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Highlights

1. Aspects of incremental language comprehension can be modeled with
probabilistic language models.

2. Formal linguistic information content is used to build predictors of
cognitive processing.

3. We review fMRI and M/EEG studies that analyzed comprehension
data with language models.

4. We discuss advantages, potential pitfalls and future challenges of the
approach.
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Abstract

Cognitive neuroscientists of language comprehension study how neural com-

putations relate to cognitive computations during comprehension. On the cog-

nitive part of the equation, it is important that the computations and processing

complexity are explicitly defined. Probabilistic language models can be used to

give a computationally explicit account of language complexity during compre-

hension. Whereas such models have so far predominantly been evaluated against

behavioral data, only recently have the models been used to explain neurobiolog-

ical signals. Measures obtained from these models emphasize the probabilistic,

information-processing view of language understanding and provide a set of tools

that can be used for testing neural hypotheses about language comprehension.

Here, we provide a cursory review of the theoretical foundations and example

neuroimaging studies employing probabilistic language models. We highlight

the advantages and potential pitfalls of this approach and indicate avenues for

future research.
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1. Introduction

Neuroimaging studies of language comprehension have over the course of the

past decades generated a wealth of data which have inspired several neurobiolog-

ical models (e.g., Friederici, 2012; Hagoort, 2013; Hickok & Poeppel, 2007). Such

studies typically correlate or compare task-based changes in cognitive processing5

with changes in neural metabolic demands by means of functional magnetic res-

onance imaging (Logothetis, 2008) or changes in electrophysiological responses

with magneto- or electroencephalography (Luck, 2005; Hansen et al., 2010). In

a complementary fashion, brain stimulation techniques can be used to stimu-

late or perturb neural populations and thus to probe the relevant pathways for10

language comprehension (Devlin & Watkins, 2007).

More broadly, one of the main goals of cognitive neuroscience is to identify

the explanatory relations between neuronal and cognitive computations that

account for behaviour (Poldrack, 2010; Poeppel, 2012). This requires explicit

formalization of the hypothesized cognitive computations (Forstmann & Wagen-15

makers, 2015; Palmeri et al., 2016). It has been noted before that the relative

lack of well-defined computational characterizations of comprehension processes

is one important factor hindering progress in explanatory understanding of the

neurobiology of language (Hagoort, 2009; Embick & Poeppel, 2015).

Recently, such motivations have led to adoption of computational linguistic20

methods in cognitive neuroscience (Brennan, 2016). Grounded in expectation-

based theories of sentence comprehension (Hale, 2001; Levy, 2008), statistical or

probabilistic language models which assign conditional probabilities to linguistic

representations (e.g., words, words’ parts-of-speech, or syntactic structures) in a

sequence are increasingly being used, in conjunction with information-theoretic25

complexity measures, to estimate word-by-word comprehension difficulty in neu-

roscience studies of language comprehension (Figure 1).

While the use of probabilistic language models represents a step forward

towards explicit account of expectation-based cognitive computations, it is im-

portant to critically acknowledge both the respective strengths and limitations.30

3
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What are the promises and pitfalls of the approach? What can we expect to

learn from it? Can probabilistic modeling go beyond localizing candidate cog-

nitive computations in space and time?

The purpose of this paper is to provide a balanced review and discussion of

the use of probabilistic language models in cognitive neuroscience of language.35

We first provide a cursory review of the general framework and review recent

example applications. We then critically discuss the promises and limitations of

this nascent interdisciplinary bridging. We conclude by outlining outstanding

questions for future research.

Figure 1: A schematic depiction of the interdisciplinary collaboration between probabilistic

modeling and cognitive neuroscience of language.

2. Probabilities and information in language40

2.1. Probabilistic constraints in language processing

Probabilistic models of cognition have witnessed a surge of interest in re-

cent years (Chater et al., 2006). In the domain of language, it has generally

4
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been recognised that the cognitive system is sensitive to distributional proper-

ties of the language input and that probabilistic constraints play a role in both45

early language acquisition and later language processing (Kuhl, 2010; Griffiths,

2011; Seidenberg, 1997). Empirical support for human sensitivity to statisti-

cal/probabilistic constraints at the level of words has been shown through the

word frequency effect on word recognition, disambiguation, and ease of pro-

cessing (see Jurafsky, 2002, for review and evidence). Additionally, the role of50

statistical/probabilistic constraints in language processing and production has

been shown through the effect of contextual constraints, that is, as graded sen-

sitivity of behavioural or neural measures (e.g., reading times or amplitudes of

event-related potentials) to how constraining the prior context is on possible

sentence continuations (Gibson & Pearlmutter, 1998).55

The effects of contextual constraints and word probabilities are commonly

interpreted as reflecting some form of graded prediction, expectation or antici-

pation in language comprehension (Huettig, 2015; see also Kuperberg & Jaeger,

2015, for a terminological remark). Word probability in sentences is normally

measured by means of human judgments in the cloze task (Taylor, 1953). In60

this task, participants are presented with sentence contexts where the target

word position is blank. They are asked to fill the blank with a plausible word.

The cloze probability of a word is then determined by counting the number of

participants that used the word to continue the sentence.

