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Abstract 

Theories of language acquisition and perceptual learning 

increasingly rely on statistical learning mechanisms. The 

current meta-analysis aims to clarify the robustness of this 

capacity in infancy within the word segmentation literature. 

Our analysis reveals a significant, small effect size for 

conceptual replications of Saffran, Aslin, & Newport (1996), 

and a nonsignificant effect across all studies that incorporate 

transitional probabilities to segment words. In both 

conceptual replications and the broader literature, however, 

statistical learning is moderated by whether stimuli are 

naturally produced or synthesized. These findings invite 

deeper questions about the complex factors that influence 

statistical learning, and the role of statistical learning in 

language acquisition. 

Keywords: language acquisition; statistical learning; word 

segmentation; meta-analysis 

Introduction 

Statistical learning (SL), the ability to extract statistical 

patterns from a continuous stream of perceptual 

experiences, is of fundamental theoretical importance. The 

first evidence that infants can extract statistical information 

from speech and use it to group syllables was provided by 

Saffran, Aslin, and Newport in 1996. This seminal paper has 

since accrued thousands of citations, and spurred a rich 

literature invoking SL as one foundation for language 

acquisition (see Newport, 2016) as well as perceptual 

learning more broadly (see Aslin, 2017). SL mechanisms 

have furthermore been successfully implemented in a range 

of computational models (e.g., Pearl, Goldwater, & 

Steyvers, 2010; Lloyd-Kelly, Gobet, & Lane, 2016). In 

short, statistical learning abilities are of fundamental, cross-

disciplinary importance to better understand the 

computational foundations of cognition. 

While many would accept some role for SL mechanisms, 

the nature and extent of this role remains contested. The 

more abstract the level of analysis, the more vigorous the 

debate (e.g., can SL yield syntactic ‘rules’?) – but 

inconsistencies emerge even at the level of tracking 

transitional probabilities (TPs) as a means of word 

segmentation. For example, the original effect has failed to 

replicate under certain conditions (e.g., variable word 

length: Johnson & Tyler, 2010; Lew-Williams & Saffran, 

2012) or showed a developmental shift in cue-weighting 

(e.g., Thiessen & Saffran, 2003). Finally, a recent meta-

analysis that examined natural speech word segmentation 

(not determined by TPs) revealed a significant, but small 

effect (Bergmann & Cristia, 2016), leading to concerns 

about the robustness of infants’ word segmentation in the 

absence of TPs.  

In the current paper, we use meta-analysis to quantify and 

contextualize infants' ability to detect regularities in a 

continuous speech stream. To this end, we have aggregated 

all available evidence from the published record and present 

a meta-analysis of infant SL word segmentation studies. A 

meta-analytic approach helps establish the magnitude of an 

underlying effect, something single experiments are not 

equipped to do – and thus has the potential to impact future 

theory- and model-building. On the practical side, effect 
sizes are crucial for determining power of future studies, 

thus increasing the replicability of a line of inquiry and 

reducing the cost (failed studies, or testing too many 

participants) for single researchers.  

We also take several steps beyond quantifying the 

underlying effect: Aggregating over studies allows for the 

identification of moderator variables, which also contributes 

to theory building and may guide future research. We 

examine three potential moderators that are relevant to the 

intersection of theories of infant cognition and statistical 

learning: (1) age, (2) stimulus naturalness, and (3) non-TP 

cues. The justification for investigating these particular 

moderators is described in brief. (1) All studies in the 

current meta-analysis use looking-time preferences. The 

direction of preference (to novel or familiar items) is 

commonly thought to relate to infant age and/or stimulus 

complexity (e.g., Hunter & Ames, 1988). We therefore 

predicted that developmental change might be reflected in a 

shift of preference (e.g., from a preference for words to one 

for non-words), or in a stronger effect over time. (2) Given 

the familiarity preference found in a previous meta-analysis 

on natural speech (Bergmann & Cristia, 2016), we 

hypothesized that it might be that the predominant novelty 

preference established for SL studies since Saffran et al. 

