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ABSTRACT

Gene expression profiles have been extensively dis-
cussed as an aid to guide the therapy by predict-
ing disease outcome for the patients suffering from
complex diseases, such as cancer. However, pre-
diction models built upon single-gene (SG) features
show poor stability and performance on indepen-
dent datasets. Attempts to mitigate these drawbacks
have led to the development of network-based ap-
proaches that integrate pathway information to pro-
duce meta-gene (MG) features. Also, MG approaches
have only dealt with the two-class problem of good
versus poor outcome prediction. Stratifying patients
based on their molecular subtypes can provide a de-
tailed view of the disease and lead to more person-
alized therapies. We propose and discuss a novel
MG approach based on de novo pathways, which
for the first time have been used as features in a
multi-class setting to predict cancer subtypes. Com-
prehensive evaluation in a large cohort of breast
cancer samples from The Cancer Genome Atlas
(TCGA) revealed that MGs are considerably more sta-
ble than SG models, while also providing valuable
insight into the cancer hallmarks that drive them.
In addition, when tested on an independent bench-
mark non-TCGA dataset, MG features consistently
outperformed SG models. We provide an easy-to-
use web service at http://pathclass.compbio.sdu.dk
where users can upload their own gene expression
datasets from breast cancer studies and obtain the
subtype predictions from all the classifiers.

INTRODUCTION

High-throughput gene expression profiling from DNA mi-
croarrays in combination with machine learning techniques
is a widespread approach to identify genes that can be
used to stratify patients into groups with distinct clinical
outcome. These so-called gene expression panels (GEPs)
can then be used to guide clinicians in selecting the ap-
propriate therapy in complex diseases, for example, lupus
(1), Chron’s disease (2) or Parkinson’s (3). Commercialized
GEPs have already been developed for outcome prediction
in cancer: Mammaprint® (4), a set of 70 genes for low-
or high-risk prediction in breast cancer, Decipher® (5), a
panel of 22 RNA markers to predict risk of metastases in
prostate cancer and OncoType DX® panels for tumor pro-
filing in breast (6), prostate (7) and colon (8) cancer. Al-
though GEPs have shown relative success in cancer progno-
sis, it was demonstrated that their predictive performance is
not consistent across datasets (9). An insufficient number
of samples, inherent noise in the experiments and the het-
erogeneity of cancer patients have been pointed out as main
reasons for the lack of feature stability and prediction accu-
racy. Moreover, cross validation shows that even on a single
dataset, the size and composition of the selected gene pan-
els varies strongly (10). The large number of features, which
are often correlated, pose a significant challenge in cancer
subtyping when only comparably few samples are available
(p � n problem).

Complex diseases such as cancer have thus driven the
need for more ‘systems’-based approaches that elucidate
the molecular mechanisms underlying the disorder rather
than the effect of individual genes. Hence, recent efforts to
predict outcome in cancer exploit the wealth of informa-
tion about protein–protein interactions, gene regulations,
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metabolic reactions and other types of relationships be-
tween biomolecules available in public databases. In the
context of patient outcome prediction, a popular approach
is to aggregate groups of biologically related genes into gene
sets with a summary activity score, often called meta-genes
(11) (MGs). They are hence also called ‘composite-features’
(12), which are used in supervised learning methods in the
expectation that they will provide improved prediction per-
formance and higher feature stability compared with single-
gene (SG) panels (i.e. sets of genes treated as a priori un-
related and independent). MGs can also be used to group
highly correlated genes and reduce the overall feature num-
ber, thus alleviating the p � n problem. In addition, MGs
representing pathways can provide a higher level of inter-
pretation and help biomedical researchers to identify novel
biomarkers and drug targets.

To obtain a set of predictive MGs in cancer, some ap-
proaches (13,14) use predefined pathways or gene sets ex-
pertly curated and stored in public databases (e.g. Kyoto
Encyclopedia of Genes and Genomes (KEGG) (15), Reac-
tome (16)). However, most a priori defined pathways are not
disease-specific and are thus only partially affected during
the course of the disease in question. Despite continuous
improvement over the years, interaction databases are still
biased toward well-understood biological processes and few
pathways are compiled and annotated for rare or specific
(sub-)types of diseases (17). Other methods (18,19) extract
a new list of case-specific pathways by searching for con-
nected subnetworks in a large interaction network. The top
ranking subnetworks are then selected and used as MG fea-
tures for the classification procedure. We previously termed
this pathway extraction step as de novo pathway enrichment,
(20), although other terms exist as well such as functional
module detection or connected subnetwork extraction. Var-
ious de novo pathway enrichment methods have been pro-
posed (e.g. (21–26)) differing in subnetwork scoring func-
tion, optimization criteria or search method. Nevertheless,
to the best of our knowledge, popular and well-established
methods have never been used in the context of pathway-
based prediction. We believe this is due to limiting factors
such as high runtime, low robustness (27), unintuitive pa-
rameters or lack of a publicly available software package
or web service (23,28) that can be easily integrated into the
classification pipeline. For these reasons, it is understand-
able that most MG classifiers extract subnetworks using
simple but fast search heuristic methods (19,29) that may
be prone to overlook relevant genes or interactions.