Word probability effects and effects of contextual constraints provide ev-65

idence that graded statistical/probabilistic constraints in the linguistic signal

and linguistic experience more broadly impact the real-time human language

processing system; however, in experimental settings the exact computations

explaining such effects are often not modelled explicitly. In what follows, we

provide a cursory review on how probabilistic information can be modeled and70

quantified formally.

5
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2.2. Probabilistic language models

In a nutshell, probabilistic language models are mathematical formalisms de-

scribing probability distributions over language data. One of the most common

applications of probabilistic language models is in so-called sequence-prediction75

tasks. In the case of language, this means probabilistic models can be used for

generating expectations about upcoming words given the words seen so far in a

sentence (usually up to a limited length).

A distinction can be made between sequence-based language models that

predict the words based on sequences of past words—a domain also called “sta-80

tistical language modelling”—and models that estimate the probability of a

syntactic structure underlying the observed sequence of words or the probabil-

ity of the upcoming word given the syntactic parse so far (see also Section 2.2.1

and Figure 2 below). This is a domain proper to “computational linguistics”

and as such normally considered distinct from statistical language modeling;85

there is, however, a great deal of overlap between the two research domains

(Rosenfeld, 2000).

For the sake of convenience, we will in this review subsume this distinction

and use a single term “probabilistic language models” because the neuroimaging

studies reviewed presently in Section 3 employ descriptions at both levels of90

granularity.

2.2.1. Common ways of estimating probabilities

How are language probabilities estimated? Three broader classes of models

are commonly used in computational psycholinguistics: n-gram models, phrase

structure grammars (PSGs), and neural networks.95

N -gram models, also known as Markov models, represent the simplest ar-

chitecture for estimating the probabilities. The term n-gram stands for any

sequence with the length of n-items where the model order n denotes the num-

ber of context words (n− 1) plus the word (n-th word) for which the probabil-

ity is computed (Jurafsky & Martin, 2009). Therefore, a 4-gram model takes100

into account three preceding words in a sequence for computing the conditional

6
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probability of occurrence for the fourth word. The basis for computing these

probabilities are the relative frequencies of co-occurrence of word sequences de-

rived from the training data in language corpora. We add that an n-gram can

stand for the sequence of actual words or, alternatively, syntactic categories of105

words (or parts-of-speech).

Apart from n-grams, probabilities of the upcoming words can also be esti-

mated by using either feed-forward (FNN) or recurrent neural network (RNN)

architectures (Bengio et al., 2003; see, De Mulder et al., 2015, for a recent re-

view on RNNs). In these architectures, the words are not represented as symbol110

strings as with n-grams, but are instead converted into vector representations;

each word is coded as a sequence of real numbers—a real-valued feature vector.

These vector representations are given as input to a pre-specified number of

neuron-like hidden units where activation of these units is given by mathemat-

ical functions and transformations applied to the word vectors.115

In recurrent neural networks, the hidden units also receive recurrent input

from the states encoded in previous steps (see Figure 2, bottom right) which

means any current state of the layer reflects the history (of an undetermined

length) of past network states (e.g., representing sentential context in language

tasks). During model training in word prediction tasks, the models adjust the120

weights (or parameters) assigned to each hidden unit and individual components

of word vectors such that the difference between words predicted by the model

and words that actually appear is minimized. The activation of the output units

are rescaled such that the output vector can be interpreted as a probability

distribution over words. Each unit’s activation is the estimated probability that125

the corresponding word will appear next, given the word sequence presented to

the model.

PSGs are sets of so-called rewrite rules relating a phrasal class (e.g., a noun

phrase) to its constituent parts of speech (e.g., a determiner, an adjective, and a

noun) to the actual word strings (e.g., “a red hat”). A PSG therefore provides,130

by sequentially applying the rewrite rules in a process called derivation, the

structural description underlying a given sequence of words. A probabilistic (or

7
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stochastic) PSG assigns a probability of a syntactic parse given a surface level

string, or the probability of the upcoming word given the syntactic parse so

far (Roark 2001, see also Figure 2, top right). The probability of the entire135

parse is determined as a joint probability of all rewrite rules needed to generate

the complete parse. The probabilities of rewrite rules are determined from

occurrences in syntactically-annotated corpora known as tree-banks (see, e.g.,

Marcus et al., 1993).

2.2.2. Context-boundedness and representations140

To see how these classes of models compare to one another, it is useful to

consider their characteristics along two key dimensions: whether there is a limit

to the amount of context considered for computing the conditional probabilities

(boundedness) and what is the nature of representations over which these mod-

els compute. This gross classification with boundedness and representations is145

schematically depicted in Figure 2.

In terms of the amount of context that can be taken into account for estimat-

ing the probabilities, models fall either in the category of bounded or unbounded

models (represented column-wise in Figure 2). Bounded models impose a finite

bound to the length of the preceding context considered; model classes with150

bounded limit are the n-gram models and feed-forward neural networks where

the probabilities are conditioned on a fixed number of preceding words. Recur-

rent neural networks and PSGs, on the other hand, are unbounded models. A

recurrent neural network’s hidden layer activation depends on the entire input

string so far (Figure 2, bottom right) whereas in PSGs the current word can155

depend on words at any earlier point which makes it possible to model long-

distance dependencies between the words—a hallmark of language structure.