(1996) is grounded in methodological choices. The primary 

difference between these two datasets is in the nature of the 

stimuli: naturally produced vs highly artificial speech 

stimuli. Even within the literature of the current dataset, 

however, stimuli differ along this dimension. We therefore 

compare SL studies with natural and artificial stimuli. (3) 

Finally, a number of studies pitted alternative cues (e.g., 

word-level stress) against TPs. It is therefore important to 
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examine the impact of these conflicting cues on SL 

performance compared to no conflict.  

We also assess publication bias in the literature; a current 

topic that is especially important for infant research, 

considering the high cost of testing participants and the 

consequent use of small samples (Frank et al., 2017).  

 

Methods 

To collect data, we complemented expert lists with two 

google scholar searches. We first surveyed papers citing 

Saffran, Aslin, & Newport (1996) with the word 

“infant/infancy”, but not “visual” in the title. The second 

search aimed to cast a wider net; search terms were now 

“month/s” and not “infant/infancy” or “visual”. These two 

strategies yielded a total of 314 unique papers, which were 

then screened for inclusion. The criteria were: (1) contains 

data on infants from (2) behavioral experiments which 

exposed infants to a familiarization phase of continuous, 

artificial speech and which measured (3) reactions (typically 

looking times to unrelated visual stimuli) to both statistical 

words and non-words (this definition includes part-words).  

The final sample encompassed 20 papers (10 containing 

conceptual replications1) yielding 68 (17 replication) effect 

sizes. Note that one paper often contains several 

experiments (henceforth: samples) that can yield effect 

sizes, for example when testing different age groups. In 

total, we are reporting on experiments testing 1,454 infants 

between 4.5 and 11.1 months. Children were tested in the 

headturn preference procedure (Kemler Nelson, et al., 1995; 

59 samples) or the central fixation paradigm (Graf-Estes & 

Lew-Williams, 2015; 9 samples). 

 

Effect Size Calculation 

All scripts and raw data are available on github.2 The effect 

size we report here is a standardized mean difference of 

infants' looking behavior when listening to statistical words 

versus non-words. Since a preference for non-words 

(novelty preference) is dominant in the literature, positive 

values reflect this direction of the effect. The larger the 

effect size, the bigger the observed standardized mean 

difference between the two types of test trials. In turn, 

negative values indicate that infants demonstrated a 

familiarity preference, i.e. they listened longer to statistical 

words over non-words3.   

                                                           
1 A conceptual replication was defined as a study that did not 

introduce an additional, non TP-based cue, and did not differ from 

the original study protocol in a significant way. For example, 

studies that included a priming phase pre-familiarization, or a test 

phase involving carrier phrases were not included. See Github 

repository for a full list of included papers and the subset of 

conceptual replications.  
2 https://github.com/christinabergmann/StatLearnDB  
3 Given that infant looking-time studies generally accept either 

familiarity or novelty preferences, one might argue that we should 

instead use the absolute value of looking-time difference as 

dependent measure. Indeed, in the studies reported here that pit 

statistical learning against other cues, a switch in looking-time 

We computed Hedges’ g (Morris, 2010), a variant of 

Cohen's d (Cohen, 1988) that is preferred in the case of 

small sample sizes. Effect sizes were calculated based on 

reported test statistics: for 50 samples we could use means 

and standard deviations of test trials; for 17 samples t-values 

for the main comparison were available. To ensure 

consistency in the direction of the effect, we re-coded t-

values as positive when infants listened longer to statistical 

non-words and as negative otherwise. We used standard 

formulae for effect size calculation in within-participant 

designs (Lipsey & Wilson, 2001, when means and standard 

deviations were available; Dunlap et al., 1996, for effect 

sizes based on t-values). One paper reported between-

participant results and we computed effect sizes and 

variances from means and standard deviations accordingly 

(Lipsey & Wilson, 2001). When the same infants 

contributed to multiple effect sizes, we computed the 

median of all critical values to ensure independent samples 

(here, 4 effect sizes were derived from 8 non-independent 

samples). We could not compute effect sizes for 6 additional 

experiments, due to lack of information. 

