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Abstract Virtually all mitochondrial matrix proteins and a considerable number of inner

membrane proteins carry a positively charged, N-terminal presequence and are imported by the

TIM23 complex (presequence translocase) located in the inner mitochondrial membrane. The

voltage-regulated Tim23 channel constitutes the actual protein-import pore wide enough to allow

the passage of polypeptides with a secondary structure. In this study, we identify amino acids

important for the cation selectivity of Tim23. Structure based mutants show that selectivity is

provided by highly conserved, pore-lining amino acids. Mutations of these amino acid residues lead

to reduced selectivity properties, reduced protein import capacity and they render the Tim23

channel insensitive to substrates. We thus show that the cation selectivity of the Tim23 channel is a

key feature for substrate recognition and efficient protein import.

DOI: https://doi.org/10.7554/eLife.28324.001

Introduction
Double membrane bounded mitochondria import over 1000 different proteins synthesized on cyto-

solic ribosomes (Endo and Yamano, 2009; Neupert and Herrmann, 2007; Schmidt et al., 2010).

Different targeting signals direct the proteins into one of the four mitochondrial sub-compartments:

outer membrane (OM), intermembrane space (IMS), inner membrane (IM) and matrix. Approxi-

mately, 70% of these mitochondrial proteins are synthesized with an N-terminal presequence

(Vögtle et al., 2009), which directs them across the OM. Once threaded through the OM, the prese-

quence directs preproteins to the presequence translocase (TIM23 complex), located in the inner

boundary membrane (Barbot and Meinecke, 2016; Chacinska et al., 2005). The TIM23 complex

transports precursor proteins across the inner membrane, or, if they contain additional sorting sig-

nals, inserts them into the IM (Neupert and Herrmann, 2007; van der Laan et al., 2007). The mem-

brane potential (D	) across the energy coupling inner membrane exerts an electrophoretic force on

the positively charged presequences, thereby providing energy for the translocation of preproteins.

D	 is necessary and sufficient for membrane insertion of IM proteins (van der Laan et al., 2007),

whereas full translocation of proteins into the mitochondrial matrix depends on additional energy

provided by the ATP consuming presequence translocase-associated import motor PAM

(Neupert and Brunner, 2002; Schendzielorz et al., 2017). The TIM23 complex consists of the chan-

nel forming Tim23 subunit and its homolog Tim17 (Lohret et al., 1997; Maarse et al., 1994;

Meinecke et al., 2006; Ryan et al., 1998; Truscott et al., 2001). Additionally, the receptor protein

Tim50 as well as Mgr2 are constitutive subunits of the presequence translocase, whereas Tim21 is

specific to the TIM23 complex in the absence of the PAM motor (Chacinska et al., 2005; Ieva et al.,

Denkert et al. eLife 2017;6:e28324. DOI: https://doi.org/10.7554/eLife.28324 1 of 16

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.28324.001
https://doi.org/10.7554/eLife.28324
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


2014). Tim23 was identified as the central pore-forming component of the TIM23 complex by

electrophysiological characterization of purified Tim23 as well as patch-clamp analyses of inner mem-

brane derived vesicles, depleted of Tim17 (Martinez-Caballero et al., 2007; Truscott et al., 2001).

Tim23 forms a voltage-activated, water-filled pore with a diameter of 1.3–2.4 nm. To maintain the

permeability barrier of the inner membrane it is voltage-regulated by the Tim50 receptor and shows

sensitivity towards presequence peptides and full-length preproteins (Meinecke et al., 2006;

Truscott et al., 2001). Many electrophysiological features of purified Tim23, such as voltage-gating,

substrate sensitivity and selectivity, were also found in measurements of the TIM23 complex. The

role of Tim17 is less clear, though recent studies suggest it might be involved in channel regulation

within the complex (Martinez-Caballero et al., 2007; Ramesh et al., 2016).

Despite its channel dimension, which would allow the simultaneous passage of multiple ions,

Tim23 shows a clear preference to conduct cations over anions. Since its discovery this selectivity

was speculated to be important to recognize and transport positively charged presequences

through the channel. The lack of high-resolution 3D structures on the one hand, and the missing

amphipathic character of the predicted transmembrane helices hindered the possibility to construct

structure based mutants to investigate the molecular nature and physiological importance of the

basic electrophysiological characteristics of the Tim23 channel. In recent years efforts have been

made to overcome this issue. Fluorescent mapping has allowed for the first time to show which

amino acid residues of the transmembrane helices of Tim23 are likely facing the aqueous channel

lumen (Alder et al., 2008; Malhotra et al., 2013).

In this study, we identify pore-lining amino acids of the Tim23 channel that contribute to ion

selectivity. Mutations of these highly conserved amino acids specifically affect the channels selective

properties while leaving other electrophysiological characteristics intact. Yeast cells expressing

mutant Tim23 channels with decreased selectivity show growth defects and are impaired in the

import of mitochondrial proteins. On the protein level, selectivity reduction leads to a highly

decreased sensitivity towards substrates. Our data provide evidence for the idea that the biophysical

properties of protein-conducting Tim23 channel are essential for its physiological functions.

eLife digest The cells of animals, plants and other eukaryotic organisms contain compartments

known as organelles that play many different roles. For example, compartments called mitochondria

are responsible for supplying the chemical energy cells need to survive and grow. Two membranes

surround each mitochondrion and energy is converted on the surface of the inner one.

