0)

∫ T0/2

−T0/2

(aI(t))2dt . (41)
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It is easy to see that Mµν has the same form as Eq. (39). The matrix elements can be

written in terms of integrals as above, which in turn can again be expressed as an inner

product as for the CBC case.

The B statistic defined in [8] is a Bayesian statistic which employs a prior probability

distribution on the amplitudes. Here Λ is a functional of the data x and depends only

on the amplitude parameters Aµ, that is, Λ(x;Aµ) and is given by the expression in Eq.

(36). There is also a prior on the amplitudes which must be supplied and we denote this

by pA(Aµ) and is a function of the 4 amplitudes Aµ. Then the B statistic is defined as:

B(x) =
∫

Λ(x;Aµ)pA(Aµ)d4A . (42)

It was further shown in [8] that a uniform amplitude prior on the Aµ, that is, pA(Aµ) =

const. leads one back to the F statistics for a targeted search, that is, the B statistic

is equivalent to the F statistic. As done in [8], we can assign a uniform prior on the

physical parameters A, cos ι, ϕ0, ψ, where one then assumes that 0 ≤ A ≤ Amax. Then a

Jacobian factor enters into the integral in Eq. (42), which is in fact the physical prior.

The Jacobian factor is:

J =
∂(A1, A2, A3, A4)

∂(A, cos ι, ϕ0, ψ)
=

1

2
A3(1− cos2 ι)3 . (43)

and then the integrand is Λ(x;Aµ)/J , where the integration variables are Aµ. The

implicit prior in the F statistic is just J .

3. New complex amplitudes

The standard amplitudes Aµ defined in Eq. (30) are not convenient for computing the

B-statistic. For this reason a new set of amplitudes, linear combinations of the Aµ, were

defined in [9, 10]. These amplitudes may be viewed as being based on left- and right-

circularly polarized signals rather than linearly polarized signals. We shall below define

a new set of amplitudes which are complexified versions of the amplitudes defined in

[9, 10]. This discussion will cover both CW and CBC signals.

We derive these alternate complex amplitude parameters starting with the complex

strain h = h+ + ih×, and setting cos ι = χ:

h = A

(
1 + χ2

2

)
η(t) cos(2ϕ0 + 2ϕ(t)) + iAχη(t) sin(2ϕ0 + 2ϕ(t)) (44)

= Ae2iϕ0
(1 + χ)2

4
h0(t) + Ae−2iϕ0

(1− χ)2

4
h⋆0(t) (45)

where

h0(t) = η(t)e2iϕ(t) . (46)

Combining this with the complex beam pattern function according to Eq.(14) yields

hI =
4∑

µ=1

BµhIµ (47)
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where

B1 = A e−2iϕ0
(1 + χ)2

4
e−2iψ , B2 = A e−2iϕ0

(1− χ)2

4
e2iψ ,

B3 = A e2iϕ0
(1− χ)2

4
e−2iψ , B4 = A e2iϕ0

(1 + χ)2

4
e2iψ . (48)

The detector dependent complex basis functions hIµ are obtained by using the equations

Eq. (29) and Eq. (47). These complex basis functions are:

hI1 = hI⋆4 =
1

2
fIhI⋆0 , hI2 = hI⋆3 =

1

2
fI⋆hI⋆0 . (49)

Since B3 = B⋆2 and B4 = B⋆1, we could work just with B2 and B2. It shall however be

convenient to consider all the four B’s when discussing the transformation from the four

real amplitudes. As noted earlier for the beam pattern function, these are related to

the rotation matrix group elements, and this is a reflection of the fact that, just as for

the detector response function, one should view ϕ0, ψ, χ as coordinates on the group of

rotations. The relations above can be easily inverted

χ =

√
|B1| −

√
|B2|√

|B1|+
√
|B2|

,
√
A =

√
|B1|+

√
|B2| (50)

ψ = − 1

4
arg

(B1

B2

)
, ψ = −1

4
arg

(B1

B⋆2

)
. (51)

One can easily verify that the Bµ are linear combinations of Aµ and vice-versa. Writing

the Bµ and Aµ as column vectors B and A, we find that A = SB, where S is a 4 × 4

matrix given by:

S =
1

2




1 1 1 1

i −i i −i
−i −i i i

1 −1 −1 1


 . (52)

The determinant of S is unity and S is unitary so that S†S = I, where I is a 4× 4 unit

matrix; S† = (S⊺)∗. Thus we have B = S†A.