Only one of the 20 papers included reported correlations 

between test trials, which capture the dependency between 

the two data points stemming from the same participants 

and are necessary for t-value based effect size and general 

effect size variance calculation. We imputed random values 

based on the distribution of correlations reported in a similar 

meta-analysis (Bergmann & Cristia, 2016; updated data 

available via metalab.stanford.edu).4  

 

Meta-Analysis  

To establish the size and variance of the effect, we fitted a 

multivariate random effects model using the R (R core team, 

2016) package metafor (Viechtbauer, 2010). Random 

effects models assume that all effect sizes are sampled from 

a distribution of effect sizes and try to estimate the mean 

and variance of this distribution. In the multivariate model, 

the interdependence between effect sizes from the same 

paper is taken into account, yielding a more robust measure 

                                                                                                   
preference is explicitly predicted. We address these cues and their 

impact in the Complete Literature section of the paper. We would 

also like to address the general idea of absolute values in meta-

analysis, and point to why this method may not be appropriate: 1) 

Theories of infant cognition and language acquisition have long 

sought to motivate the direction of looking-time preference; meta-

analysis offers the potential power to test those theories and 

generate new possibilities when the theory is found to be 

inadequate. 2) Two opposing outcomes should reflect two 

underlying effects. Using raw effect sizes and testing the value of 

proposed moderators is a much more powerful use of meta-

analytic techniques. Furthermore, it is important to recognize that 

allowing for two opposing outcomes, without the ability to predict 

those outcomes, increases the risk for false positives and might 

violate basic assumptions of sampling and null hypothesis 

significance testing.   
4 To assess the impact of this imputation, we re-ran our analysis 

with imputations based on varying means and verified that our 

conclusions about key findings do not change. 
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of the true effect. To investigate the impact of additional 

variables, we introduce moderators to this model. 

Bias  

We tested for bias in the published literature by assessing 

funnel plot asymmetry, which is significant when a portion 

of the expected distribution of effect sizes around the 

weighted mean is missing, yielding an over-representation 

of a part of the underlying effect size distribution. We test 

for asymmetry using the rank correlation test (implemented 

in metafor; Viechtbauer, 2010). 

To further investigate biases, we make use of p-curves to 

test whether there is an excess in p-values just below the 

significance threshold of .05 and if the distribution of p-

values indicates an underlying real effect (Simonsohn, 

Nelson, & Simmons, 2014). To this end, we enter all exact 

t-values that were reported (n = 48 for the whole dataset).  

 

Results 

Original Paper 

We first calculated the effect size and its variance for the 

two experiments reported by Saffran, Aslin, and Newport 

(1996). Hedges’ g was 0.4 (SE = 0.040) for experiment 1 

and 0.38 (SE = 0.041) for experiment 2. According to 

Cohen's (1988) criteria this is a small to medium effect. 

If experimenters base their sample size decisions on this 

effect size, they would have to test 53 infants in a paired 

samples design to achieve 80% power (computed with the R 

package pwr; Champely, 2016). The median sample size in 

our dataset is 22 participants, which would mean a 42% 

probability of obtaining a significant result, assuming the 

effect is of the size reported in the initial study; inversely, 

58% of attempts to replicate this finding should fail.  

 

Conceptual Replications  

First, we report on the experiments that were identified as 

replications of the original report (Saffran et al., 1996). 

Seventeen experiments could be included in these analyses. 

 

Meta-Analytic Effect The variance-weighted effect size 

Hedges’ g is 0.21 (SE = 0.1), which is significantly different 

from zero (95% CI [0.02, 0.4], p = .03) and indicates a 

preference for statistical non-words. Note that this effect is 

smaller than the original report, and typical power is thus 

only 16% with 22 participants. Heterogeneity is significant, 

indicating variance in the data that is not explained by 

random measurement error (Q(16) = 71, p < .001). 