Mitochondria contain over 1,000 different proteins, most of which are produced in the main part

of the cell and have to be transported into the mitochondria. A transport protein called Tim23 is

part of a larger group or ‘complex’ of proteins that helps to import many other proteins into the

mitochondria. This complex sits in the inner membrane, with the Tim23 protein forming a large,

water-filled pore through its core that provides a route for proteins to pass through the membrane.

Proteins are made of building blocks called amino acids. The proteins transported by the

complex containing Tim23 all have a short chain of amino acids at one end known as an N-terminal

presequence. However, it is not clear how the inside of the Tim23 channel identifies and transports

this presequence to allow the right proteins to pass through the inner membrane.

Denkert, Schendzielorz et al. studied the normal and mutant versions of a Tim23 channel from

yeast to find out which parts of the protein are involved in detecting the N-terminal presequence

after it enters the pore. The experiments show that there are several amino acids in Tim23 that play

important roles in this process. Furthermore, mitochondria containing mutant Tim23 channels, that

are less able to identify the N-terminal presequence, are impaired in their ability to import proteins.

Tim23 proteins in humans and other organisms also contain most or all of the specific amino

acids identified in this study, suggesting that the findings of Denkert, Schendzielorz et al. will also

apply to other species. Furthermore, the experimental strategy used in this study could be adapted

to investigate transport proteins in other cell compartments.

DOI: https://doi.org/10.7554/eLife.28324.002

Denkert et al. eLife 2017;6:e28324. DOI: https://doi.org/10.7554/eLife.28324 2 of 16

Research article Biochemistry Biophysics and Structural Biology

https://doi.org/10.7554/eLife.28324.002
https://doi.org/10.7554/eLife.28324


A B

D

C

WT

N150A

A152G

G153A

L155A

A156L

Y159A

N160A

N163A

Glucose Glycerol

A156G

WT

N150

I162

N151

A152

G153

I154

I161

L155

A156

L157

S158

Y159

N160

N163

polar apolar

-50

100
0

50-50

50

-100

100

Voltage (mV)

C
u

rr
e

n
t 

(p
A

)

WT

G153A

U
rev

 = 40,2 mV

U
rev

 = 46,9 mV

D

WT

N150A

A152G

G153A

G153L

L155A

A156L

A156G

Y159A

N160A

N163A

47,2 ± 0,4 mV

30,1 ± 0,7 mV

47,6 ± 1,3 mV

40,5 ± 1,8 mV

44,0 ± 1,2 mV

47,3 ± 1,0 mV

39,7 ± 1,6 mV

42,2 ± 1,7 mV

38,0 ± 1,4 mV

42,0 ± 1,2 mV

48,5 ± 1,9 mV

Tim23-Mutant U
rev

 (mV)

13,3 : 1

4,4 : 1

13,7 : 1

8,1 : 1

10,4 : 1

13,4 : 1

7,7 : 1

9,1 : 1

6,9 : 1

9,0 : 1

14,8 : 1

P
+
 : P

-

E

L155A

A156G

A156L

Y159A

N160A

N163A

empty

WT

N150A

A152G

G153A

G153L

Figure 1. Substitutions of pore-lining residues of Tim23 reduce the channel’s ion selectivity and lead to a growth defect in S. cerevisiae. (A) Helical

wheel projection of amino acid residues 150–163 of the second transmembrane helix of Tim23. Highlighted residues in green indicate near 100%

conservation. Colored hemispheres indicates polar/apolar facing regions of helix. Residues mutated in this study are circled in red. (B) S. cerevisiae

strains with chromosomal deletion of the TIM23 gene, complemented by a plasmid carrying both URA3 and TIM23 gene, were transformed with

plasmids containing wild type TIM23 or mutants and tested for viability after plasmid loss on 5-FOA containing medium. (C) tim23D yeast cells with

plasmids containing wild type TIM23 or pore-lining mutants were grown on fermentable (left) or non-fermentable (right) media at 37˚C. Strains WT to

A156L were grown on a single plate each for glucose and glycerol respectively. (D) Electrophysiological current-voltage (I–V) curves were recorded at

asymmetrical buffer conditions with 12.5-fold KCl gradient for Tim23 (grey) or Tim23G153A (red) to determine reversal potentials. (E) Reversal potentials

Urev were experimentally determined for wild type Tim23 and all mutants by independent triplicates at asymmetrical buffer conditions, the ion

selectivity was calculated from the mean reversal potential following the Goldman-Hodgkin-Katz equation. Errors represent standard deviation.

DOI: https://doi.org/10.7554/eLife.28324.003

The following figure supplements are available for figure 1:

Figure supplement 1. Electrophysiological screening of Tim23 mutants.