We further note that B4 = B∗
1 and B3 = B∗

2. This fact is useful because when

we finally write the integral for the B statistic. The volume element dB1dB2dB3dB4 =

dB1dB∗
1dB2dB∗

2, which is then a product of two area elements. If we assume again a

uniform prior in the physical variables A, χ, ϕ0, ψ, we will also need the Jacobian in

terms of the new amplitude variables B1,B2,B3,B4. In fact the Jacobian is unchanged

because S is unitary and we have the result:

J =
∂(B1,B2,B3,B4)

∂(A, χ, ϕ0, ψ)
=

1

2
A3(1− χ2)3 ≡ 32(B1B2B3B4)

3/4 . (53)

The Jacobian in terms of the new amplitudes is remarkably just a product of the Bµ.
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4. Likelihood in terms of the complex amplitudes

We begin with the definition of a suitable inner-product for two complex signals x(t)

and y(t) in a detector labeled by the index I; x̃(f) and ỹ(f) will denote their Fourier

transforms. The usual definition of Eq. (35) works only for real signals. Let SI(f) now

be the double-sided power-spectral density of the detector noise. For real-valued signals

x(t), for which x̃⋆(f) = x̃(−f) it is conventional to only focus on positive frequencies and

work instead with the single-sided power spectral density. However, since we need to deal

with complex functions, both positive and negative frequencies need to be considered.

The inner product of (x|y) of x and y is then defined as

(x|y)I :=
∫ ∞

−∞

x̃⋆(f)ỹ(f)

SIn(f)
df . (54)

Note that this is a complex inner product so that, for example, (x|y)I = (y|x)⋆I and

(c1y1 + c2y2|x)I = c⋆1(y1|x)I + c⋆2(y2|x)I . Here c1,2 are complex numbers and x, y, y1,2 are

complex time series. Note that the inner product is specific for a particular detector

through its noise spectral density. Consider a collection ofM detectors with uncorrelated

noises labeled by I = 1 . . .M . Let xI(t) be time series in each of the detectors which

will collectively be denoted in boldface x. Then, the multi-detector inner product is

(x|y) :=
M∑

I=1

(xI |yI)I =
M∑

I=1

∫ ∞

−∞

x̃⋆I(f)ỹI(f)

SIn(f)
df . (55)

For real signals, this inner product is equivalent to Eq. (35), which is why we use the

same notation for both inner products.

In terms of the Bµ, and the signal decomposition of Eq. (47) it is apparent that the

log-likelihood function is still quadratic:

ln Λ =
4∑

µ=1

Bµ(x|hµ)− 1

2
Bµ⋆BνNµν = B†Y − 1

2
B†NB . (56)

Here Y refers to the vector formed by the yµ :=
∑

I(x
I |hIµ) = (x|hµ), and

Nµν :=
∑

I(h
I
µ|hIν). We may write out yµ explicitly in terms of xµ:



y1
y2
y3
y4


 =

1

2




x1 − ix2 + ix3 + x4
x1 + ix2 + ix3 − x4
x1 − ix2 − ix3 − x4
x1 + ix2 − ix3 + x4


 (57)

From the above it is clear that y4 = y∗1, y3 = y∗2.

Now we come to the quadratic term in the amplitudes. From the definitions of the

basis functions given in Eq. (49), it is easy to directly compute the matrix Nµν . For

example, for the CBC case we will have,

N11 =

M∑

I=1

(hI1|hI1)I =
1

4

M∑

I=1

(fIhI⋆0 |fIhI⋆0 )I =
1

2

M∑

I=1

σ2
I |fI |2 , (58)
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where ‖hI0‖2I := 2σ2
I and |fI |2 is the magnitude of the complex number fI . Similarly, it

is easy to see that,

N12 = N⋆
21 =

M∑

I=1

(hI1|hI2)I =
1

4

M∑

I=1

(fIh⋆0|fI⋆h⋆0)I =
1

2

M∑

I=1

σ2
I (f

I⋆)2 . (59)

Note that here we have the square of fI⋆ rather than its norm. It is also easy to see for

example that N13 = N14 = 0 and in fact, N has the usual block diagonal form:

N =
1

2




ζ κ⋆ 0 0

κ ζ 0 0

0 0 ζ κ⋆

0 0 κ ζ


 , (60)

Obtaining this block diagonal form is a useful, and perhaps surprising, benefit of

using the complex amplitudes Bµ rather than the real amplitudes of [9, 10] where the

corresponding matrix is more complicated. The quantities ζ and κ appearing here are:

ζ =

M∑

I=1

σ2
I |fI |2 , κ =

M∑

I=1

σ2
I (f

I)2 . (61)

One observes that ζ is real, while κ is complex in general. It is illustrative to re-express

this in terms of the ψ-independent beam pattern functions aI , bI defined in Eq. (19):

ζ =

M∑

I=1

σ2
I

(
(aI)2 + (bI)2

)
, κ =

M∑

I=1

σ2
I (a

I + ibI)2 . (62)

For detectors with identical PSDs, the σI will be identical as well. It is easy to see that

ζ and κ are given by:

ζ = |a|2 + |b|2 , κ = (a+ ib)2 = |a|2 − |b|2 + 2ia · b . (63)

Here a is the vector (a1, a2, · · · , aM) (and similarly for b). The inner product is, as

before, defined with the σ2
I as weights. Thus, for example, a · b =

∑
I σ

2
Ia

IbI and

|a|2 := a · a.