Even though previous studies employing MG classifiers
report an improvement over SG classifiers, other evalua-
tions (30–33) have challenged such claims. In more rigorous
and exhaustive simulations performed on larger datasets,
Staiger et al. (32) demonstrated that MGs do not outper-
form SGs in prediction performance or stability over a
range of different networks, gene sets or classifiers. In a
more recent study (34), Allahyar et al. identified shortcom-
ings that could lead to loss of predictive power of MG clas-
sifiers evaluated by Staiger et al. In particular, they argued
that using simple averaging operators to produce a MG
score can lead to loss of predictive power, while perform-
ing feature extraction and feature ranking for selection in
separate steps can produce unstable features. Allahyar et

al. show that by introducing certain improvements to the
MG classifiers that mitigate these problems, their perfor-
mance increases and in some cases achieve equal or bet-
ter results than SG classifiers. Allahyar et al. further intro-
duce FERAL, a method that produces multiple MGs from
the same gene sets by using multiple aggregation operators.
FERAL then implements a sparse group lasso approach
that simultaneously selects the features and integrates them
into the prediction model, thus avoiding the separate fea-
ture selection and ranking procedure. Although the authors
report higher prediction accuracy with FERAL compared
with other known MG classifiers as well as SGs, improve-
ment over SGs is modest and it becomes evident that can-
cer outcome prediction based on gene expression might not
have the potential to improve significantly regardless of the
features, datasets or techniques used to build the classifiers
(34).

Cancers are often characterized by the occurrence of sub-
types with distinct clinical outcome. One example is found
in breast cancer, in which clinically relevant subtypes have
been defined that show significant differences in terms of
their incidence, risk factors, prognosis and treatment sen-
sitivity (35). In clinical practice, breast cancer is classi-
fied based on the estrogen and progesterone receptor sta-
tus, as well as the expression of the Her2 gene. Neverthe-
less, histopathological classification of the tumor samples is
prone to human error given that it must be performed by
a skilled pathologist (36). In an effort to more reliably as-
sign subtypes to cancer patients, the PAM50 (37) GEP was
developed, a set of 50 genes stratifying patients into five ‘in-
trinsic’ molecular subtypes: Basal, Her2, LumA, LumB and
Normal-like. Although efforts have been made to obtain
smaller gene sets based on gene expression (38), the PAM50
gene panel currently remains the quasi-gold standard for
breast cancer subtype classification and has been used, for
instance, by The Cancer Genome Atlas (18) (TCGA).

In this article, we focus on a pathway-based prediction
of cancer subtypes, as opposed to previous MG classi-
fiers, which have only addressed the two class problem of
good versus bad outcome prediction (based on time of
death, recurrence or metastasis) in cancer patients. We pro-
pose a novel pipeline that extracts subtype-specific path-
ways suitable as features for classification models that can
predict the subtype labels of patients. We measure perfor-
mance, stability and functional enrichment of the most fre-
quently selected features in a repeated cross-validation set-
ting tested on a large cohort of breast cancer patients taken
from TCGA (18). Subsequently, we show that MGs based
on both de novo and a priori pathways are significantly
more stable than SGs. Finally, we validated our MG models
(learned from TCGA data) on a large and independent set
of 12 breast cancer datasets from the Amsterdam Classifi-
cation Evaluation Suite (32) (ACES) and show that de novo
pathway features are able to predict the subtype labels with
higher accuracy than SGs and pre-defined pathways, even
on unseen data.

In our approach, feature extraction and MG score ag-
gregation methods are independent of the statistical prop-
erties of the datasets and we demonstrate the applicabil-
ity of the pipeline to other types of OMICs sets by using
DNA methylation from the same TCGA cohort. Finally,

Downloaded from https://academic.oup.com/nar/article-abstract/doi/10.1093/nar/gkx642/3979711/De-novo-pathway-based-biomarker-identification
by MPI Computer Science user
on 07 September 2017



Nucleic Acids Research, 2017 3

we show that frequently selected pathway-based features ex-
tracted from both, gene expression and DNA-methylation
data, provide complementary enrichment for cancer hall-
marks (39), which is not evident when focusing on the top
selected genes in the SG models.