DOI: https://doi.org/10.7554/eLife.28324.004

Figure supplement 2. Sequence conservation of Tim23.

DOI: https://doi.org/10.7554/eLife.28324.005
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Results
To investigate the physiological function of highly conserved, pore-lining amino acid residues of

Tim23 (Alder et al., 2008; Malhotra et al., 2013) from Saccharomyces cerevisiae in vivo, we

employed mutants based on substitution of amino acids in the second transmembrane helix

(Figure 1A). S. cerevisiae cells with chromosomal deletion of TIM23, rescued by a URA3-containing

plasmid carrying wild type TIM23, were transformed with plasmids carrying the HIS3 gene as a selec-

tion marker and either a wild type copy of TIM23 or TIM23 mutant alleles. Transformants were

selected on medium lacking Histidine (Figure 1—figure supplement 1A). The ability of TIM23

mutants to complement Tim23 function was monitored by plasmid shuffle on 5-fluoroorotic acid (5-

FOA)-containing medium (Figure 1B). Transformation was successful for all constructs, while 5-FOA

selection showed that Tim23G153L exhibited a lethal phenotype as published previously (Demishtein-

Zohary et al., 2015). TIM23 mutants that grew on 5-FOA were subsequently analyzed for growth on

fermentable (glucose) and non-fermentable (glycerol) carbon sources (Figure 1C). Four mutants,

encoding Tim23N150A, Tim23L155A, Tim23A156L and Tim23Y159A, exhibited a significant growth defect

on non-fermentable media at 37˚C, with Tim23A156L showing the strongest phenotype (Figure 1C).

To analyze whether the growth defects could be explained by changed channel characteristics of

Tim23, we expressed wild type and mutant forms of Tim23 in E. coli. The proteins were purified

from inclusion bodies to homogeneity, incorporated into preformed large unilamellar vesicles (LUVs)

and subjected to single-channel planar lipid bilayer experiments (Krüger et al., 2012; Montilla-

Martinez et al., 2015). Interestingly, in a wide screen for basic electrophysiological parameters we

found that a number of mutants (Tim23N150A, Tim23A156L, Tim23Y159A) that showed growth defects

exhibited a significantly reduced reversal potential (Figures 1D and 3D and Figure 1—figure sup-

plement 1B), which translates to a severe reduction of the channels cation preference (Figure 1E),

while other parameters remained unaffected (Figure 1—figure supplement 1B–D). The strongest

reduction was observed for Tim23N150A, where the selectivity dropped down to 33% of wild type

level. A slightly weaker reduction in cation preference (between 50–70% of wild type level) was

observed for Tim23G153A, Tim23A156G, Tim23A156L, Tim23Y159A and Tim23N160A. All residues with

decreased selectivity are highly conserved between Tim23 in different species (Figure 1—figure

supplement 2).

To analyze if the observed growth defects could be directly linked to altered channel characteris-

tics or if they were secondary effects, we examined the integrity of the TIM23 complex in the inner

membrane. Mitochondrial lysates of all mutants and wild type were analyzed for steady state protein

levels of Tim23 (Figure 2A). Reduced levels of Tim23 were found for the mutants Tim23L155A,

Tim23A156L, Tim23Y159A and Tim23N160A (Figure 2A, lanes 5, 7, 8 and 9). Tim23L155A, Tim23A156L,

Tim23Y159A all showed impaired growth phenotypes, which might result from decreased Tim23 lev-

els. To gain more insight into TIM23 complex integrity of the mutants we performed co-immunopre-

cipitation of wild type and all mutants using antibodies against Tim23 (Figure 2B). Interestingly,

TIM23 and PAM subunits could be efficiently co-purified. The altered levels of some subunits (for

example Tim17 and Tim50) can probably be attributed to decreased Tim23 levels in mitochondria.

As an alternative approach, we analyzed TIM23 complex integrity of selected mutants by size exclu-

sion chromatography. To this end, mitochondrial extracts carrying Tim23, Tim23N150A, or Tim23Y159A

were generated and subjected to chromatographic separation of protein complexes. In agreement

with the results of the immunoisolation analyses, the TIM23 complex apparently remained intact and

associated with the import motor (Figure 2—figure supplement 1).

Hence, after carefully testing the suitability of Tim23 mutants for subsequent analysis, Tim23N150A

was the only mutation that led to impaired growth, decreased ion-selectivity and exhibited normal

protein levels and complex assembly and was therefore further analyzed in in organello assays. Mito-

chondrial steady state levels of selected proteins were analyzed, that is, TIM23 complex compo-

nents, PAM complex subunits and mitochondrial marker proteins (Figure 2C). Here, all protein levels

in mitochondria from Tim23N150A expressing cells were unchanged compared to wild type.