5. The B statistic and its evaluation in the high SNR limit

We switch to the two complex variables B1 and B2 and write the log-likelihood function

as:

ln Λ = B∗
1y1 + B1y

∗
1 + B2y2 + B∗

2y
∗
2 −

1

2
ζ(|B1|2 + |B2|2)

− 1

2
B1B∗

2κ−
1

2
B∗
1B2κ

∗ ≡ Q(Y;B) . (64)

For the case κ = 0, the log likelihood can be written as sum of two terms as was shown

in [9, 10]. In this case we can write ln Λ = lnΛ1 + lnΛ2, where,

ln Λ1 = B1y
∗
1 + B∗

1y1 −
1

2
ζ |B1|2, ln Λ2 = B2y

∗
2 + B∗

2y2 −
1

2
ζ |B2|2 . (65)
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For a uniform prior in the physical coordinates A, χ, ϕ0, ψ, the Jacobian factor is as

given in Eq. (53) and therefore, the B statistic is given by the integral:

B(Y) =
1

32

∫
dB1 dB∗

1 dB2 dB∗
2

[
eQ(Y;B)

(|B1|2|B2|2)3/4
]
, (66)

where Q(Y;B) is given from Eq. (64). The integration range is determined from the

range of A - this will be better seen when we write the same integral in polar coordinates

- the limit then is on |B1| and |B2|. When κ = 0, the above integral for this prior, because

this prior factorizes similarly, also can be written as a product of two integrals, first one

in B1,B∗
1 and the second one in B2,B∗

2. This agrees with the result in [9].

5.1. The B statistic integral in polar coordinates

We now go over to polar coordinates in which the integral appears more tractable. We

write:

B1 = R1e
iθ1, B2 = R2e

iθ2 , y1 = ρ1e
iφ1, y2 = ρ2e

iφ2 , κ = ke4iη . (67)

Then the log likelihood can be written as follows:

ln Λ = − 1

2
ζ(R2

1 +R2
2) + 2R1ρ1 cos(θ1 − φ1) + 2R2ρ2 cos(θ2 − φ2)

− kR1R2 cos(θ1 − θ2 + 4η) . (68)

The area element dB1dB∗
1 = −2iR1dR1dθ1 and similarly for dB2dB∗

2. The integral now

acquires a minus sign which can be corrected if we take the order of the physical variables

as (A, φ, χ, ψ) instead of (A, χ, φ, ψ) (Or we can just take the modulus, if we do not care

about the sign). With this change, the B statistic is:

B(ρ1, φ1, ρ2, φ2) =
1

8

∫
dR1dR2dθ1dθ2 ×

e−
1

2
ζ(R2

1+R
2
2)+2R1ρ1 cos(θ1−φ1)+2R2ρ2 cos(θ2−φ2)−kR1R2 cos(θ1−θ2+4η)

√
R1R2

. (69)

The range over which the integral is to be carried out can be worked out from the range

allowed for the variables (A, χ, φ, ψ). Clearly, since φ, ψ cover the full range, so do the

angles θ1, θ2 and so we have 0 ≤ θ1, θ2 < 2π. The range of R1, R2 is decided by the range

of the amplitude A. If A is restricted to some range Amin < A < Amax, then only Amax

matters and then we have 0 < R1, R2 < Amax. If there is no upper limit on A, then the

integration region is a Cartesian product of two complex planes. Note that the integral

is not singular, although the integrand is singular at the origin, because the singularity

is weak.

5.2. The special case of κ = 0

When κ = 0, the integral in Eq. (69) can be written as a product of two integrals, one

in ρ1, φ1 and the other in ρ2, φ2. Thus B = const.× I1I2, where each of the integrals are

of the form:

I =

∫ ∞

0

dR
e−

1

2
ζR2

√
R

∫ 2π

0

dθ e2ρR cos θ , (70)
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where ρ and ζ are constants. The integral over θ is the modified Bessel function I0 and

thus the integral can be written as,

I = 2π

∫ ∞

0

dR
e−

1

2
ζR2

I0(2ρR)√
R

. (71)

This agrees with the expression in [9] of Eq. (6.9). As shown therein, the integral can

be written in terms of a confluent hypergeometric function.

In the limit of large ρR as will be the case if the threshold is high, the Bessel function

can be replaced by its asymptotic form, which is valid when the argument of the Bessel

function is greater than say, even 5. In the limit x >> 1, we have I0(x) ∼ ex/
√
2πx, we

use this asymptotic form to obtain:

I ≃
√
π/ρ

∫ ∞

R0

dR
e−

1

2
ζR2+2ρR

R
,

=
√
π/ρ e

2ρ2

ζ

∫ ∞

R0

dR
e−

1

2
ζ(R−2ρ/ζ)2

R
. (72)

where the asymptotic form of the I0 is valid for R > R0. Also it is assumed that the

contribution to the integral is negligible for R < R0. Further, the R in the denominator

can be replaced by its mean value in the Gaussian, namely, 2ρ/ζ and then the Gaussian

integral performed assuming 2ρ/ζ − R0 >> (ζ)−1/2 to yield,

I ∼ π

(
ζ

2

)1/2

ρ−3/2 e
2ρ2

ζ . (73)

Collecting all the terms and including the constant, the B statistic is given by,

B(ρ1, ρ2) ≃
π2

16
ζ [ρ1ρ2]

−3/2 e
2

ζ
(ρ21+ρ

2
2) . (74)

Recall that ρ1 = |y1| and ρ2 = |y2|. This must agree with the results obtained in [9]

if one takes the asymptotic form of the confluent hypergeometric function as obtained

therein.