 

Moderator Analysis: Age We find no significant effect of 

the moderator centered age in days (Q(1) = 0.6, β = -0.001, 

SE = 0.0015, 95% CI [-0.004, 0.018], p = .5).  

 

Moderator Analysis: Stimuli Naturalness Studies on SL 

differ in the stimuli; in this dataset, 11 effect sizes came 

from experiments with synthetically generated speech, 6 

were based on experiments with naturally produced speech. 

 
 

Figure 1: Funnel plot (code adapted from Sakaluk, 2016) 

showing standard error of the effect size as a function of 

effect size for 17 conceptual replications. The solid line 

marks zero, the dashed line the effect estimate, and the grey 

line indicates the funnel plot asymmetry. 

 

    Overall, the moderator test is significant (Q(1) = 5, p = 

.023) with a negative estimate (β = -0.35, SE = 0.16, 95% 

CI [-0.66, -0.05]), indicating that infants tend to show less 

of a novelty preference with stimuli produced by human 

speakers. 

Follow-up analyses focusing on subsets revealed that 

synthetically produced stimuli lead to a significant positive 

effect (Hedges’ g = 0.32, SE = 0.05, 95% CI [0.2, 0.4], p < 

.001), while those replications relying on naturally-produced 

speech yield an effect size not different from zero (Hedges’ 

g = 0.02, SE = 0.2, 95% CI [-0.36, 0.41], p = .9). 

 

Publication Bias The funnel plot shown in Figure 1 

displays a greater density of large effect sizes that are of 

low-precision (lower right quadrant) and some effect sizes 

that are of high precision but outside the expected 

distribution (upper left quadrant), which is illustrated further 

by the linear regression line in grey. This line should be 

horizontal in the case of an even distribution around the 

median effect. Nonetheless, asymmetry is not significant 

with Kendall's 𝜏 = .26, p = .15.  
The p-curve analysis based on the 6 significant t-values 

available in this dataset indicates a flat distribution of p-

values, as would be expected when there is no underlying 

effect (Z = -0.43; p = .33). However, these 6 t-values might 

not be representative of the 17 studies analyzed here. 

 

Complete Literature 

Meta-Analytic Effect When taking into account all 68 

independent effect sizes, the meta-analytic effect size 

Hedges’ g is 0.09 (SE = 0.05), which is not significantly 

different from zero (CI [-0.02, 0.19], p = .1). This dataset, 

however, includes a number of samples that explicitly pit 

TPs against other segmentation cues, and thus may be 

expected to lead to different effects represented within the 

same data. Indeed, heterogeneity is significant (Q(67) = 

334, p < .001). We thus analyze each of our moderators. 
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Figure 2: Effect size by participant age for all samples; 

point size is inverse variance. Black refers to synthetic, grey 

to natural speech. The dashed line indicates zero. 

 

Moderator Analysis: Age As described in the introduction, 

more mature infants might show a different direction of 

preference or larger effect. However, we find no (linear) 

effect of age (Q(1) = 0.3, p = .6). Follow-up analyses 

introducing a quadratic term for age confirmed this finding.  

 

Moderator Analysis: Stimuli Naturalness In the full 

dataset, the use of artificial and natural speech is fairly 

balanced, with 38 instances of computer-generated stimuli 

and 30 of human speakers. The moderator test is significant 

(Q(1) = 11, p < .001), and the results mirror our findings in 

the conceptual replication dataset. Figure 2 displays all 

samples, with color encoding natural (grey) vs artificial 

(black) stimuli. The meta-analytic effect for experiments 

with artificial stimuli is significantly above zero (Hedges’ g 

= 0.23, SE = 0.06, 95% CI [0.11, 0.35], p < .001). In 

contrast, natural speech yields an effect not different from 

zero (Hedges’ g = -0.05, 95% CI [-0.2, 0.06], p = .4).  