To assess that the inner membrane potential was not affected in mitochondria containing

Tim23N150A, we tested the D	 in organello, using the membrane-permeable fluorophore DiSC3(5)

(Figure 2D). The measurements showed that D	 was not significantly altered in Tim23N150A-express-

ing cells compared to the wild type control (Figure 2D and E). In agreement with this unchanged

membrane potential, in single-channel measurements the IMS domain of Tim50 exhibited the same
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Figure 2. Pore-lining mutant Tim23N150A is properly expressed and integrated into TIM23 complexes. (A)

Mitochondrial steady state levels of yeast expressing wild type Tim23 or mutants were assessed by Western blot

analysis (upper) with decoration against Tim23 and Por1 (mitochondrial outer membrane). Protein levels were

quantified using fluorescently labelled secondary antibodies in four independent experiments and normalized by

Figure 2 continued on next page
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voltage-regulation on wild type and Tim23N150A that we reported before (Figure 3E and F)

(Meinecke et al., 2006).

In our initial screen for altered electrophysiological characteristics, we found that specifically the

ion-selectivity of Tim23N150A was decreased (Figure 1E and 3D). We next performed an in-depth

analysis of this mutant form of the channel to confirm that no other channel parameters were

affected. Wild type as well as Tim23N150A channels exhibited complex voltage-dependent gating

patterns (Figure 3A and B). Both pores gated with the same main-conductance state of ~460 pS (at

250 mM KCl) and showed similar sub-conductance states of ~170 pS and ~60 pS (Figure 3C). Again

Tim23N150A displayed a reduced reversal potential, while the wild type and mutant Tim23 showed

the same voltage-dependent open probability (Figure 3E and F) and were efficiently voltage-regu-

lated by Tim50IMS as published before (Figure 3E and F) (Meinecke et al., 2006). In summary,

Tim23N150A is found in wild type levels in mitochondria, integrates properly into the TIM23 complex,

and has no effect on the integrity of the inner membrane. In addition, it displays wild type-like chan-

nel characteristics except for a significantly reduced cation preference.

We next asked whether the reduced selectivity for cations impacted the import capabilities of the

presequence translocase. To this end, isolated mitochondria were incubated with radiolabeled

matrix proteins bearing typical, positively charged presequences: F1b (Figure 4A), a subunit of the

F1FO-ATP synthase, Cox4 (Figure 4B), a subunit of the cytochrome c oxidase, and the model fusion

proteins b2(167)D-DHFR (Figure 4C) and b2(220)-DHFR (Figure 4D) which is sorted into the inner

membrane. The import reaction was stopped after 10, 20 or 30 min by dissipation of D	 and mito-

chondria were subsequently treated with Proteinase K to remove non-imported precursor proteins.

Even at permissive temperature, quantified import efficiency in the linear phase revealed significant

reductions for both types of imported substrates (Figure 4E), showing that Tim23N150A is clearly

affected in protein import. Import experiments conducted at 37˚C show the same trend with an

even more pronounced reduction (Figure 4—figure supplement 1), while import experiments using

the ADP/ATP carrier (AAC) and Cox12 revealed that other import pathways into mitochondria

(TIM22 and MIA) were not impaired by the mutation (Figure 4F and G). In fact, a slightly increased

import efficiency for AAC is frequently observed when transport along the TIM23 pathway is

affected (Geissler et al., 2002; Schulz et al., 2011).

These observations led us to hypothesize that the reduced import capabilities of Tim23N150A

were linked to the altered cation selectivity, which could be explained if selectivity defects lead to

changed sensitivity of the mutant channel towards substrates. To test this, we analyzed the channel

response of wild type Tim23 and Tim23N150A to presequences in single-channel experiments. As a

substrate we used a peptide corresponding to the presequence of Cox4 (Allison and Schatz, 1986),

a subunit of the cytochrome c oxidase, which is well characterized to study import processes and sig-

nal recognition biochemically (Chacinska et al., 2005; Lytovchenko et al., 2013; Schulz et al.,

2011) and channel excitation electrophysiologically (Lohret et al., 1997; Martinez-Caballero et al.,

2007; Meinecke et al., 2006; Ramesh et al., 2016; Truscott et al., 2001; van der Laan et al.,

2007). The presequence peptide was titrated in increasing concentrations to the intermembrane

Figure 2 continued

mitochondrial Por1 levels. Significantly reduced levels are indicated in red. Error bars represent standard error of

the mean. (B) TIM23 complex integrity and recruitment of PAM complex of wild type and Tim23 mutants was

examined by co-immunoprecipitation of mitochondrial lysates using Tim23 antibodies. (C) Isolated mitochondria

containing Tim23 or Tim23N150A were Western blotted and decorated against proteins of the TIM23 complex, the

PAM complex, Por1 and Tom40 (both mitochondrial outer membrane) and Mic10 (mitochondrial inner membrane).

(D) Membrane potential D	 was assessed by adding isolated mitochondria containing Tim23 (black solid) or

Tim23N150A (red dashed) to the fluorophore DiSC3(5), then dissipating D	 with valinomycin and determining the

amount of quenching. Grey dashed lines and arrows indicate the parameter quantified in (E). (E) Relative

fluorophore quenching as a measure of membrane potential D	 for Tim23 (grey) and Tim23N150A (red) was

quantified (as depicted in D) in three independent experiments. Error bars represent standard error of the mean

before normalization.