5.3. The general case of κ 6= 0

Here the basic technique involves resorting to the principle axes transformation which

diagonalizes the matrix N given in Eq. (60) and makes the quadratic form B†NB a

sum of squares. We observe here that N is block diagonal with the same block repeated.

Thus we need to just focus on one block which is just a 2×2 matrix - we call this matrix

N2:

N2 =

[
ζ κ∗

κ ζ

]
, (75)

Recalling κ = ke4iη, the eigenvalues ofN2 are given by ζ±k. The matrixU diagonalizing

N2 is unitary and is given by:

U =
1√
2

[
e−2iη −e−2iη

e2iη e2iη

]
where tan 4η =

2(a · b)
|a|2 − |b|2 . (76)
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From the above, we have the result:

U†N2U =

[
ζ + k 0

0 ζ − k

]
. (77)

The diagonalisation process leads us to another set of amplitude variables C1, C2, where

then,
[
B1

B2

]
= U

[
C1

C2

]
, (78)

which gives,

B1 =
1√
2
e−2iη(C1 − C2) , B2 =

1√
2
e2iη(C1 + C2) . (79)

The inverse transformation is

C1 =
1√
2

(
e2iηB1 + e−2iηB2

)
, C2 =

1√
2

(
−e2iηB1 + e−2iηB2

)
. (80)

Given the expressions of Eq. (48) for the Bµ, we can view this as a (sky-dependent)

shift in the polarization angle ψ → ψ − η(θ, φ). This is a re-derivation of the so-called

dominant polarization frame discussed in Eq. (2.33) of [5].

Similarly, we define the complex data vectors z1, z2 by,
[
z1
z2

]
= U†

[
y1
y2

]
. (81)

Therefore, z1 = αy1 + α∗y2 and z2 = −αy1 + α∗y2.

Now we can write the log likelihood in terms of the new amplitudes Cµ and zµ. We

then have:

ln Λ = C∗
1z1 + C∗

2z2 + C1z
∗
1 + C2z

∗
2 −

1

2
(ζ + k)|C1|2 −

1

2
(ζ − k)|C2|2 . (82)

Now no cross terms in C1, C2 appear and the expression for the log likelihood is much

simpler. However, the Jacobian factor in the denominator gets more complex because

|B1|2|B2|2 =
1

4
|C1 − C2|2|C1 + C2|2 . (83)

The Jacobian:

∂(B1, B
∗
1 , B2, B

∗
2)

∂(C1, C∗
1 , C2, C∗

2)
= 1 , (84)

and hence the volume elements are dB1dB
∗
1dB2dB

∗
2 = dC1dC

∗
1dC2dC

∗
2 sinceU is unitary.

We now have all the ingredients to write down the B statistic:

B(zµ) =
√
2

16

∫
dC1dC

∗
1dC2dC

∗
2

|C1 − C2|3/2|C1 + C2|3/2

× eC
∗
1
z1+C∗

2
z2+C1z∗1+C2z∗2−

1

2
(ζ+k)|C1|2−

1

2
(ζ−k)|C2|2 . (85)
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We first consider the case when the signal-to-noise-ratio (SNR) is sufficiently high so

that we can focus on the peak of the terms in the exponent. Collecting terms in C1 and

C2, writing lnΛ = lnΛ+ + lnΛ−, and completing squares in ln Λ±:

ln Λ± =
2|z|2
ζ ± k

− 1

2
(ζ ± k)

∣∣∣∣C − 2z

ζ ± k

∣∣∣∣
2

. (86)

Here it is assumed that in C and z are respectively C1 and z1 in ln Λ+, and C2 and

z2 in ln Λ2. Under the simplest approximation, in the denominator of the integrand in

Eq. (85), we set C1,2 to the values at the peak of the Gaussian

C1 =
2z1
ζ + k

, C2 =
2z2
ζ − k

. (87)

Performing the two of Gaussian integrals yields (taking the integrals to be over the

whole complex plane)

B =
4π2

(ζ2 − k2)

∣∣∣∣
4z21

(ζ + k)2
− 4z22

(ζ − k)2

∣∣∣∣
−3/2

exp

[
2|z1|2
(ζ + k)

+
2|z2|2
(ζ − k)

]
(88)

We first check that this expression reduces to the special case of κ = 0 derived

in section 5.2, Eq. (74). In this case, we put k = 0 in Eq. (88). We first note that

z1, z2 are related to y1, y2 by a unitary transformation U given in Eq. (81). Taking the

Hermitian conjugate of this equation and multiplying this with the equation itself, it

follows that |z1|2+ |z2|2 = |y1|2+ |y2|2. This takes care of the exponential term. For the

denominator, we see that |z1 − z2| =
√
2|y1| and |z1 + z2| =

√
2|y2|. Again collecting all

terms we finally deduce that:

B =
π2

16
ζ
e

2

ζ (|y1|2+|y2|2)

(|y1||y2|)3/2
, (89)

which is in exact agreement with Eq. (74).