The second classification dimension is the nature of representations over

which the models compute (represented row-wise in Figure 2); specifically, the

representations can either be symbolic or vector -based (the latter are also termed160

as: analogue, continuous or distributed representations). N -grams and PSGs

fall into the first category whereas feed-forward and recurrent neural networks

8
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Figure 2: Classification of language models according to context-boundedness and the nature

of representations. Classification according to the type of representation is depicted row-wise,

and amount of context column-wise.

operate over continuous or distributed vector word representations. The critical

difference between the two types of representations is that symbolic representa-

tions (e.g., word strings “dog” and “cat”) can only be equal or unequal with no165

inherent measure of similarity apart from the relationship reflected in the fre-

quency of co-occurrence; in contrast, numerical, vector representations in neural

networks can be compared using a similarity measure. For example, because

a every vector has a direction in a vector-space, a distance between two word

vectors (quantifying semantic distance between two words encoded by these vec-170

tors) can be computed mathematically as a function of the angle between two

vectors (smaller angle indicates more closely related words).

9
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2.3. Quantifying complexity: entropy and surprisal

On the basis of probabilities estimated with probabilistic models described

above it is possible to compute the amount of information conveyed by each word175

in a sequence. This is quantified with information-theoretic complexity metrics

such as word surprisal and word entropy. A complexity metric is any measure

quantifying hypothesized processing difficulty at the current word and need

not be probabilistic; the number of nodes traversed in a hierarchical syntactic

derivation is another example of a metric capturing comprehension difficulty180

(Gibson & Thomas, 1999). For a complete treatment on information-theoretic

complexity metrics specifically, we point the reader to a recent review by Hale

(2016); here, we provide a brief overview to establish the necessary coherence

with rest of the paper.

Surprisal is an information-theoretic measure quantifying how unexpected185

and thus how informative the current word (wt) is given the words that precede

it (w1, ..., wt−1). A higher word surprisal values indicates that the currently

encountered word is less expected given the context. In mathematical terms,

surprisal S(wt) is defined as the negative logarithm of the word’s conditional

probability of occurrence:190

S(wt) = − logP (wt | w1, ..., wt−1) (1)

If base-2 logarithm is used, surprisal is expressed in bits. The same is true for

the word entropy information measure, which quantifies how narrow or spread-

out the probability distribution of possible next words is. If taken as a measure

of cognitive effort, it models the degree of the listener’s or reader’s uncertainty

about the upcoming word given the words encountered so far. Higher entropy195

values represent a higher degree of uncertainty (due to a higher number of

possible candidate continuations) whereas lower entropy values signify a higher

degree of certainty with fewer, highly probable continuations given the context

so far. Mathematically, entropy at the current word position H(t) is defined as

the expected value of surprisal for the upcoming word (wt+1) given the words200

10
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encountered so far (w1, ..., wt):

H(t) = −
∑

wt+1∈W
P (wt+1 | w1, ..., wt) logP (wt+1 | w1, ..., wt) (2)

where W denotes the set of all possible words.

Above, we introduced surprisal and entropy as defined over actually observed

words in sentences, however, both metrics can also be computed on the basis

of words’ parts-of-speech (Frank, 2010) or syntactic structures as obtained from205

probabilistic grammars (Hale, 2003; Roark et al., 2009). If the models take into

account the actually observed words, a metric is said to be lexicalized, whereas

in the case of unlexicalized metric, only structural probabilities or probabili-

ties of parts-of-speech are used for computing complexity (Demberg & Keller,

2008). In other words, unlexicalized complexity metrics are not concerned with210

lexical-semantic properties of language input. However, additional assumptions

are required on the type of syntactic structures plausibly involved in human

comprehension (Hale, 2003; Frank, 2013).

In addition to surprisal and entropy, another relevant complexity metric is

entropy reduction. Originally, Hale (2006) defined the entropy reduction re-215

sulting from integrating word wt into the derivation of the sentence so far, as

the amount by which uncertainty about the complete sentence’s structure gets

reduced by excluding structures incompatible with wt. In practice, however,

estimating the probabilities of all possible sentence structures is not feasible.

For this reason, the scope of the entropy computation has been reduced to,220

for example, the possible sentence continuations (Wu et al., 2010), a subset of

upcoming four words (Frank, 2013), or even just the single next word (Roark

et al., 2009).

In brief, cognitive neuroscience and probabilistic language modeling concep-

tually share a common point in emphasizing information processing and proba-225

bilistic aspects of language comprehension. We now turn to the literature where

probabilistic language models were used to analyze neural measures of interest.

11



Page 13 of 39

Acc
ep

te
d 

M
an

us
cr

ip
t

3. Example applications

Until recently, probabilistic language models were predominantly tested against

behavioral data, such as grammaticallity judgments, self-paced reading times,230

and eye-movements (e.g., Boston et al., 2008; Demberg & Keller, 2008; Frank

& Bod, 2011; Linzen & Jaeger, 2014; Lau et al., 2017). The use of probabilistic

language models in cognitive neuroscience of language comprehenension repre-

sents a recent trend; here we review six example studies where probabilistic

language models were used word-by-word to quantify complexity in sentence or235

story comprehension tasks. We begin by reviewing studies where information

measures represented the predictor of interest and continue with those where

they were used as an additional predictor to non-probabilistic complexity mea-

sures.