DOI: https://doi.org/10.7554/eLife.28324.006

The following figure supplement is available for figure 2:

Figure supplement 1. TIM23 complex characterization by size exclusion chromatography profiles.

DOI: https://doi.org/10.7554/eLife.28324.007
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Figure 3. Tim23N150A displays reduced cation preference. (A)/(B) Tim23- (A) or Tim23N150A-containing (B) proteoliposomes were fused with planar lipid

bilayers and single-channel activity was characterized by electrophysiological current recordings. (C) Gating event histograms for Tim23 (left) and

Tim23N150A (right) were calculated from constant-voltage recordings (as depicted in A) with at least 2000 gating events each. The three most prominent

classes of conductance changes were modeled with a Gaussian fit. (D) I-V curves at asymmetrical buffer conditions were recorded for Tim23 (left) and

Tim23N150A (right) with indicated reversal potential Urev for 12.5-fold KCl-gradient. (E)/(F) I-V curves (left) and open probabilities (right) were determined

for bilayer incorporated Tim23 (E) or Tim23N150A (F) before (black) and after (red) addition of 700 nM Tim50IMS to IMS-side of the channel. Error bars

represent standard deviation (SD, n = 3).

DOI: https://doi.org/10.7554/eLife.28324.008
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Figure 4. Tim23N150A exhibits significant import defects for various TIM23 substrates. (A–D) Import capability of wild type and tim23N150A mutant

mitochondria was determined by incubating [35S]-radiolabeled matrix destined precursors F1b (A), Cox4 (B), b2(167)D-DHFR (C) or the inner membrane

sorted b2(220)-DHFR (D) with isolated mitochondria for 10, 20 or 30 min. The import reactions were stopped by dissipating D	 and subsequent

Proteinase K (PK)-digest. Digital autoradiographs (left) were analyzed and quantified (right). Maximum import into wild type mitochondria was set to

100%. (E) Relative import efficiency after 15 min of import into mitochondria containing Tim23N150A was quantified for different substrates. Error bars

represent standard error of the mean (SEM, n = 3). (F) Carrier import into Tim23N150A-containing mitochondria was assessed via ADP/ATP carrier (AAC)

complex assembly by incubating [35S]-radiolabeled AAC with isolated mitochondria for 15, 30 or 45 min. The import reaction was stopped by

dissipating D	 and subsequent PK-digest. Assembly of AAC dimer was monitored by BN-PAGE. (G) The MIA substrate Cox12 was [35S]-radiolabeled

and imported into Tim23N150A-containing mitochondria for 10, 20 or 30 min. The import reaction was stopped by addition of iodoacetamide (IAA) and

subsequent PK-digest.

DOI: https://doi.org/10.7554/eLife.28324.009

The following figure supplement is available for figure 4:

Figure supplement 1. Import of TIM23-substrates at non-permissive temperatures.

DOI: https://doi.org/10.7554/eLife.28324.010
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space corresponding side of bilayer-incorporated wild type or Tim23N150A channels and current was

recorded at constant holding potentials after each titration step. Tim23 reacted to higher holding

potentials by partial or complete closing (Figure 3A,B,E and F), which could mask presequence-
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Figure 5. Increased gating frequency as a measure of channel response to presequence titration is heavily reduced for Tim23N150A. (A) Bilayer-

incorporated Tim23 (left) or Tim23N150A (right) single-channel currents were recorded at +80 mV before addition of Cox4 presequence peptide. (B)/(C)

Current recordings of wild type (left) and mutant (right) channels were performed after each titration step. (D) Channel response of Tim23 (black) and

Tim23N150A (red) after addition of Cox4 presequence was quantified by counting gating events and calculating the relative increase in activity compared

to unstimulated channels. Error bars represent standard deviation. (E) Absolute gating frequency of unstimulated Tim23 and Tim23N150A was

determined from current recordings before presequence titration. Error bars represent standard deviation (SD, n = 3).

DOI: https://doi.org/10.7554/eLife.28324.011
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induced activity increase or change channel behavior. Hence, we aimed to minimize such secondary

effects by recording at lower holding potentials. We applied voltages of +80 mV, where the channel

stayed primarily in an open state even during prolonged exposure but reacts to presequence activa-

tion. Wild type Tim23 showed a distinct activity increase, characterized by fast gating (flickering),

after addition of Cox4 (Figure 5A,B and C). While Tim23N150A also responded with an increased gat-

ing frequency to Cox4 addition, the effect was drastically reduced in comparison to wild type Tim23.

Where wild type Tim23 channels could be activated to a relative increase in gating frequency of fac-

tor 50 (Figure 5D, black curve), the gating frequency of Tim23N150A only changed by a factor 6

(Figure 5D, red curve), resulting in an 88% reduction of voltage-activated gating from wild type to

mutant Tim23. To further prove that the relative reduction in gating frequency did not originate

from e.g. a higher baseline of gating frequency of Tim23N150A compared to wild type Tim23, we

analyzed absolute gating frequencies in the absence of substrate peptides (Figure 5E). Both pro-

teins have near identical average gating frequencies in unstimulated conditions, excluding pre-acti-

vation effects.