Also from the expression of κ, we find k2 = |κ|2 = |a|4 + |b|4 + 2|a|2|b|2 cos 2θ ≤
(|a|2 + |b|2)2 ≡ ζ2, where we have written a · b = |a||b| cos θ. This means that k ≤ ζ .

The B statistic is singular when ζ = k. In fact, setting ǫ = ζ − k with ǫ small, we see

that

B ∼ ǫ2e2|z2|
2/ǫ . (90)

This is singular when ǫ→ 0.

5.4. Singularities of the B statistic

The singularities of the B statistic given by Eq. (88) occur when ζ = k. We can see

from Eq. (88) that it will also be singular when:

z1
ζ + κ

= ± z2
ζ − κ

. (91)

These correspond to the two cases where the maximum-likelihood signal is purely

circularly polarized, either left or right. Whereas the singularities that occur when
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ζ = ±k are characteristic of the detector network alone, the singularities above depend

also on the data, and the extent to which it prefers pure circular polarization.

Let us now consider the first kind of singularity. To avoid clutter, we drop the

factors of σI which account for the detector sensitivities (or alternatively, scale the beam

pattern functions appropriately – this will not affect the present discussion). Given that

ζ ≥ k and ζ, k ≥ 0, we see that ζ + k = 0 if and only if ζ = 0. Consider then the

quantity ζ2 − k2. If this quantity vanishes then either ζ = 0 or ζ = k. Thus, away

from sky-positions where ζ = 0, which is equivalent to both a and b vanishing for each

detector, we see that the set of points where ζ2 − k2 vanishes contains all such singular

points. A straightforward calculation yields

ζ2 − k2 =

(
∑

I

|fI |2
)2

−
∣∣∣∣∣
∑

I

f2I

∣∣∣∣∣

2

=
∑

I,J

(
fIf

⋆
IfJ f

⋆
J − f2If

⋆2
J

)

= −
∑

I>J

(fIf
⋆
J − f⋆IfJ)

2 . (92)

The terms with I = J vanish and we note also that the quantity fIf
⋆
J − f⋆IfJ is pure

imaginary. Thus its square is negative and we get

ζ2 − k2 =
∑

I>J

|fIf⋆J − f⋆IfJ |2 . (93)

We have thus written ζ2 − k2 as a sum of positive terms and as a sum over detector

pairs. If ζ2 − k2 = 0, then each term in the above sum must vanish. Consider now a

single term from this expression:

|fIf⋆J − f⋆IfJ | = |fIfJ | ×
∣∣∣∣
f⋆J
fJ

− f⋆I
fI

∣∣∣∣ . (94)

We see immediately that apart from points where fI and fJ vanish, the degeneracy occurs

when
f⋆J
fJ

=
f⋆I
fI
. This is just the condition that the arguments of fI and fJ are equal (or

differ by π). The condition for ζ2 − k2 to vanish is then that the arguments for all fI
should be equal (modulo π). For two detectors, we will thus generically get curves on

the celestial sphere. For three detectors, we will get a finite number of degenerate points

(the intersection of the curves), and no degeneracy generically for 4 or more detectors.

The second kind of singularity can also be discussed in terms of the quantity ζ2−k2
but is more complicated due to the presence of the data. We shall leave further discussion

of the geometric nature of the singularity to future work and turn now to the properties

of the B statistic at the singularity.

5.5. Applying the Laplace approximation to the B statistic

We can formalize the approximations to the integral that we have been making through

use of Laplace’s approximation. As the name suggests, the technique is an old one. In

its most familiar form, it states that if a function f takes on a unique, non-degenerate
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minimum at the origin within some domain R of Rn that properly contains the origin,

and that if the value of that minimum is zero, then:
∫

R

e−λf g(x) dnx ∼
(
2π

λ

)n/2
g(0)√

detHf(0)
(95)

for sufficiently large λ. Here Hf(0) denotes the Hessian of f , evaluated at the origin.

This approximation, and the related stationary-phase approximation, are well known in

applied mathematics and we have used them already in this paper. They encapsulate

the idea that for a sharply peaked integrand, the value of the integral should be chiefly

determined by its behavior at its peak.

Much less well known is that the approximation of Eq. (95) is just the first term

in a full asymptotic expansion. Moreover, the requirements that the minimum be non-

degenerate, and the evident requirement that g be well-defined at the origin, may both

be relaxed. All that is really required is that both f and g themselves possess asymptotic

expansions, as |x| → 0, and that any singularities of g should be integrable. There is

extensive discussion of these topics in the book by Wong [20], but we shall refer primarily

to the paper [21] by Kirwin, which collects in one place the specific generalizations of

Laplace’s method that we shall need.