MATERIALS AND METHODS

Overview of the classification evaluation pipeline

We first provide an overview (Figure 1) and the motiva-
tion behind the design choices in each of the pipeline steps.
Given a series of molecular profiles and large interaction
network, the first phase consists of extracting subtype-
specific pathways that can be used as MG features in the
classifier (Figure 1B). For this task, we required a de novo
pathway extraction method able to identify more than one
subnetwork, given that multiple pathways are usually af-
fected during cancer development and that one feature
would be insufficient to distinguish between more than two
classes. Also, to minimize feature instability, the de novo
pathway enrichment method should be robust to noise in
both the dataset as well as the network. Finally, run time
can become an issue in large scale simulations, hence the
tool should also be computationally efficient. We decided
to use KeyPathwayMiner (KPM) (40), a de novo pathway
enrichment tool that in addition to providing all the above
features, has shown good performance compared with other
tools (20). KPM is able to extract all maximal-connected
subnetworks containing at most K genes not differentially
expressed in at most L cases, and expects an indicator ma-
trix as input in which ‘1’ indicates differential expression
or activity of a gene and ‘0’ otherwise. Such a matrix can
be computed with the most suitable statistical method for
the given OMICs dataset type. The two parameters K and
L serve to control the noise in the data by allowing for a
certain number of outliers both in the measurements (L)
and network (K). To extract pathways specific to a certain
subtype with KPM, we produce a differential expression
(methylation) indicator matrix for all pairs of the given sub-
type against all others and connect them via an ‘AND’ logi-
cal connector. In other words, we searched for maximal con-
nected subnetworks containing genes that are differentially
expressed against all other subtypes.

Once all sets of pathways have been extracted, the next
step is to aggregate the single gene expression values into
one summary score for each pathway (Figure 1C). We
avoid traditional score aggregation operators (mean, me-
dian, etc.) which can lead to loss of information and instead
employ single sample gene set enrichment analysis (41,42)
(ssGSEA), a rank-based method for comparing the expres-
sion levels of genes in a gene set with all other genes in the
expression profile for a single sample. As ssGSEA requires
no phenotypic labels, one can compute the MG score for
samples with unknown labels, a requirement for breast can-
cer subtyping in clinical settings. Furthermore, in contrast
to other gene set enrichment methods (43,44), ssGSEA does
not require information from the other samples to compute
the final pathway score, which can be a source of overfitting
in the training data. The final output of the ssGSEA method
is a pathway versus samples matrix which was consequently
used in the following statistical learning steps.

Figure 1. Workflow for de novo pathway-based classification of breast can-
cer subtypes. Datasets (A): dataset is split into 5-folds: four for training
and one for testing. Feature extraction (B): subtype-specific pathways are
extracted by projecting the training sets on the input network and running
KeyPathwayMiner (KPM). Feature scoring (C): the extracted pathways are
scored using single sample gene set enrichment analysis (ssGSEA) to pro-
duce a matrix of samples versus pathways. Feature reduction (D): pathways
are clustered based on their Spearman’s correlation coefficient across all
training samples and the most representative feature for each cluster is se-
lected for the next step. Feature selection (E): the best features are selected
using random forests (RFs) with recursive feature elimination and a final
RF model is built with the selected features. Evaluation (F): the final model
is used to predict the subtype labels of the test set. The process is repeated
for all fold splits and 10 repeats, recording the performance for each run.

Highly correlating features, a common problem in
biomedical datasets, can reduce prediction performance or
increase feature instability (45). To remove correlated fea-
tures (Figure 1D), we computed their Spearman’s correla-
tion coefficient, clustered them using TransClust (46), which
has shown good performance with biomedical datasets (47)
and selected the most representative feature of each clus-
ter. Afterward, we performed feature selection (Figure 1E)

Downloaded from https://academic.oup.com/nar/article-abstract/doi/10.1093/nar/gkx642/3979711/De-novo-pathway-based-biomarker-identification
by MPI Computer Science user
on 07 September 2017



4 Nucleic Acids Research, 2017

with random forest (RF) models. Briefly, RF is a supervised
learning algorithm that uses an ensemble of decision trees
trained on bootstrapped samples of the data. The RF model
has several advantages: good performance in multi-class
scenarios, incorporates interactions between variables, re-
quires little parameter tuning and per default returns mea-
sures of variable importance. In the case of breast cancer
classification, RF models have been shown to be successful
when applied on gene expression profiles (48,49). We em-
ployed the varSelRF (50) package to perform recursive fea-
ture elimination with RFs, which compared with the clas-
sical RF method, returns a small set of feature that re-
tains high predictive accuracy. The final feature list was sub-
sequently used to train an additional RF model that we
used to predict the subtype labels of the independent test
datasets.