 

Moderator Analysis: Cue conflict Cues can either be 

absent (n = 20), congruent with TPs (32), or in conflict with 

statistical information (16). Those cues encompass word 

stress (8), sentence level prosody (3), duration (2), intensity 

(2), and co-articulation (1). We predicted that cues that 

coincide with TPs might strengthen the effect, while those 

that conflict with TPs may reveal a different, possibly even 

opposing effect. We therefore introduced a three-leveled 

moderator. This analysis revealed no significant moderator 

effect (Q(2) = 1.9, p = .4).  

Of the 48 samples that involve additional cues, 24 are 

based on the effect of a correlate of word-level stress on 

segmentation. These studies propose that infants will be 

driven to segment speech using a trochaic stress pattern, in 

line with their native language. Artificial languages with 

trochaic stress are therefore congruent with TP cues, and are 

predicted to lead (as a whole) to novelty preferences; those 

with iambic stress conflict with TPs, and are predicted to 

lead (as a whole) to null or familiarity preferences.  

  

Figure 3: Funnel plot of all samples. For details see 

Figure 1. 

 

A moderator analysis restricted to samples with additional 

stress-based segmentation cues fails to confirm this 

prediction (Q(1) = 0.7, p = .4; Cue conflict [iambic stress]: β 

= -0.07, SE = 0.08, 95% CI [-0.23, 0.09]). 

 

Publication Bias Figure 3 shows an even distribution of 

effect sizes around the estimated median, the large spread 

illustrating the unexplained heterogeneity. The ranktest 

indicates no significant asymmetry (Kendall's 𝜏 = -.01, p = 

.9; see also grey linear regression line in Figure 3). 

The p-curve based on 34 significant t-values indicates that 

the data contain evidential value (Z = -2.47; p = .007 for the 

full p-curve) and there is no excess of "just significant" p-

values. Power based on the p-curve is estimated to be 25%.  

Discussion 

In the present paper, we examine infants’ ability to track 

transitional probabilities (TPs) in continuous streams of 

speech. Experiments replicating the original Saffran et al. 

(1996) paradigm reveal a significant and reliable effect 

(Hedges’ g = .21) that is on par with the effect found in the 

meta-analysis of natural speech segmentation (Hedges’ g = 

.22; Bergmann & Cristia, 2016), albeit in the opposite 

direction of preference. An analysis of the whole literature 

fails to find a significant aggregated effect, but is reliably 

influenced by naturally vs. synthetically produced speech. 

There was no evidence for a developmental shift in or 

strengthening/weakening of preference, nor for a consistent 

and reliable role of additional cues. Finally, there is no clear 

evidence for publication bias. Taken together, these results 

invite deeper consideration of several issues in the future 

study of SL and theories of language acquisition, discussed 

in turns below. 

 

One Mechanism Among Many 

The data presented here confirm that infants can track 

statistically defined patterns and use that information to 

segment a stream of speech into word-like units. The 

strength of this capacity, however, may be more fragile than 

expected. How are we to understand these findings, as we 
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continue to examine the import of statistical learning in 

language acquisition?  

When aggregating across different studies, we put to the 

test the idea that researchers can predict the direction of 

infant looking-time preferences. Most popular theories of 

infant preference (e.g. Hunter & Ames, 1988; Kidd, Aslin & 

Piantadosi, 2012; 2014) predict an interplay between 

stimulus complexity and infant readiness to encode this 

complexity. In the case of TP-based word segmentation, we 

therefore expected a linear (or quadratic) shift from 

familiarity to novelty preferences as infants age. We instead 

find a consistent novelty preference. On the other hand, 

there is a significant effect of stimuli naturalness: While 

studies using synthesized speech yield reliable novelty 

preferences, studies using naturally produced speech fail to 

find reliable effects. It is likely that natural speech, even 

when altered to be largely monotonic and lacking syllable 

co-articulation, is more acoustically complex than synthetic 

speech. This is supported by the consistent familiarity 

preference across age groups found by Bergmann & Cristia 

(2016). Infants may thus be more likely to show a 

familiarity preference to natural speech because it may take 

more time to process (and hence habituate to/learn from) 

this complex signal. There is some evidence in the SL 

literature to support this idea: some studies find alternating 

patterns of looking preference by block (e.g. Graf-Estes & 

Lew-Williams, 2015). This, however, is rarely reported. 