We will focus only on the leading order term in the asymptotic expansion; our

interest in generalizing is to relax the assumption that the prior (that part of the

integrand not in the exponential) be finite: we will instead allow it an integrable

singularity. As we shall see, this is necessary to apply Laplace’s approximation to the

case where the gravitational wave strain data is peaked at a pure circular polarization

state.

So, we still assume that the function f in Eq. (95) has a unique minimum value

at the origin, and that the value of that minimum is zero. We do not assume that

the minimum is non-degenerate. If x = (x1, . . . , xn) are Cartesian coordinates on R
n,

then introduce generalized spherical coordinates by defining r =
√
(x1)2 + · · · (xn)2, and

denoting by Sn−1 the unit sphere r = 1; also define Ω = x/r. The hypotheses that are

required to apply the results of [21] are:

(i) The function f possesses N +1 continuous functions fj on Ω, with f0(Ω) > 0, such

that for some real number ν > 0:

f(r,Ω) = rν
N∑

j=0

fj(Ω)r
j + o(rN+ν) as r → 0, and (96)

(ii) The function g possesses N + 1 continuous functions gj on Ω, such that for some

real number µ > 0:

g(r,Ω) = rµ−n
N∑

j=0

gj(Ω)r
j + o(rN+µ−n) as r → 0, and (97)

(iii) There exists some λ0 > 0 such that the integral
∫

R

e−λ0f g dnx (98)
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converges.

When these conditions hold, the leading term of the asymptotic expansion is given by:
∫

R

e−λf g dnx ∼ λ−µ/ν
1

ν
Γ
(µ
ν

) ∫

Sn−1

g0(Ω)

[f0(Ω)]
µ/ν

dΩ (99)

Though it is not obvious from Eq. (99), in the familiar case where the minimum of f is

non-generate (implying the determinant of the Hessian of f at its minimum is nonzero)

and when µ = n, so that g has no singularity at the minimum of f , then Eq. (99)

reduces to Eq. (95).

To apply either Eq. (95) or Eq. (99), we may use either integral form of the B
statistic, whether Eq. (66) or Eq. (85). In either case, we must rewrite the expression

so that the minimum of our log-likelihood occurs at the origin, and the value of that

minimum must be zero. This is accomplished in each case by completing the square.

If we start with Eq. (66), define:

B̂ = N−1Y, ∆B = B− B̂ (100)

Then it is easy to show that:

Q(Y;B) = −1

2
∆B†N∆B+

1

2
B̂†NB̂ (101)

Using this, we get:

B(Y) =
e

1

2
B̂†NB̂

32

∫
d(∆B1) d(∆B⋆1) d(∆B2) d(∆B⋆2) e−

1

2
∆B†N∆B

[
(∆B1 + B̂1)(∆B⋆1 + B̂⋆1)(∆B2 + B̂2)(∆B⋆2 + B̂⋆2)

]3/4 (102)

We now have an exponential in the integrand which has its minimum value at the origin,

and a minimum value of zero. It is also helpful to explicitly include a parameter that

will be large when, as we consider, there is a threshold for triggers. Define the following:

λ =

√
|B̂1|2 + |B̂2|2,

U = ∆B/λ,

Û = B̂/λ.

Using this, we can write:

B(Y) = λ
e

1

2
B̂†NB̂

32

∫
d(U1) d(U

⋆
1 ) d(U2) d(U

⋆
2 ) e

−λ2

2
U†NU

[
(U1 + Û1)(U⋆

1 + Û⋆
1 )(U2 + Û2)(U⋆

2 + Û⋆
2 )
]3/4 (103)

Note that |Û1|2 + |Û2|2 = 1.

It is now straightforward to consider the cases of Laplace’s transformation that we

may apply to this expression. If neither of |Û1| or |Û2| are zero, then the function g in

our formulation of Laplace’s approximation is not singular at the origin, and we may

directly apply Eq. (95) to get:

B(Y) ∼ π2

2(ζ2 − k2)

e
1

2
B̂

†
NB̂

(
|B̂1||B̂2|

)3/2 . (104)
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and where we remind the reader that the functional dependence of the right-hand side

on Y is through B̂ = N−1Y.

However, if the peak value of one of |Û1| or |Û2| does vanish, then we must use

Eq. (99); this happens if the signal is purely circularly polarized. For concreteness,

suppose that Û1 = 0; note that this then implies |Û2| = 1. In that case, as r → 0, the

factors in g that contain Û1 diverge, though the singularity is integrable. We have:

f(r,Ω) = U†NU (105)

= r2 [ζ + 2k sin β cos β cos(α1 − α2 + 4η)]

In this equation, we have introduced Hopf coordinates on S3:

U1 = r cos β eiα1 , U2 = r sin β eiα2 , dΩ = sin β cos β dβ dα1dα2. (106)

In these same coordinates, we have:

g(r,Ω) →
[
(r cos β eiα1)(r cos β e−iα1)

]−3/4
= r−3/2(cos β)−3/2 (107)

From this we conclude that the exponent µ is 5/2; it is also immediate that the exponent

ν is two, since our function f is a quadratic form. Thus, if we put together all of the

elements of Eq. (99), we obtain in this case:

B(Y) ∼ 21/4

32ζ5/4|B̂2|3/2
Γ

(
5

4

)
e

1

2
B̂†NB̂I

(
k

ζ

)
(108)

where we have defined the function I(x), for 0 ≤ x < 1, by the three-dimensional

integral:

I(x) =

∫ π/2

0

dβ

∫ 2π

0

dα1

∫ 2π

0

dα2 (109)

× sin β cos β

[cos β]3/2 [1 + 2x sin β cos β cos (α1 − α2 + 4η)]5/4

Though this integral may appear intractable, in fact it may be performed exactly, as

outlined in Appendix B. The result is:

I(x) = 8π2(1− x2)−1/4 (110)

and therefore we obtain:

B(Y) ∼ 21/4Γ
(
1
4

)
π2

16ζ3/4(ζ2 − k2)1/4
e

1

2
B̂†NB̂

|B̂2|3/2
(111)

If we compare this equation to Eq. (104), we see that the exponential factor in

Eq. (111) is identical to that in Eq. (111), as is the dependence on B̂2. The only

functional difference in the dependence on the data is that the singularity that Eq. (104)

would predict as B̂1 → 0 is absent from Eq. (111).

It would seem desirable to have an expression that smoothly interpolates between

Eqs. (104) and (111). This is a considerably more complex problem. The essential

difficulty is that we are attempting an asymptotic approximation not of a single integral,

but rather a family of integrals, depending on parameters (in our case, theY and through
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those the B̂). To smoothly interpolate, we would need an asymptotic approximation

that was uniform in these parameters. This topic is discussed in depth in chapter seven

of Wong’s book [20] and references cited therein, as well as a different approach in [22],

but we have found no simple application of those techniques to our problem, and defer

an investigation of that for future work.

6. Discussion

In this paper, we have studied the analytic marginalization of the likelihood function

over the nuisance parameters (A,ϕ0, ι, ψ) for modeled gravitational wave searched. The

results are applicable for both transient binary coalescence signals, and the long duration

signals emitted by rapidly rotating neutron stars. The main theme of this paper is that

the matrix elements of the rotation group T ℓmn are useful amplitude parameters. Not only

are they natural from a geometric viewpoint, but they also simplify the calculation of the

B-statistic. The same interpretation is useful also in the calculation of the beam pattern

function for a gravitational wave detector. Thus, it is natural to view the coordinates

ϕ0, ψ, ι as coordinates on the group of rotations or equivalently, on S3. Using these

coordinates, we have derived useful approximations to the B-statistic in the case when

the SNR is high. We have investigated the singularities of the detector network and we

have obtained a simple expression for B in the singular case.

We have restricted ourselves to non-precessing systems and in fact we have also not

considered higher modes in the waveform model. In both these case, we will need to go

beyond the dominant mode of the gravitational wave signal. It is clear that these higher

modes can be included in our formalism quite naturally. It also seems plausible that

extensions of the methods used here might also work in those cases. It is an accident

that for non-precessing systems, the number of amplitude parameters is the same as the

number of physical parameters. Including precession or higher modes will result in a

larger number of amplitude parameters than the number of physical parameters. The

Bayesian framework naturally deals with this mismatch in the number of parameters.

Even restricting ourselves to non-precessing systems and ignoring the higher modes, the

results of this paper might be useful in parameter estimation methods and in suggesting

modifications to the detection statistic for the searches as well.
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Appendix A. The matrix elements of the ℓ = 2 representation of the

rotation group

A rotation g is represented by matrices T ℓmn[g] where ℓ is the weight of the representation

and m,n are the indices for the matrix elements with −ℓ ≤ m,n ≤ ℓ. If we use the Euler

angles (α, β, γ) to parametrize a rotation then T ℓmn are functions of (α, β, γ). Following

[17] we shall use the ’zxz’ convention for the Euler angles. Thus we shall go from a

frame (x, y, z) to (x′, y′, z′) starting with a rotation around the z axis by an angle α, a

rotation around the x-axis by an angle β, and finally a rotation around the z axis by an

angle γ. The T ℓmn are also called the Wigner D-matrices, and the spin weighted spherical

harmonics sYℓm(θ, φ) are proportional to T ℓ−s,m(θ, φ, 0), i.e. with the third Euler angle

set to zero [15].

It can be shown that

T ℓmn(α, β, γ) = e−imαP ℓ
mn(cos β)e

−inγ , (A.1)

gr-qc/0504011
gr-qc/0009078
1012.4939
1307.4158
0804.1161
http://inspirehep.net/record/782996/files/arXiv:0804.1161.pdf
0907.2569
1311.0065
1606.03867
0810.4529
gr-qc/0309058
http://dx.doi.org/10.1039/DC9735500051
https://doi.org/10.7717/peerj-cs.103


Marginalizing the likelihood function for modeled gravitational wave searches 25

where P ℓ
mn(cos β) are the Jacobi polynomials:

P ℓ
mn(x) =

(−1)ℓ−min−m

2ℓ(ℓ−m)!

√
(ℓ−m)!(ℓ+ n)!