In the case of de novo pathway models, all steps were per-
formed inside a 10-times repeated 5-fold cross validation
loop (Figure 1A). The data were split such that each fold
kept the same proportion of samples for each subtype (strat-
ified cross-validation). When known pathways or gene sets
were available the features were fixed, hence the feature ex-
traction phase was skipped and the scoring step (ssGSEA)
only needed to be computed once before the cross validation
loop. The SG models were constructed directly from the ex-
pression values, starting from the clustering step to remove
correlating features (genes), while performing feature selec-
tion and building the final model within the same 5-fold CV
scheme, with all steps using the same tools and parameter
settings as with the MG models.

To avoid any unfair comparisons due to random fold
splits, all models were trained and tested on exactly the same
splits. In addition to the selected genes from the SG mod-
els, we built RF models using the 50 genes from the PAM50
gene set as features and evaluated them under the same re-
peated 5-fold cross validation scheme.

Gene expression and DNA-methylation datasets

Gene expression and DNA-methylation samples from
breast cancer tumors were downloaded from the TCGA
(18). All datasets were obtained in their processed level 3
form. Negligible batch effect was detected in the original
analyses (18), hence no further batch correction was per-
formed to avoid loss of biological signal. DNA-methylation
probes mapping to the same gene were median centered to
obtain a single value per gene. Afterward, the β-values were
converted to M-values.

As additional gene expression source, the (32) ACES
datasets were used as external validation set. They consist
of a large cohort of breast cancer gene expression datasets
from 12 different studies which already have been normal-
ized, corrected for batch effects and filtered for duplicated
samples. See Supplementary Table S1 for number of sam-
ples per PAM50 subtype. Batch correction was performed
using the ComBat (51) function implemented in R package
sva (52).

Gene sets and pathway sources

CPDB. The Consensus Path Database (53) is a collection
of human pathway sources from 32 public databases com-

prising seven different types of associations: protein interac-
tions, signaling reactions, metabolic reactions, gene regula-
tions, genetic interactions, drug–target interactions and bio-
chemical pathways. We downloaded all 4593 human gene
sets (no interaction information is available), release 31,
comprising the pathways with their Entrez gene identifiers.
All pathways containing >300 genes representing very gen-
eral biological processes were removed and 3906 pathways
remained.

MsigDB. The Molecular Signature Database (42) stores
different collections and sub-collections of biological rel-
evant gene sets. We downloaded the C2 gene set, version
5.1, containing curated gene sets from pathways sources,
biomedical literature and expert knowledge. Several of the
gene sets are built based on microarray experiments of
knockout studies. We downloaded all 4726 gene sets to-
gether with their Entrez gene identifiers.

KEGG cancer hallmark gene sets. To perform cancer hall-
mark enrichment, we collected a set of KEGG (15) path-
ways related to each cancer hallmark. See Supplementary
Table S2 for details of all pathways.

Human interaction databases

HPRD. The Human Protein Reference Database (54) ver-
sion 9 contains information of protein–protein interac-
tions curated from literature. The protein–protein interac-
tion network with Entrez gene identifiers contains a total
of 9520 proteins and 39 227 interactions.

I2D. The I2D database (55), obtained in February 2015,
contains protein–protein interactions curated from differ-
ent interaction databases such BIND, HPRD and MINT as
well as predicted interactions. We filtered out all predicted
interactions and self-interactions. After converting Uniprot
identifiers to Entrez gene identifiers a total of 15 379 pro-
teins and 209 203 interactions remained.

HTRIdb. The Human Transcriptional Regulation Inter-
action Database (56), downloaded in September 2015, com-
piles experimentally validated transcription factor––target
gene regulations in human. After removing all self-
regulations and disregarding directional information, a to-
tal of 18 310 genes with their Entrez gene identifiers re-
mained, with a total of 51 833 interactions.

HumanNet. The HumanNet (57), version 1.0, is a proba-
bilistic functional gene network constructed with Bayesian
integration of 21 types of OMICs data. Each interaction
contains a log-likelihood score (LLS) measuring the prob-
ability that an interaction represents a functional relation-
ship between two genes. We removed interactions with an
LLS < 1.5, leaving a network containing 13 022 genes in
Entrez gene identifiers and 123 052 edges with high confi-
dence scores.