In summary, our data show that a decreased selectivity of Tim23 leads to reduced substrate sensi-

tivity, which explains the impaired protein import capacity of mitochondria expressing a Tim23 selec-

tivity mutant.

Discussion
Tim23, the eponymous core subunit of the TIM23 complex, was identified as the import channel for

presequence carrying substrates more than 15 years ago (Lohret et al., 1997; Truscott et al.,

2001). Although the basic channel characteristics have been described to some extend (Martinez-

Caballero et al., 2007; Meinecke et al., 2006; Truscott et al., 2001), the physiological relevance of

these parameters as well as the molecular mode of function of the import pore are still enigmatic.

Due to lack of structural information the current understanding is little more than that at the heart of

the TIM23 complex a water-filled pore facilitates the passage of preproteins across the inner

membrane.

In this study, we investigated the molecular basis of Tim23’s ion-selectivity to link biophysical

properties of the import channel to its physiological function. We report the identification of pore-

lining amino acids that contribute to the channels cation selectivity. Interestingly, we found that a

number of different residues are involved in discriminating between ions. All amino acids detected

to be important for channel selectivity are strictly conserved in evolution, suggesting an essential

role for the selectivity in protein transport across the inner membrane. In recent studies these resi-

dues were successfully cross-linked to preproteins in transit, showing their accessibility and exposure

to the channel lumen (Alder et al., 2008; Malhotra et al., 2013). Our results imply that selectivity is

not necessarily provided by a confined restriction zone within the channel but rather by specific

channel surface characteristics throughout the length of the pore, which facilitate the passage of cer-

tain ions over others. Such a mechanism was proposed for other large pores to explain their selec-

tive properties (Im and Roux, 2002; Kutzner et al., 2011). Even though these reports were mainly

made for b-barrel proteins, the similarity of the electrophysiological properties between some b-bar-

rel pores, like Tom40 or Sam50, and a-helical import pores, like Tim23 or Tim22, makes it appealing

to speculate that the selectivity of these pores has a similar molecular nature. Most of the detected

selectivity mutants in our study showed impaired growth. As an outlier Tim23G153A shows a medio-

cre reduction in selectivity while growth is relatively unaffected and we therefore hypothesize that a

certain impairment of the selective properties can be compensated. We rigorously excluded mutant

forms of Tim23 that showed decreased mitochondrial steady state levels or with a compromised

TIM23 complex assembly and hence could not be used to link in vitro single-channel results with in

vivo and in organello experiments. This led to the identification of Tim23N150A, which is expressed

and assembled as wild type Tim23. The potential across the inner membrane is unaffected in cells

expressing Tim23N150A. In line with the uncompromised mitochondrial fitness, all channel parame-

ters, especially Tim50IMS voltage-regulation, but selectivity and substrate sensitivity, are comparable

with wild type Tim23. Importantly, mitochondria containing Tim23N150A channels showed signifi-

cantly reduced import capacity for matrix proteins. We therefore conclude that the drastically

reduced selectivity renders Tim23 channels insensitive towards positively charged substrate pepti-

des, which in turn explains the reduced import rates of preproteins. The position of the amino acid
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substitution N150A is found close to the beginning of transmembrane helix 2 and is therefore

located at the matrix side of the channel. This suggests that the decreased substrate sensitivity char-

acterized by an inactive, slowly gating channel in the presence of prepeptides cannot be explained

by binding and activation of the substrate to the IMS side of the channel. Instead the substrate has

to reach deep into the channel to be affected by a mutation at the matrix side. Similar to what was

described for Tom40 (Mahendran et al., 2012), the active, fast-gating Tim23 is therefore likely a

transport competent state of the channel, triggered by peptides in transit within the channel that

are discriminated by the channels selective properties. A decreased selectivity of Tim23 leads to an

inability to be activated and therefore directly to decreased import rates.

The strategy used in this study allowed us to link the biophysical properties of a protein translo-

case to its physiological function. While water-filled pores were identified at the heart of most organ-

ellar translocation complexes (du Plessis et al., 2011; Harsman et al., 2010; Meinecke et al., 2016;

Neupert and Herrmann, 2007; Schmidt et al., 2010; Sjuts et al., 2017), only basic channel charac-

teristics were described in most cases. A correlation between the fascinating electrophysiological

properties of these large pores and their physiological function remained circumstantial evidence. It

was for example speculated for almost 20 years, that the cation selectivity of the Tim23 channel is

important for recognition or transport of positively charged presequences, though no direct evi-

dence was reported. Interestingly, many translocation pores show partially similar electrophysiologi-

cal properties. Although structurally diverse, Tim23, Tim22, Tom40 and Sam50 all display

comparable channel diameters and a preference for cations. The molecular nature of these charac-

teristics as well as their physiological importance will be highly important problems to tackle in the

future.