Future investigations based on the meta-analytic data 

presented here might pursue the role of stimulus complexity 

by assessing the possible interactions between stimulus 

type, familiarization duration, age, and direction of looking-

time preference.  

Several of the studies in the dataset were designed to test 

the limits of SL. They have been included because in all 

cases infants might have opted to segment the language 

based on TPs alone; we hypothesized that, once taken in 

sum, these studies might have revealed evidence that TPs 

drive segmentation even in the face of alternative cues. This 

did not turn out to be the case – there is no reliable effect for 

segmentation when all studies are considered together. 

Moreover, and surprisingly, there is no pattern that unites 

samples in which cues are congruent with TPs vs those in 

conflict with TPs. These results, in fact, suggest that infants 

only succeed at tracking TPs when presented with artificial 

speech sounds. Given the results of the Bergmann & Cristia 

(2016) meta-analysis, we find this unlikely to reflect the true 

state of the world; rather, we believe it suggests that what 

does drive performance in the relatively simple paradigm of 

TP-based word segmentation remains underspecified and 

requires further theoretical, experimental, and meta-

analytical consideration. Future work extending from the 

current dataset will aim to contribute to this discussion by 

accruing enough data to be able to examine additional 

moderators (e.g. familiarization duration) and outcome 

variables (i.e. effect sizes based on proportions of infants 

showing the effect, as opposed to standardized means of 

looking-time differences).  

Practical Implications  

There are several points to take into account when 

planning future SL word segmentation studies. First, 

assuming an effect size of Hedges’ g = .21, the power of a 

typical 22 sample design is a meagre 16% (note that the p-

curve analysis indicates an overall power level of 25% in 

the significant portion of the studies). A well-powered study 

(80%) would require a sample of 180 infants (142 if the 

direction of the preference can be predicted). This is 

impractical in the current state of infant research which 

relies on single labs conducting such studies (but see the 

alternative collaborative approach outlined by Frank et al., 

2017). We do not intend to suggest that SL is not worth 

investigating – but it does call into question the methods 

with which we choose to investigate it. Power might, for 

example, be increased with more robust methods, calling for 

infant researchers to improve extant paradigms. At this 

point, we are only beginning to have sufficient power to 

fully understand the role of methods, stimuli, and test set-up 

(see e.g., Frank et al., 2017). One possibility lies in adopting 

more implicit measures of SL such as through 

neuroimaging, which may be less susceptible to factors 

affecting the direction of infant looking-preference.  
 

Limitations  

Any meta-analysis is limited by a number of factors, one of 

which is that the analysis is only as good as the data it 

contains. In other words, the studies reported here are those 

that have been published (or made available online) and 

were findable through our search criteria (see supplementary 

material for a full list of included studies). Since the effect is 

small, we expect that a number of failures to replicate the 

original finding are confined to the file-drawer, simply 

because they were underpowered. Further, studies showing 

a familiarity preference might not be published as those are 

not expected in replications of Saffran et al., (1996). 

Including such (presumed) file-drawer studies would make 

our estimates much more reliable and we strongly 

encourage researchers with unpublished work to contact the 

authors and contribute these findings (or any published data 

that may have been regrettably missed).  

A second limitation is missing information. For example, 

in order to compute effect sizes and their variance for 

within-participant designs, it is necessary to know the 

correlation between infants’ preferences for each test-item 

type. We have temporarily imputed these figures based on 

similar data (Bergmann & Cristia, 2016), and ran additional 

analyses to confirm that different values result in similar 

outcomes. However, we hope that authors who can retrieve 

this data will be willing to enrich our dataset, and 

recommend to all to include this information in future 

publications 

 

Conclusion  

This meta-analytic analysis of statistical learning as applied 

to word segmentation has revealed a reliable but small 
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effect. We hope that this paper promotes future research that 

will seek to better characterize infant performance on SL 

tasks, and will thus contribute to stronger theories and 

models of infant cognition and behaviour. 
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