Pathway extraction with KeyPathwayMiner

Extraction of subtype-specific pathways was performed
with KPM (40,58). For each subtype, an indicator matrix of
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genes versus samples was produced as following: a P-value
was computed for each gene and each sample in the given
subtype by performing one sample Mann–Whitney U-test
(two-sided) against the same gene and all samples in a dif-
ferent subtype. All P-values were corrected with Benjamini–
Hochberg procedure and a ‘1’ was placed in the correspond-
ing entry in the indicator matrix if the adjusted P-value <
0.05, all other entries were filled with zeroes. Once the set
of indicator matrices of differential activity for the given
subtype against each other subtype was obtained, a final
subtype-specific matrix was produced by connecting all en-
tries with an ‘AND’ logical operator. In other words, one
in the matrix indicates that the gene is differentially active
in that sample against all other subtypes. Afterward, Key-
PathwayMiner was executed with the following parameters:
Individual Node Exceptions (INEs) model, Greedy algo-
rithm, Border Exception Node (BEN)-free option on, K = 2
and L = 10% of the cases. Hence, for each subtype and the
given networks, all maximal connected subnetworks con-
taining at most K = 2 genes not differentially active in at
most L = 10% of the samples were extracted. The choice for
K, L was based on 5-fold cross-validation runs performed
over the TCGA dataset and the values for which the mod-
els showed the best average F-score over all networks were
selected for the final pipeline evaluation.

Meta-gene scoring

In order to produce an activity matrix to score the gene sets
representing pathways, we used the single sample gene set
enrichment method (42) as implemented in the Gene Set
Variation Analysis (GSVA) (43) R package with default pa-
rameters. For more information about the ssGSEA meth-
ods, see Supplementary Data.

Removal of correlating features

Features were clustered based on their Spearman’s corre-
lation coefficient using TransClust (46), with a threshold
value of 0.9. This produced clusters of features where the
average Spearman’s correlation value of all pairs of features
within each cluster was above 0.9. Finally, the feature with
the highest average similarity within the cluster was taken as
cluster representative, while all other features in the cluster
were discarded from further workflow steps.

Feature selection and model building

To select a small set of predictive features we used the
varSelRF R package, which performs feature selection with
RFs using a recursive feature elimination approach. The
feature selection procedure implemented in varSelRF starts
by building an RF with all features and then iteratively pro-
ceeds to remove 20% of the least important features. This
procedure is repeated until a model with only two features
is left. The model with the lowest out-of-bag error (OOB) is
reported as a final solution.

RESULTS

Performance comparison within TCGA gene expression
datasets

To test our subtype classification pipeline and to compare
the performance of different types of features, we down-
loaded a cohort of >500 gene expression breast cancer sam-
ples from TCGA (18). The sample information includes the
PAM50 subtype classification gold standard, which were
used as subtype labels for supervised learning. Due to their
low abundance (eight samples), Normal-like subtype sam-
ples were removed. We measured prediction performance of
all models with the F-score (the harmonic mean of precision
and recall), which is well suited for unbalanced multi-class
problems (59).

We observe that the PAM-50 gene features are the top
performers in the gene expression datasets, achieving a me-
dian F-score of 0.87 (see Figure 2A). Surprisingly, the MGs
from MsigDB gene sets perform almost equal to SG classi-
fiers, both obtaining a median F-score of 0.85. This demon-
strates that ssGSEA is able to capture the activity of the
relevant genes in the MGs without loss of discriminative
power. De novo pathway features extracted from Human-
NET and HPRD show slightly lower performance than SG
and MsigDB features but clearly outperform CPDB path-
ways. Features corresponding to HTRIdb and I2D are the
lowest performing de novo pathway features and slightly
outperform CPDB. When looking into the classification
performance per subtype (see Figure 2C), we observe that
de novo pathways and CPDB features suffer more in Her2
subtype prediction within the TCGA datasets, while per-
formance in other subtypes is similar to SGs. The Her2
subtype is mostly misclassified into LumB and LumA sub-
types, which can be due to overlap between Her2 clinical
subtypes and Luminal mRNA subtypes (6,18) that affect
similar pathways or regions in the network.

Validation on independent ACES datasets

To validate if the same findings would hold for independent
datasets, we used the ACES benchmark datasets, a collec-
tion of over 1600 breast cancer samples from 12 different
gene expression microarray studies available at the NCBI’s
Gene Expression Omnibus (60). The ACES datasets, which
are also annotated with PAM50 labels, were already used
for MG classification performance evaluation in studies
by Staiger et al. and Allahyar et al. For each of the fea-
tures, we trained a model on the full gene expression TCGA
dataset, using exactly the same pipeline steps inside the
cross-validation loop and predicted the PAM50 sample la-
bels in the ACES datasets.