3.1. Information measures as the predictor of interest240

Given that word surprisal and entropy quantify different aspects of the in-

coming linguistic signal, Willems et al. (2016) used 3-gram language models and

asked whether the two measures yield distinct loci of activation in the brain while

participants listened to auditory narratives. Word entropy negatively correlated

with blood oxygen level dependent (BOLD) signal in the right inferior frontal245

gyrus, the left ventral premotor cortex, left middle frontal gyrus, supplementary

motor area, and the left inferior parietal lobule whereas word surprisal showed

positive correlations bilaterally in the superior temporal lobes and in a set of

(sub)cortical regions in the right hemisphere (see Figure 3 below). These results

were interpreted within the predictive coding framework; regions sensitive to en-250

tropy were taken to reflect active predictions of the coming words (predictions

are possible in low entropy states) and areas related with word surprisal (how

surprising the current word is) were interpreted as possibly reflecting prediction

errors in the early auditory areas.

As explained in sections 2.2.1 and 2.3, language probabilities and complexity255

metrics can also be computed on the basis of syntactic structures. Henderson

12
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Figure 3: Brain areas activated more strongly (real stories compared with reversed story

fragments) for word surprisal (blue) and word entropy (red). Reproduced from Willems et al.

(2016).

et al. (2016) used the probabilistic phrase structure parser by Roark (2001) to

study the cortical infrastructure sensitive to syntactic surprisal during naturalis-

tic comprehension. The authors simultaneously measured BOLD responses and

eye-movements while participants silently read stories in paragraphs. A whole-260

brain comparison between word groups with high and low syntactic surprisal

revealed significant differences in the inferior frontal gyrus bilaterally, left an-

terior temporal lobes (under a less conservative statistical threshold), bilateral

insula, fusiform gyrus, and the putamen. There were no statistically significant

predicted differences in superior temporal lobes or the superior temporal sulcus.265

The authors discuss the results as in line with current neurobiological models

that place the cortical systems for syntactic computations to inferior frontal

and anterior temporal cortices. It is interesting to note that eye-tracking data

revealed no differences for the syntactic surprisal contrast; this stands in contrast

to previous reports showing relations between syntactic surprisal metrics and270

13
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eye movements (e.g., Boston et al., 2008; Demberg & Keller, 2008). The authors

speculate that the novel use of a lexicalized syntactic surprisal—as opposed to

unlexicalized syntactic surprisal used in previous reports—might be a possible

source of discrepancy.

In cognitive electrophysiology, one of the most studied signals is the event-275

related potential (ERP); time-averaged voltage deflections reflecting an inte-

grated (summed) response of large populations of spatially and temporally co-

herent cortical pyramidal neurons (Luck, 2005). Under the assumption that

those models and complexity metrics that best explain the data also more closely

resemble putative cognitive mechanisms, Frank et al. (2015) computed word280

surprisal and entropy reduction of words and their parts-of-speech under three

types of models: n-grams (n = 2, 3, and 4), phrase-structure grammars, and

recurrent neural networks.

Out of all the possible relations between word information measures and

six candidate ERP component amplitudes from an exploratory analysis, word285

surprisal measure computed on the basis of 4-grams and RNNs significantly

improved the fit of the regression model to the N400 ERP amplitude over and

above PSGs but not vice versa; that is, the inclusion of hierarchical syntactic

information in the models was not reflected in better statistical fit. In terms of

mechanistic interpretation, the authors take this result as compatible with the290

lexical retrieval account of the N400 component (Kutas & Federmeier, 2000).

3.2. Information measures as additional predictor

The studies reviewed above looked exclusively at the effects of information

measures computed by probabilistic language models. We now turn to studies

where such measures are investigated in addition to non-probabilistic measures295

of complexity.

Brennan et al. (2016) investigated the neural correlates of syntactic com-

plexity during naturalistic comprehension. Comprehension difficulty was char-

acterized with n-grams, PSGs, and minimalist grammars (a formal grammar

that accounts for syntactic phenomena not accounted for by PSGs). A stepwise300

14
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inclusion of progressively more “syntactically sophisticated” language predictors

improved the statistical fit to BOLD time courses in the bilateral anterior tem-

poral lobes, left inferior frontal gyrus, left posterior temporal lobe, left inferior

parietal lobule, and left premotor area. When taken on their own, the 2- and

3-gram surprisal measures revealed significant effects in the anterior temporal305

lobes, left inferior frontal gyrus and the left posterior temporal lobe.

Based on the fact that models including knowledge of hierarchical syntax

explained variance over and above the models that incorporate only linear,

word sequence-based statistics, the authors take their results as evidence for

the involvement of abstract syntactic linguistic knowledge in every-day sentence310

comprehension. The effects of surprisal are in part consistent with the results by

Willems et al. (2016) who similarly report word surprisal effect in the posterior

temporal lobe.