Materials and methods

Protein expression and purification
ScTim23 wild type and mutants were expressed from the plasmid pET10N containing an N-Terminal

His10-Tag in E. coli strain BL21 (DE3). All mutants were generated from the wild type plasmid by

site-directed mutagenesis. Inoculated cultures in LB-medium were grown to OD600 » 0.7, after

expression (induced by 1 mM isopropyl-b-D-thiogalactopyranoside (IPTG), 37˚C, 3 hr) cells were

lysed and inclusion bodies were purified (Meinecke et al., 2006; Tarasenko et al., 2017). Inclusion

bodies were then denatured by 8 M Urea, 150 mM NaCl, 10 mM Tris-HCl, 50 mM Imidazole, pH 8.0,

applied to NiNTA-Agarose and eluted by the same buffer with 500 mM Imidazole. Isolated Tim23

was further subjected to size exclusion chromatography using a HiLoad 16/600 Superdex 75 column

(GE Healthcare, NJ, USA) and single band purity was confirmed by SDS-PAGE.

The presequence-peptide Cox4 (MLSLRQSIRFFKPATRTLCSSRYLL) was purchased from JPT Pep-

tide Technologies (DE) as N-terminal amine and C-terminal amide.

The IMS domain of Tim50 (aa 132–476) was recombinantly expressed and purified to single band

purity as described elsewhere (Geissler et al., 2002; Schulz et al., 2011).

Liposome preparation and protein incorporation
Lipids were purchased as L-a-Phosphatidylcholine (PC), L-a-Phosphatidylethanolamine (PE), L-a-

Phosphatidylinositol (PI), L-a-Phosphatidylserine (PS) and Cardiolipin (CL) from Avanti Polar Lipids

(AL, USA). The lipid mixture of 45:20:15:5:15 mol% PC:PE:PI:PS:CL in CHCl3, closely resembling

inner mitochondrial lipid composition (van Meer et al., 2008), was dried with a nitrogen stream and

resuspended in 100 mM KCl, 10 mM MOPS-Tris, pH 7.0. Lipid suspension was thoroughly vortexed,

subjected to seven freeze-thaw cycles and extruded through 200 nm membranes (Whatman plc, UK)

to ensure unilamellarity and defined size distribution. Both liposomes and protein in urea were incu-

bated with the mild detergent MEGA-9 (Glycon, DE) above CMC at 80 mM first separately then

combined, at room temperature. Subsequently the liposome-protein-detergent mixture was sub-

jected to dialysis against 5 L of liposome buffer to remove both urea and MEGA-9. Incorporation

success was monitored by Histodenz flotation assay and sodium carbonate extractions as described

elsewhere (Barbot et al., 2015).
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Electrophysiological experiments
Electrophysiological experiments with Tim23 were carried out using the planar lipid bilayer tech-

nique, described in detail before (Harsman et al., 2011; Reinhold et al., 2012). Briefly, Tim23-con-

taining proteoliposomes were added next to the bilayer in the cis chamber to enable fusion of

liposomes with the bilayer. Asymmetrical buffer conditions for osmotically-driven fusion were 250

mM KCl, 10 mM MOPS-Tris, pH 7.0 in the cis chamber and 20 mM KCl, 10 mM MOPS-Tris, pH 7.0,

for a 12.5-fold KCl-gradient over the bilayer. The electric recordings were performed using two Ag/

AgCl electrodes in glass tubes, embedded in a 2 M KCl agar-bridge to minimize junction potentials,

with one electrode per chamber. The electrode in the trans chamber was the reference electrode as

it was connected to the headstage (CV-5-1GU) of a Geneclamp 500B current amplifier (both Molecu-

lar Devices, CA, USA), with the cis-electrode acting as ground. Currents were digitized by a Digidata

1440A A/D converter and recorded using the software AxoScope 10.3 and Clampex 10.3 (all Molec-

ular Devices). Analysis of the data was carried out using R-packages stepR (Hotz et al., 2013) and

dbacf (Tecuapetla-Gómez and Munk, 2015) and OriginPro 8.5 (OriginLab, MA, USA). After incorpo-

ration of Tim23 into the lipid bilayer, symmetrical conditions were set by perfusion with 20x chamber

volume of 250 mM KCl, 10 mM MOPS-Tris, pH 7.0. These symmetrical buffer conditions were used

for constant-voltage recordings and current-voltage relations. Asymmetrical buffers identical to the

fusion conditions were used for reversal potential measurements. Tim23 typically inserts unidirection-

ally into the bilayer, with the IMS-domain of Tim23 exposed to trans. For concentration-dependent

quantification of gating events, the synthetic peptide representing the presequence of the TIM23-

substrate cytochrome c oxidase subunit 4 was titrated to the trans chamber in increasing concentra-

tions. After addition, the buffer in the chamber was stirred for 2 min and then rests for 2 min before

current recordings start. Constant-voltage currents were recorded for one minute, all gating events

were counted and used to determine the gating frequency, i.e. events per minute. The open proba-

bility was calculated by dividing the mean by the maximum current.