Despite the use of cross-validation, we observe a drop
of performance for all models compared with the TCGA
(Figure 2B and D). Most surprisingly de novo pathway fea-
tures consistently outperform SG models. Another inter-
esting finding is that MsigDB features outperform PAM50
genes on 9 out of 12 datasets (Supplementary Figure S1).
This further demonstrates that grouping genes into MGs
can reduce over-fitting and improve prediction performance
by taking into account additional information provided by
genes with lower discriminative power.
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Figure 2. Prediction performance (F-score) for the different models within the TCGA cross-validation runs (A and C) and the final validation on the unseen
ACES datasets (B and D) for gene expression. Top figures correspond to the overall performance and bottom figures to performance by class.

Note that we observed batch effects between the TCGA
and ACES datasets––mainly in the Basal subtype (Sup-
plementary Figure S15). After batch correction (Supple-
mentary Figure S16), we observed an increase in perfor-
mance for all feature types. Models trained with SG fea-
tures were most affected (Supplementary Figures S17 and
18). This demonstrates that MGs are substantially more ro-
bust against batch effects.

While de novo extracted pathway features outperformed
a priori defined pathways, we were curious why CPDB
models did not perform as well as MsigDB ones. This
can be explained by looking into the top features in
their corresponding RF models after sorting by the mean
decrease in accuracy. The top CPDB features (Supple-
mentary Figure S8) only contain a few cancer-related
pathways where some are quite general (e.g. Wikipath-
ways Integrated Cancer Pathway) and the rest unrelated to
other cancer types. On the other hand, the top MsigDB
features (Supplementary Figure S9) are dominated not by
pathways but rather gene sets collected from breast cancer
gene expression studies.

Feature and gene stability in gene expression

To evaluate feature stability for the SG and MG models
from known pathways, we calculated the pairwise Jaccard
Index between all pairs of folds in each run. We can see
that in the gene expression datasets, CPDB and MsigDB
features are considerably more stable than SGs (Figure 3).
In the case of MGs from de novo pathways, stability at the
feature level cannot be measured directly, since these are ex-
tracted anew during every run. Instead, we focused on the
genes contained in the selected pathways and computed the
stability at the gene level. We observe that, in this case, the
Jaccard Index of genes in de novo pathways is similar to SGs,
with the distribution slightly skewed to higher values for
MGs than SGs (Figure 4A). However, when looking into
the absolute selection frequencies of genes, we observe that
a considerable higher number of genes were selected across
all runs and folds in the de novo pathway features while only
two genes were always selected in the SG models (Figure
4B).

DNA-methylation results

To gain insight into other molecular mechanisms that drive
breast cancer, we executed the pipeline on the TCGA breast
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Figure 3. Stability of MG features from a priori pathways inside the cross-
validation evaluation scheme for the TCGA gene expression cohort. The
Jaccard Index was computed for the selected features of each pair of folds.

cancer DNA-methylation datasets. Given that the PAM50
labels are defined based on gene expression data, we observe
an expected drop in performance for all models compared
with the mRNA datasets. In particular, the 50 genes from
PAM50 and the features extracted from the HTRIdb net-
work are outperformed by all other models (Supplementary
Figures S3a and b). To see if the performance of all the fea-
tures was not just due to chance, we performed the same
cross-validation pipeline with randomly permuted sample
labels before each fold split (Supplementary Figure S5b).
We observe that the performance drops for all features,
demonstrating that DNA-methylation data also hold infor-
mation on intrinsic subtype labels, but albeit to a lesser ex-
tent than gene expression data.

Cancer hallmark enrichment

If genes in de novo pathway markers are frequently selected,
we expect them to be functionally enriched with cancer-
related categories. To assess this, we compiled sets of genes
from KEGG pathways related to each of the cancer hall-
marks (see ‘Materials and Methods’ section and Supple-
mentary Data). For all de novo pathway SG models, we se-
lected the top 100 most frequently selected genes. Ties were
broken by the average mean decrease in accuracy provided
by the final RF models. Afterward, we performed a Fisher’s
exact test (same procedure as in (32)) for significant enrich-
ment between the top genes and in each of the gene sets
related to the cancer hallmarks.

Frequently selected genes in SG models were only signif-
icantly enriched in the ‘genome instability and mutation’
hallmark, whereas genes for all de novo pathway features
had a higher enrichment score in that same category (Figure
5A). De novo pathway feature were additionally enriched in
‘deregulating cellular energetics’ (HTRIdb, I2D), ‘resisting
cell death’ (HTRIdb, HNET and I2D) and ‘sustaining pro-
liferative signaling’ (HTRDIdb, HNET, HPRD and I2D)
hallmarks.