Nelson et al. (2017) investigated modulations of average high frequency (70-

150 Hz) power in intracranially recorded electrophysiological signals by hypothe-315

sized syntactic phrase-structure building operations during a word-by-word sen-

tence reading task. In model-comparison analysis, they contrasted explanatory

power of non-probabilistic hierarchical syntactic predictors (counting the num-

ber of open syntactic nodes at the moment when each word was presented) and

probabilistic language models. The former showed significant effects in several320

superior temporal and inferior frontal electrode sites, whereas lexical and part-

of-speech bigram surprisal (i.e., transition probability) and next-word entropy

showed positive and negative effects, respectively, in electrodes surrounding the

middle temporal gyrus.

Based on these results, the authors argue in favor of neurophysiological real-325

ity of hierarchical syntactic operations during comprehension. They interpreted

the probabilistic predictability effects as consistent with other reports localiz-

ing neural generators of single-word semantic priming, N400, and repetition

suppression effects to posterior temporal regions.

Van Schijndel & Schuler (2015) investigated the role of syntactic memory330

load during auditory story comprehension. The strength of spectral coherence

15
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of MEG oscillatory neural activity in the 10 Hz range was taken as a neural indi-

cator of increased working memory usage. Syntactic complexity was quantified

as the number of incomplete syntactic structures maintained at any word posi-

tion (depth of syntactic embeddedness estimated based on the most likely parse335

of a probabilistic PSG). N -gram probability predictors and a PSG surprisal

were used as control measures.

The authors report that the average alpha-band coherence in a pair of left

posterior and anterior sensors range was significantly different for two levels of

syntactic depth while controlling for n-gram probability effects; trigram prob-340

ability showed marginal alpha coherence effects prior to correcting for multiple

comparisons. Similar to the interpretations by Brennan et al. (2016) and Nelson

et al. (2017), the authors interpreted the results as showing that hierarchical

linguistic structure is computed during comprehension because it improves the

fit to empirical data over competitive non-hierarchical models.345

Finally, apart from regression-based analyses and factorial designs, the sta-

tistical relationship between neural data and language model output can also

be ascertained by means of multivariate statistical techniques, for example, by

using features of a language model in an intermediate step for decoding stimulus

identity from multivariate neural data. Wehbe et al. (2015) report that binary350

word classification accuracy based on MEG amplitudes, which in turn were pre-

dicted by RNN output vectors—interpreted as word probabilities—, was highest

approximately 400 msec after word onset, which can be seen as consistent with

results by Frank et al. (2015) who found a positive correlation between lexical

surprisal and the N400 amplitude. On the basis of the time-course of classifi-355

cation accuracy, the authors linked the late effect of word probability to word

integration processes (that differ between unpredictable and predictable words).

3.3. Summary

Current applications of probabilistic language models in cognitive neuro-

science show that probabilistic language models can be used with hemodynamic360

and electrophysiological methods and allow researchers to investigate and focus
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on spatial fingerprints for specific linguistic computations in cortical regions

(Willems et al., 2016; Henderson et al., 2016) or to compare predictions of dif-

ferent models against each other on the basis of same neurobiological data, be

it fMRI time courses (Brennan et al., 2016), language event-related M/EEG365

components (Frank et al., 2015; Wehbe et al., 2015), or spectral contents of

electrophysiological signals (Van Schijndel & Schuler, 2015; Nelson et al., 2017).

The studies employed language stimuli in both auditory and visual modalities

and, with the exception of the studies by Frank et al. (2015) and Nelson et al.

(2017), used language stimuli in naturalistic, narrative contexts. We now turn370

to a more detailed discussion of specific advantages and disadvantages of the

approach.

4. Advantages

4.1. Formalized cognitive computations

What can we expect to learn from model-based analyses? Probabilistic lan-375

guage models represent the computational level of explanation in cognitive neu-

roscience in the time-honoured sense of Marr (1982): What aspect of the lan-

guage input enters into the computation? What is being computed and why?

Quantitative methods represent a complement to subtraction paradigms in neu-

roimaging (see Hagoort, 2014, for a recent review on sentence comprehension)380

where cognitive computations are inferred on the basis of informal, qualitative

task-based cognitive contrasts.

Reading off cognitive computations from tasks is not straightforward (Boone

& Piccinini, 2016) in that it must first be assured that the task taps into the tar-

get linguistic computation and not, for example, meta-linguistic processes. This385

can be assured by comparing several informal task contrasts (see, e.g., Kaan &

Swaab, 2002, for a discussion on task contrasts for syntactic computations) or

by computationally modelling the task itself (see, e.g., Norris et al., 2000, for

a model of phoneme monitoring). Only once this is established, it is possible

to draw links to the observed neural effects. In model-based approaches, how-390

17



Page 19 of 39

Acc
ep

te
d 

M
an

us
cr

ip
t

ever, markers of sentence-level cognitive computations, for example syntactic

surprisal, are directly statistically related to neural signals.

From a methodological perspective, explicit mathematical definitions and

computational implementations lead to a more rigorous and standardized quan-

tification of independent variables which reduces dependence on researchers’395

operationalizations of specific concepts (but see section 5.1 for potential pitfalls

related to allures of formalization).