Yeast growth and handling
All yeast strains were grown in YP medium (1% yeast extract, 2% peptone) with 2% glucose (YPD) or

3% glycerol (YPG) medium at 30˚C. For plate growth test, synthetic medium containing 3% glycerol

or 2% glucose was used. For generation of a Tim23 shuffling strain MB29 (Geissler et al., 2002),

endogenous TIM23 was replaced by homologous recombination with a LYS2 cassette in a strain

expressing TIM23 from a URA3 containing plasmid. Wild type and mutant Tim23 were expressed by

cloning TIM23 gene +1 kb upstream and downstream of the gene into pRS413. Point mutations

were introduced by side-directed mutagenesis. After transformation of these plasmids into the shuf-

fling strain, 5-Fluoroorotic acid (5-FOA) was used to select against URA3 containing plasmids harbor-

ing wild type TIM23. For subsequent isolation of mitochondria, yeast cells were first grown in YPD

medium at 30˚C overnight, then diluted to OD600 = 0.2 in YPG medium and continued to grow for

24 hr at 30˚C. Cells were then transferred to a bigger culture at OD600 = 0.2 in YPG and grown at

30˚C for 16 hr, reaching a final OD600 of 2–3. Isolation of mitochondria was handled as described

before (Schendzielorz et al., 2017).

Import of precursor proteins
For import of [35S]-methionine labeled precursors into isolated mitochondria, proteins were trans-

lated using rabbit reticulocyte lysate (Promega, WI, USA). Reaction was performed in import buffer

(250 mM sucrose, 10 mM MOPS/KOH pH 7.2, 80 mM KCl, 2 mM KH2PO4, 5 mM MgCl2, 5 mM

methionine and 3% fatty acid-free BSA) supplemented with 2 mM ATP and 2 mM NADH. To stop

the import reaction, membrane potential was disrupted using final concentration of 1 mM valinomyin,

8 mM antimycin A and 20 mM oligomycin and samples were Proteinase K (PK, 20 mg/ml) treated for

10 min on ice. PK was inhibited with 2 mM phenylmethylsulphonyl fluoride (PMSF) for 10 min on ice;

mitochondria were pelleted, washed with SEM (250 mM sucrose, 20 mM MOPS pH 7.2, 1 mM

EDTA) and further analyzed by SDS-PAGE and autoradiography. Import and assembly of the ADP/

ATP carrier protein (AAC) via TIM22 was performed using the standard protocol and further ana-

lyzed by Blue Native PAGE and autoradiography as described before (Schulz et al., 2011). Import

of Cox12 via MIA was performed as described (Gornicka et al., 2014). Briefly, in addition to the

standard protocol the reticulocyte lysate was diluted 1:2 in saturated ammonium sulfate ((NH4)2SO4)
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and precipitated on ice. The pellet was resuspended in 8 M urea, 10 mM DTT, 30 mM MOPS, pH

7.2 and then added to mitochondria in import buffer without BSA. The Cox12 import reaction was

stopped with 25 mM iodoacetamide (IAA) and PK.

Quantifications were performed using ImageQuant TL (GE Healthcare, NJ, USA) using a rolling

ball background subtraction.

Protein complex isolation
TIM23 complex isolation was carried out essentially as described (Herrmann et al., 2001). Briefly,

mitochondria were resuspended to 1 mg/ml in solubilization buffer (20 mM Tris/HCl pH 7.4, 150 mM

NaCl, 10% glycerol (w/v), 1 mM PMSF, 1% digitonin) and kept on ice for 20 min. Insoluble parts

were removed by centrifugation at 14000 x g for 10 min and supernatant was incubated with Tim23-

specific antibodies cross-linked to Protein A sepharose beads. After 30 min of binding on a rotating

wheel at 4˚C and 5x washing with 500 ml washing buffer (solubilization buffer with 0.3% digitonin),

samples where eluted with 50 ml 0.1 mM glycine pH 2.8 (neutralized with 5 ml 1 M Tris base).

Membrane potential measurements
Membrane potential was measured using 3,3’-dipropylthiadicarbocyanine iodide (DiSC3(5)). Mito-

chondria were resuspended in buffer containing 600 mM sorbitol, 1% (wt/vol) BSA, 10 mM MgCl2
and 20 mM KPi, pH 7.4 to a concentration of 166 mg/ml. Changes in fluorescence were assessed

with a F-7000 fluorescence spectrophotometer (Hitachi, JP) at room temperature with excitation at

622 nm, emission at 670 nm and slits of 5 nm. Components were added to the cuvette in the fowling

order: 500 ml of buffer, DiSC3(5), 83 mg of mitochondria, 1 mM valinomycin. To compare relative dif-

ferences in membrane potential, the difference in fluorescence before and after addition of valino-

mycin was used.

Complex characterization by size exclusion chromatographie
Mitochondria were solubilized as described for protein complex isolation, with 2 mg/ml instead of 1

mg/ml, and 50 ml were loaded to a Superose 6 increase 3.2/300 and eluted in solubilization buffer

containing 0.3% digitonin. The first 1250 ml were discarded, the following 750 ml were collected in

50 ml fractions and subjected to SDS-PAGE and Western blot. Quantifications were performed using

ImageQuant TL (GE Healthcare, NJ, USA) using a rolling ball background subtraction.
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