The same enrichment test was performed with the top
100 most frequently selected genes in the DNA-methylation
datasets (Figure 5B). In this case we see an even more strik-

ing difference between SGs and MGs from de novo path-
ways. While SGs are not significantly enriched in any hall-
mark, MGs were enriched in four–seven hallmarks, depend-
ing on the MG model. Comparing results between expres-
sion and methylation, reveal that hallmark enrichment in
MGs is complementary, i.e. hallmarks highly enriched in
gene expression (e.g. ‘resisting cell death’ hallmark) are not
found enriched in DNA methylation and vice-versa (e.g. ‘tu-
mor promoting inflammation’ hallmark).

DISCUSSION AND CONCLUSION

Here, we present a novel approach for de novo pathway-
based classification of breast cancer patients. We created the
first publicly available online platform to provide multi-class
breast cancer subtyping to the community.

We extracted subtype-specific de novo pathways from dif-
ferent human molecular biological networks, summarized
their activity on a per-sample basis using ssGSEA and used
them as features in an RF-based classification scheme. We
compared prediction performance, stability and functional
enrichment to other MG features from a priori defined path-
ways as well as to SG models in a repeated cross-validation
setting applied to a large cohort of breast cancer samples
from TCGA.

Performance and robustness

Our results show that SGs outperformed all MG mod-
els except for MsigDB gene sets, which achieved an al-
most equal F-score. However, when validated on the in-
dependent ACES datasets, performance of SGs dramati-
cally decreased to a larger extent than de novo pathway fea-
tures, demonstrating that using MGs as features for pre-
diction models can reduce over fitting to the training data
compared with SGs. Furthermore, MGs attained higher
(MsigDB) or equally good (de novo pathways) F-scores than
the PAM50 genes in the majority of ACES datasets, im-
plying that grouping relevant genes into MGs can increase
the prediction accuracy by exploiting the information con-
tained in the related genes. It is evident that the choice of
pathway source can have a significant impact on the pre-
diction performance, as was shown by the large difference
between CPDB and MsigDB features, both in TCGA and
ACES datasets. We believe this is due to a lack of breast
cancer specific gene sets in CPDB. Hence, de novo pathway
features, which achieve comparable performance irrespec-
tive of the chosen interaction database, are preferable over
a priori pathways in cases where few relevant gene sets or
pathways are available for the disease under study.

Furthermore, robustness analysis also demonstrated that
MG features from a priori pathways are remarkably more
stable than SGs. The genes from de novo pathway features
are more often selected as top genes in cross-validation sim-
ulations than genes from SGs indicating a higher robustness
and thus, a higher breast cancer subtype relatedness of the
genes in de novo pathways as compared with SG genes. Also,
the top 100 most frequently occurring genes in de novo path-
way features were significantly more enriched in cancer hall-
marks than the top 100 genes in SG models. When compar-
ing gene expression and DNA methylation, we found that
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Figure 4. Stability of gene markers from de novo pathways inside the cross-validation evaluation scheme for the TCGA gene expression cohort. The Jaccard
Index (A) was computed for the genes within the selected features for each pair of folds. In (B) the number of genes that were selected for all runs.

Figure 5. Cancer hallmark enrichment (Fisher’s exact test) for the top 100 most frequently selected genes within the TCGA gene expression cross-validation
loop in (A) gene expression and (B) DNA methylation. The cancer hallmarks are: activating invasion and metastasis (AIM), avoiding immune destruction
(AID), deregulating cellular energetics (DCE), enabling replicative immortality (ERI), evading growth suppressors (EGS), genome instability and mutation
(GIM), inducing angiogenesis (IA), resisting cell death (RCD), sustaining proliferative signaling (SPS) and tumor-promoting inflammation (TPI). Bold
horizontal line corresponds to P-value = 0.05.

both types of data exhibited complementary cancer hall-
mark enrichment patterns, which are relevant information
that were not evident in stable genes from SG models and
highlights the advantage of integrating networks into can-
cer prediction models.

Multi-omics data analysis

By using DNA methylation from the same TCGA study,
we also demonstrated the applicability of our method to
other type of OMICs datasets. Performance of all models
decreased, as expected, since PAM50 intrinsic subtype la-
bels are based on gene expression (10). However, permuta-
tion tests based on label randomization showed that DNA-
methylation levels of certain genes are also correlated, to a
lower degree, to the PAM50 molecular subtypes. Neverthe-
less, SG models outperformed all other types of features,
which can be due to a combination of factors such as a
low number of subtype predictive genes found both in the
networks and the methylation data. In addition, some in-

teractions that constitute the networks can be based upon
gene expression knockout studies (e.g. gene regulations) or
other OMICs measurements uncorrelated to methylation
patterns. Hence, differentially methylated genes tend to be
sparse and distributed less centrally (61), which hampers the
ability of de novo pathway enrichment methods to produce
relevant subnetworks. Still, given these challenges, with F-
scores of around 0.72 (Supplementary Figure S5) at least
the MsigDB pathway-based models perform remarkably
well and even similarly well compared with gene expres-
sion models when evaluated on the external ACES data (F-
scores around 0.75, see Figure 2B).