4.2. Theory evaluation

In other domains of cognitive neuroscience, such as decision-making and

cognitive control, linking neural data to parameters of formal models served as400

a fruitful way to overcome the impasse when competing models could not be

distinguished based on overt behavioral responses alone (Forstmann et al., 2011).

As such, model comparison proved to be a major contribution of combining

model-based approaches with neurobiological data (Mars et al., 2012). Given

the fast pace and incrementality of language comprehension processes, covert,405

online measures of comprehension difficulty such as eye-movement records have

been a key component of empirical evaluations for competing models in reading

and spoken comprehension (see Rayner, 1998; Huettig et al., 2011, for reviews).

Brain signals can be similarly considered as covert markers of online cognitive

difficulty and as such taken as empirical test bed for cognitive hypotheses im-410

plemented in language models. Whereas compared to model-based approaches

in other domains, neural measures do not necessarily represent exclusive di-

agnostic data for evaluating cognitive theories, any neurophysiologically valid

cognitive theory should ultimately account for neural measures as these are

closely linked to the underlying neural computations. As such, neural validation415

of cognitive theories provides cognitive-computational constraints for plausible

neuronal computations (Mars et al., 2012; Palmeri et al., 2016, see also Section

5.5 below).
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4.3. Statistical efficiency in analyses

In most current empirical applications of language models, complexity met-420

rics are computed for all words in experiments which improves statistical sen-

sitivity in the studies compared to the traditional experimental approach. For

example, the three stories used by Willems et al. (2016) yielded approximately

3,000 words, all of which were considered as separate trials in the analysis. This

contrasts with the currently prevailing experimental approaches, where, most425

often, studies will only investigate neurobiological effects on target words in

non-filler items. This of course follows from the logic of experimental designs;

however, it also means that large stretches of neural data are collected without

being inspected or considered in the analysis.

Further, probabilistic language models provide a quantification over a range430

of values, rather than only the extreme poles of the spectrum which is common in

subtraction-based designs (but see, e.g., Pallier et al., 2011, for an exception). In

case of significant statistical dependence between variables, parametric variation

gives stronger support to the actual workings posited by the model compared

to factorial designs (Bechtel & Abrahamsen, 2010).435

4.4. Naturalistic stimuli and data reuse

Apart from explicitness and increased statistical sensitivity of research de-

signs, there is another potential advantage of language modelling: it makes it

easier to study the brain responses to naturalistic stimuli (Brennan, 2016). Even

though the study of language in its ecological setting has in certain cognitive440

traditions been regarded as an ill-advised enterprise on principled and practical

grounds (Chomsky, 1959, 1995), it was highlighted as a necessary empirical step

to study the brain from the systems level (see Hasson & Honey, 2012; Small &

Nusbaum, 2004).

The approaches reviewed here strike a balance between the two perspectives:445

while the computational part enables rigorous formalization of the cognitive hy-

pothesis, absence of secondary task during the experiment enables the study

the of brain responses to more ecologically valid stimuli. Studying the brain
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in naturalistic settings is a desirable research approach (for a recent overview

of challenges and developments, see the contributions in Willems, 2015), nev-450

ertheless, we hasten to add that it should complement established experimen-

tal approaches which capitalize on well-controlled task-based designs (see e.g.

Fetsch, 2016, for a recent opinion on the importance of experimental designs);

for example because a specific cognitive hypothesis might not be available and

implemented as a probabilistic language model.455

It is also worth emphasizing that the absence of specific task constraints in

the experimental design lends these types of neuroimaging data sets appropri-

ate for reuse and sharing for analyses with new language models that embody

novel hypotheses; a component of contemporary research practice which is be-

ing actively recognized in the neuroscience community (Poldrack & Gorgolewski,460

2014).

5. Limitations and pitfalls

Even though probabilistic modeling comes with evident advantages, it has,

as is true for any methodological advancements, specific limitations. In light of

increasing acceptance of model-based analyses by experimental cognitive neu-465

roscientists, it is important to render these pitfalls explicit.

5.1. Allures of formalization

Due to their computational implementation and quantitative nature, for-

mally estimated language probabilities can be seen as representing a more ob-

jective estimate than measures of cloze probability obtained on the basis of470

subjective, human judgments (Staub, 2015). It is true that language models

and complexity metrics improve the comparability between experiments and

can be viewed as more objective from that point of view.

Nevertheless, even for formal estimates the extent to which they capture the

“ground truth” can be debated. Using complexity measures obtained from a475

single language model on experimental stimuli would be comparable to using
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judgments of a single participant for quantifying measures of cloze probabilities

(see also Smith & Levy, 2011, for discussion on the two types of language prob-

abilities). The complementarity of the two ways of estimating probabilities is

further underscored if we consider that in speech recognition tasks, for example,480

human judgments (providing knowledge not captured in the models alone) can

be used to improve model performance (Rosenfeld, 2000).