(ℓ+m)!(ℓ− n)!

× (1− x)−
n−m

2 (1 + x)−
n+m

2

dℓ−n

dxℓ−n
[(1− x)ℓ−m(1 + x)ℓ+m] . (A.2)

It will be useful to list explicitly the ℓ = 2 matrix elements for m = −2

P 2
−2,−2(cos β) =

1

4
(1 + cos β)2 , (A.3)

P 2
−2,−1(cos β) =

i

2
sin β(1 + cos β) , (A.4)

P 2
−2,0(cos β) = − 1

2

√
3

2
(1− cos2 β) , (A.5)

P 2
−2,1(cos β) =

i

2
sin β(cos β − 1) , (A.6)

P 2
−2,2(cos β) =

1

4
(1− cos β)2 (A.7)

Note that

P ℓ
mn(x) = P ℓ ⋆

nm(x) . (A.8)

Appendix B. Evaluating the integral I(x)

Here we outline the steps in the closed-form evaluation of the function I(x) defined in

Eq. (109), which we repeat here for convenience:

I(x) =

∫ π/2

0

dβ

∫ 2π

0

dα1

∫ 2π

0

dα2 (B.1)

× sin β cos β

[cos β]3/2 [1 + 2x sin β cos β cos (α1 − α2 + 4η)]5/4

To begin our evaluation of this integral, first change variables from α1 and α2 to new

variables γ+ and γ− defined by:

γ+ = α1 + α2, γ− = α1 − α2 (B.2)

It is easy to check that dα1dα2 =
1
2
dγ+dγ−; we must also adjust the limits of integration.

Our goal is to perform the integral over γ+ trivially, so we write:

I(x) =
1

2

∫ π/2

0

dβ

∫ 2π

−2π

dγ−

∫ 2π−|γ−|

−2π+|γ−|

dγ+ (B.3)

× sin β cos β

[cos β]3/2 [1 + 2x sin β cos β cos (γ− + 4η)]5/4

=
1

2

∫ π/2

0

dβ

∫ 2π

−2π

dγ−(4π − 2|γ−|) (B.4)

× sin β cos β

[cos β]3/2 [1 + 2x sin β cos β cos (γ−)]
5/4
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In going from Eq. (B.4) to Eq. (B.5), we have performed the integral over γ+. It is

subtler to see that we may drop the shift by 4η, but it is possible to check that the

potential extra term in the |γ−| in fact vanishes when integrated from −2π to 2π.

Next, we use the identity:

(1− z)−a =
∞∑

k=0

(a)k
k!

zk, |z| < 1 (B.5)

where (a)k = Γ(a + k)/Γ(a) is the Pochhammer symbol, to expand the binomial

fractional power in the integrand; this expansion will be valid for 0 ≤ x < 1 as we

require. This gives:

I(x) =
1

2

∞∑

k=0

(5
4
)k

k!
(−2x)k

∫ 2π

−2π

(2π − |γ−|) (cos γ−)kdγ− (B.6)

×
∫ π/2

0

(sin β)k+1(cos β)k+1

[cos β]3/2
dβ.

The integral over γ− can now be performed by elementary methods, and vanishes when

k is odd. When k = 2m is even, it is:
∫ 2π

−2π

(2π − |γ−|) (cos γ−)2mdγ− =
4π2

22m

(
2m

m

)
(B.7)

and inserting this gives:

I(x) = 4π2

∞∑

m=0

(5
4
)2m

(2m)!

(
2m

m

)
x2m

∫ π/2

0

(sin β)2m+1(cos β)2m− 1

2dβ (B.8)

Now we define u = cos β to re-express the remaining integral; if we then further

define u = v2 and expand the binomial in the integrand, we get:
∫ π/2

0

(sin β)2m+1(cos β)2m− 1

2dβ = 2

m∑

l=0

(
m

l

)
(−1)l

4(l +m) + 1
. (B.9)

It is perhaps not obvious that this sum can be analytically performed, but in fact it is

tractable to computer algebra systems (we used SymPy [23]) to get:
∫ π/2

0

(sin β)2m+1(cos β)2m− 1

2dβ =
2Γ(m+ 1)Γ(m+ 5

4
)

(4m+ 1)Γ(2m+ 5
4
)
. (B.10)

If we insert this into our expression Eq. (B.8) for I(x), we have now only a single

summation and no remaining integrals:

I(x) = 8π2
∞∑

m=0

(5
4
)2m

(2m)!

(
2m

m

)
Γ(m+ 1)Γ(m+ 5

4
)

(4m+ 1)Γ(2m+ 5
4
)
x2m. (B.11)

Finally, we use the identities n! = Γ(n + 1), Γ(z + 1) = zΓ(z), and the expression for

the binomial coefficient to rewrite this as:

I(x) = 8π2

∞∑

m=0

(1
4
)m

(m)!
(x2)m (B.12)

which is recognized as the Taylor expansion of 8π2 (1 − x2)−1/4, as claimed. Given the

remarkable simplicity of this result, it would be interesting to find a simpler derivation,

but so far we have not.
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