Single-sample GSEA

We designed our pipeline by selecting tools that would avoid
the pitfalls of previous network-based classification meth-
ods. To reduce possible loss of prediction performance, a
crucial step is selecting the feature scoring method, where
we consider ssGSEA to better utilize the information pro-
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vided by a pathway compared with rather simple averaging
operators. Moreover, ssGSEA does not tend to overfit to the
dataset as it is the case for supervised methods that incor-
porate cross-sample information such as variance, correla-
tion scores or phenotype labels. We increase feature stabil-
ity by omitting a feature ranking step subsequent to feature
scoring and instead perform robust feature selection with
varSelRF to select the best features for the final model. In
case of de novo pathway extraction, we use KPM, which effi-
ciently extracts all pathways, irrespective of size, containing
a high number of subtype-specific expressed genes. Finally,
a common problem in network-based classifiers is highly
correlated features. Our method uses TransClust to address
this critical issue that was neglected in the past. This com-
bination of tools allow us to perform network-based sub-
type classification providing more stable and interpretable
features when compared with SGs, without compromising
prediction performance.

Web service

We note that the modularity of our framework easily al-
lows to replace individual tools at each step with others that
could further increase prediction performance. However, we
believe that the general observations we made would not
change. Nevertheless, we plan to further investigate how dif-
ferent feature extraction, scoring and selection methods can
affect performance and robustness.

Given that our pipeline applies a series of tools with one
or more parameters, performing parameter optimization
for all tools remains computationally prohibiting. Never-
theless, our main objective is to compare our MG classifiers
versus the SG one in this multi-class scenario as unbiased as
possible, hence we set the parameter values for most tools
(TransClust, varSelRF and ssGSEA) to their recommended
default values, which are based on their own evaluations on
gene expression values. To the best of our knowledge, a sys-
tematic study on the parameter sensitivity of de novo path-
way enrichment methods in classification scenarios is lack-
ing. We thus decided to optimize KPM based on its per-
formance on the TCGA dataset. Though we acknowledge
that this may be a source of overfitting to the dataset, our
final evaluation is based on an external dataset (the ACES
dataset).

Network randomization

In addition, we ran our evaluation pipelines for random-
ized versions of the networks (Supplementary Figures S6
and 7). Similar to the findings in Staiger et al. and Allahayar
et al., we observe that models build from de novo pathways
extracted from randomized networks do not decrease the
performance significantly compared with the original net-
works. We hypothesize that the information in the biologi-
cal network is provided by the global connectivity, such as
the low average path length and scale-free degree distribu-
tion. Since these topological properties are not affected by
standard random graph null models such as node label shuf-
fling or degree preserving rewiring, the pathway extraction
method is still able to find and group together relevant genes
into pathways. To account for this in the future, we plan to

extend the pathway extraction step and the pathway scoring
method to also take into account the local pairwise connec-
tivity of genes. This can provide further information in the
form of confidence scores or correlation coefficients, poten-
tially improving performance and robustness of the models.

Perspectives

An important next step is taking network-based disease
sub-typing into the clinic. MG features have the advantage
of being more robust against batch effects, which can not be
realistically corrected for in a clinical setting, where a few or
only one gene expression measurement may be available at a
time. Another advantage of our framework is that once the
classifier has been constructed and trained, it only requires
the patient’s gene expression measurements to predict its
subtype. Similar to how GEPs have been defined and im-
plemented in the clinic, we envision a future where clinicians
would provide multi-gene expression measurements to soft-
ware programs containing predictors that have been previ-
ously constructed from comprehensive datasets and high-
quality biological networks. As proof-of-concept, we pro-
vide all datasets and classifiers at http://pathclass.compbio.
sdu.dk including a small web service that allows for running
all classifiers on user-uploaded gene expression and DNA-
methylation datasets for online breast cancer subtyping.

Summary

In summary, the pipeline presented here demonstrated that
MGs can be used for the purpose of subtype prediction in
cancer. As features, MGs can provide higher accuracy, sta-
bility and biological relevance compared with SGs and can
pave the way for better pathway-based classification tech-
niques. In the future, we will extend our framework from
single to multi-OMICs by integrating different sources of
biological information.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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