Second, probabilistic language models describe the probability distributions

over words but do not model the human language acquisition trajectory. Specif-

ically, models are trained on large amounts of language data which does not485

correspond to how such knowledge is acquired by humans, who exploit a variety

of other multimodal sensory and social cues (see Kuhl, 2010; Saffran, 2003, for

reviews). From an explanatory perspective, it would therefore be inaccurate

to implicitly treat models trained on collections of text as models of language

acquisition.490

5.2. Lexical confounds

All ways of estimating formal language probabilities, in one way or another,

rely on observed frequencies of occurrence in collections of texts – language

corpora. Together with the fact that complexity measures are computed on a

word-by-word basis, this means that by construction probabilistic complexity495

measures are likely to correlate with well-known lexical nuisance variables in psy-

cholinguistics, for example, lexical frequency (i.e., unigram probability), word

length, phonological neighbourhood size, transitional probability (i.e., bigram

probability, etc.).

These lexical measures characterize separate aspects of words. For example,500

lexical frequency is a property of the word alone whereas a 4-gram probability is

conditioned on the three preceding words and therefore operationalizes context-

dependent computations. Whereas both can be viewed as effects of “lexical

predictability”, they can be related to distinct cognitive computations; for ex-

ample, genuine predictive processing or ease of lexical retrieval (Staub 2015;505

Huettig 2015, see also Kuperberg & Jaeger 2015).
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Given that probabilistic language models afford the use of less experimen-

tally constrained, naturalistic stimuli, confound variables must be controlled

statistically. They should be included as covariates of no interest in regression-

type analyses; for example Frank et al. (2015) included word frequency, word510

length, and word position in the sentence as nuisance variables. Alternatively,

in factorial designs, it must be ensured that experimental conditions are chosen

such that they are matched for other lexical variables as was done in Henderson

et al. (2016). The list of potentially confounding variables can extend depend-

ing on the experimental settings; in an eye-tracking study, Demberg & Keller515

(2008), for example, included also the eye-movement specific variables about

whether the previous word was fixated or not, launch distance, and fixation

landing position in addition to word length, word frequency, forward transi-

tional probability, backward transitional probability, and word position in the

sentence.520

5.3. Syntactic and semantic complexity

A distinction between abstract, syntactic computations and meaning-bearing

semantic operations has been a cornerstone in cognitive sciences of language and

represents a theoretical framework for research cognitive neuroscience (see, e.g.,

Friederici & Weissenborn, 2007; Kuperberg, 2007, for discussion). A word’s525

frequency of co-occurrence is in principle governed by both its syntactic va-

lence and its lexical-semantic relationships to neighbouring words. In terms of

probabilistic language models, it is important to note that lexical, word-based

probabilistic language models (n-grams, RNNs) reviewed presently cannot dis-

entangle sources of semantic and syntactic complexities apart.530

Whereas the issue of resolving semantic and syntactic influences at the level

of words seems to be a technical rather than a principled one (see Padó et al.,

2009; Frank & Vigliocco, 2011, for suggestions on formalizing syntactic versus

semantic probabilities), at present, lexical-semantic influences on probability es-

timates can be overcome by using predictors based on unlexicalized complexity535

measures on the basis parts-of-speech n-gram models as in Frank et al. (2015)
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or probabilistic PSGs rather than actual words themselves as was done by Hen-

derson et al. (2016); Brennan et al. (2016)

5.4. Linguistic levels of analysis

A hallmark of linguistic analyses is to view the language system as comprising540

of different levels of linguistic granularity, minimally of the phonological, lexical-

semantic (word-based) and syntactic linguistic levels (Jackendoff, 2002). One

of the important properties of language models and complexity metrics is that

in practice these can be computed per each word in a sentence capturing the

incrementality of human sentence processing (Hale, 2016).545

However, it must be emphasized, that neural effects are cannot always be

assessed for all individual words. For example, temporal evolution of the BOLD-

response as measured with fMRI is slower than the presentation rate of words.

However, this limitation can be overcome for instance by performing linear re-

gression with a regressor which differs on a word-by-word basis such as perplexity550

or lexical frequency, (see Yarkoni et al., 2008, for illustration of this approach).

5.5. Explanatory status: maps or mapping?

Finally, it is worth touching upon the explanatory scope of the approach

presented here. What constitutes an adequate account of explanation (in the

sense of Craver, 2007) in cognitive neuroscience and how to approach it remains555

a debated topic and has received increased attention in cognitive neuroscience

communities recently (see Pulvermüller et al., 2014; Embick & Poeppel, 2015;

Jonas & Kording, 2017; Krakauer et al., 2017, for some recent discussions). It

has been emphasized previously that localizing specific cognitive computations

to circumscribed cortical areas does not in itself constitute a sufficient explana-560

tion (Poeppel, 2012).

Seeking a fit between probabilistically modeled cognitive states and neural

data by means of a statistical model remains silent on the algorithmic and the

neural levels of explanation. Specifically, complexity metrics are estimators of
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comprehension difficulty and can provide evidence for or against cognitive the-565

ories to the extent that the latter provide distinct predictions on where in a

sentence the human cognitive system will experience difficulties (Martin, 2016).

Currently, probabilistic models do not offer explanations in terms of how the

cognitive (and neural) computation is achieved (but see Hale, 2011, for an algo-

rithmic proposal). Clearly, any empirical success of probabilistic language mod-570

els in explaining neural signals does not entail that mathematical formalisms,

information measures or language probabilities per se are instantiated in the

brain (Jurafsky, 2002).

From the perspective of neurophysiological explanation, current fMRI-based

applications stay within what has been dubbed the “cartographic imperative”575

(Poeppel, 2012) with the goal of tentatively localizing hypothesized computa-

tions to gross-level brain areas (as in Willems et al., 2016; Henderson et al.,

2016). On the other hand, electrophysiological results are predominantly in-

forming cognitive theories (as in Frank et al., 2015; Van Schijndel & Schuler,

2015). However, it is becoming increasingly clear in cognitive and systems neuro-580

sciences that brain signals are not only indices representing diagnostic evidence

for theories cast at the cognitive-computational levels of analyses, but are bio-

physically meaningful signals reflecting underlying neuronal computations and

circuit configurations (Cohen, 2017) occurring at lower levels of spatio-temporal

cortical organizations (this is conveyed by the upper part of our schematic in585

Figure 1). In this respect, electrophysiological methods represent a powerful

tool, compared to hemodynamic methods, due to a closer link between electro-

physiological events at lower spatial scales (as in Nelson et al., 2017, where high

frequency power is taken to reflect neural computation).

Although model-based analyses reviewed above can reveal what information590

content during comprehension makes a difference in terms of neural signals,

this type of correlational “bridging” represents an initial step towards a more

ambitious goal of describing the plausible neural computational principles that

explain the mapping to hypothesized linguistic/cognitive computations and tax-

onomies (Dehaene et al., 2015; see also Marcus et al., 2014). If probabilistic595
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computations at some level represent a valid cognitive hypothesis underlying

the behaviour, this should provide constraints on the target neural computa-

tions, mechanisms and algorithmic descriptions. Before concluding, we outline

below some outstanding challenges that deserve further attention in the future.

6. Future challenges600

Cognitive neuroscience shows that human listeners can integrate several

sources of information to interpret an utterance (Hagoort & van Berkum, 2007).

This translates into a long-standing challenge in the language modeling com-

munity: how can we bring probabilistic models to bear on larger linguistic units

and contextually relevant information, for example by making use of discourse605

coherence in models of sentence comprehension, long short term memory neural

networks etc. (e.g., Dubey et al., 2013; Hochreiter & Schmidhuber, 1997)?

Similarly, different classes of models perform with different success rates

on empirical data. If a certain class of models (e.g., n-grams or PSGs) turns

out to be consistently more successful empirically, what are the consequences for610

neurocognitive theories? Which aspect of the model architecture (the underlying

cognitive hypothesis) or model training yields this difference compared to other

models?

Theoretical and empirical investigations in psycholinguistics and cognitive

neuroscience show that language processing consists of distinct representational615

and temporal scales, including, but not limited to, at the level of phonemes,

words, sentences, and discourse (Jackendoff, 2002; Lerner et al., 2011). Typ-

ically, these stages are investigated in separate experiments with different ex-

perimental paradigms. Can probabilistic language models be used as a tool for

investigating expectation-based processing at distinct representational and tem-620

poral levels of complexity concurrently in a single experiment within the same

dataset (e.g., Lopopolo et al., 2017)?

Regardless of the specific computational theory embedded in the models,

efforts should be spent in laying out the constraints to algorithmic and neuro-
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physiological explanations (see Embick & Poeppel, 2015; Martin, 2016). How625

does probabilistic cognitive computation relate to the general principles of cor-

tical organization for language and other cognitive-perceptual systems (e.g.,

Battaglia et al., 2012; Friederici & Singer, 2015)? What general property of

cortical circuitry is required to explain any observed correlations and directions

of the effects between probabilistic computation and neurobiological signals?630

More specifically, what neuronal circuit configuration and computation allows

us to make a linking hypothesis to probabilistic cognitive computation? What

statistical learning mechanisms must be in place to account for development of

probabilistic computation in language (as in Kumaran et al., 2016)?

Lastly, probabilistic language models reduce the dimensions of language com-635

prehension by focusing on the properties of the linguistic signal alone. An

important explanatory consideration of the what and the why of probabilistic

language computation will eventually have to account for the pragmatic and

communicative perspective on language understanding: What purpose would

probabilistic language computation serve in models of pragmatic language un-640

derstanding as probabilistic inference (Goodman & Frank, 2016)? What does

probabilistic computation entail for the rapid and flexible human communica-

tive behaviour in social and interactional settings (see e.g., Levinson, 2015; Stolk

et al., 2015)?

7. Conclusion645

In the present paper, we provided a general overview of probabilistic lan-

guage models, presented example applications in neuroscience studies, and dis-

cussed advantages and disadvantages. The approach advocated here should be

viewed as complementary to the established experimental paradigms in cog-

nitive neuroscience. Probabilistic language models provide computationally650

implemented tools for evaluating cognitive theories on neural data, mapping

cognitive computations to gross-level brain areas, and offer tentative cognitive-

computational explanation of electrophysiological responses. Future challenges
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lie in widening the scope of language models to meet the known characteristics of

human linguistic-communicative capacities and moving from brain mapping to655

linking specific cognitive explanations of macroscopic brain signals to plausible

underlying neuronal computations.
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