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Distinguishing Discrete and Gradient Category Structure in Language:

Insights From Verb-Particle Constructions

Laurel Brehm and Matthew Goldrick

Northwestern University

The current work uses memory errors to examine the mental representation of verb-particle constructions
(VPCs; e.g., make up the story, cut up the meat). Some evidence suggests that VPCs are represented by
a cline in which the relationship between the VPC and its component elements ranges from highly
transparent (cut up) to highly idiosyncratic (make up). Other evidence supports a multiple class
representation, characterizing VPCs as belonging to discretely separated classes differing in semantic and
syntactic structure. We outline a novel paradigm to investigate the representation of VPCs in which we
elicit illusory conjunctions, or memory errors sensitive to syntactic structure. We then use a novel
application of piecewise regression to demonstrate that the resulting error pattern follows a cline rather
than discrete classes. A preregistered replication verifies these findings, and a final preregistered study
verifies that these errors reflect syntactic structure. This provides evidence for gradient rather than
discrete representations across levels of representation in language processing.

Keywords: mental representation, sentence processing, illusory conjunction, break point modeling,

gradient symbolic computation

Distinguishing Discrete and Gradient Category
Structure in Language

Language’s hallmark is its flexibility and productivity: In pro-
ducing a sentence, words are combined in structures to represent
graded shades of meaning, conveying novel messages with poten-
tially novel forms. In discrete symbolic formalisms (e.g., Chom-
sky, 1965), the flexibility of what can be communicated derives
from recombination of the categorical elements that make up
language: Words and structures are associated with discrete mental
representations such that each element exclusively belongs to one
Class X or Y (e.g., for words: classes such as noun, verb, or
preposition; for structures, classes such as noun phrase, verb
phrase, or transitive sentence).

More recent alternative formalisms have appealed to gradience,
in which linguistic elements belong to particular classes to varying
degrees. In some frameworks in syntactic and semantic theory,
structures are associated with a graded probability distribution
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over classes (e.g., a structure is in Class X with 70% probability,
Class Y with 30% probability; see Bresnan & Hay, 2008; Good-
man & Lassiter, 2015). In other frameworks, the structural repre-
sentations themselves are gradient, simultaneously exhibiting
properties of both classes (e.g., a structure is represented as a blend
of 0.7 X and 0.3 Y; Aarts, 2007; Dowty, 2003; see Smolensky,
Goldrick, & Mathis, 2015, for discussion).

The current experiments focus on discrete versus gradient prop-
erties in the mental representation of verb-particle constructions
(VPCs; e.g., make up; lock up; cut up). We outline a novel
paradigm to elicit memory errors for VPCs. The distribution of
these memory errors allows us to determine whether VPCs form
clear classes associated with a single structure of Type X or Type
Y (assumed by a discrete framework) or whether VPCs are better
described as a graded cline with properties of both X and Y
(consistent with gradient frameworks). We demonstrate statistical
techniques that can be used to distinguish the error-making behav-
ior that would result from underlying discrete versus graded rep-
resentations. Together, these tools are used to demonstrate that
although VPCs vary in semantics and syntactic structure, the
underlying representation is more consistent with a cline, consis-
tent with formalisms incorporating graded structure.

Semantic and Structural Variability in VPCs

English VPCs have varied syntactic and semantic properties (for
a broader review, including discussion of VPCs in other languages,
see Dehé, Jackendoff, Mclntyre, & Urban, 2002; Jackendoff,
2002; Mclntyre, 2007). One key observation is that VPCs are
found in two distinct configurations. In one of these configura-
tions, the verb and particle are adjacent (cut up the meat), and in
the other, the particle is shifted from the verb and placed after the
object (cut the meat up). The acceptability of the two structures
varies by item. Sometimes both are acceptable (e.g., as for cut up)
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whereas sometimes there is a clear preference for the adjacent
structure over the shifted one (compare He will make up the story
to He will make the story up).

Differences across VPCs in the degree to which adjacent versus
shifted structures are preferred imply that they may be represented
with different underlying syntactic structures. The logic is that if
the verb and particle were represented as a single syntactic ele-
ment, then the particle would be required to appear in the verb-
adjacent position. In contrast, if the verb and particle were repre-
sented as separate elements, then the particle would be free to shift
after the object or could remain adjacent to the verb. Syntactic
theory has proposed distinct analyses along these lines (see Figure
1 for a coarse schematic). In one analysis (Figure 1, left), the verb
and particle are considered a single constituent, with the verb and
particle comprising a “Complex Head” (e.g., Johnson, 1991; Stieb-
els & Wunderlich, 1994). In an alternative analysis (Figure 1,
right), the particle is fully separate from the verbal head, having
the option to form a “Small Clause” with the VPC’s object (e.g.,
den Dikken, 1995; Hoekstra, 1988). Current syntactic frameworks
propose that both representations exist in English, dividing VPCs
into two or more separate classes with different syntactic structures
and associated differences in meaning and/or historical origin
(Punske, 2013; Wurmbrand, 2000; Zeller, 2002).

The use of the adjacent versus shifted configuration is also
associated with semantic properties. Critical for the present work
is semantic compositionality, or the degree to which the meaning
of the whole VPC reflects the meaning of its component parts.
High compositionality supports particle movement, facilitating the
availability of the shifted structure. This facilitation has been
demonstrated using multiple behavioral techniques (e.g., masked
priming and self-paced reading; Gonnerman, 2012; Gonnerman &
Hayes, 2005) and has also been observed in corpora (Lohse,
Hawkins, & Wasow, 2004).

Under the assumption that there are two clearly separated cat-
egories of VPCs associated with distinct semantic and syntactic
properties, we would expect that ratings of compositionality would
be bimodal. This is not the case; compositionality ratings seem to
fall in a cline rather than discrete clusters (see Figure 1 in Gon-
nerman & Hayes, 2005; Schnoebelen & Kuperman, 2010). Adding
a third level to the compositionality predictor improves the ability
to account for the frequency of shifted structure use (e.g., Gon-
nerman & Hayes, 2005), but even here, it remains clear that other
factors contribute to the structural preferences of particular VPCs.
To uniquely divide different VPCs into Complex Head versus
Small Clause structures, as required by a discrete analysis, current
formal frameworks still need to appeal to a range of semantic,

VP VP

/\ /\
\4 NP \4 SC

V PART OBJ V PART OBJ

make up  the story cut  up  the meat
Complex Head Analysis Small Clause Analysis
Figure 1. Schematic of VPC structure.
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structural, and pragmatic factors to appropriately describe individ-
ual items. Simply appealing to two distinct structural classes does
not itself solve the classification problem (see Gonnerman, 2012;
Lohse et al., 2004; Mclntyre, 2007).

We suggest an alternative approach. Rather than uniquely di-
viding VPCs into two discrete categories, we propose that VPCs
reflect a gradient cline of association with these two syntactic
representations (mediated by semantic properties including seman-
tic compositionality). At one end of the cline, highly compositional
VPCs (cut up) are strongly associated with the Small Clause
structure and weakly associated with the Complex Head structure;
at the other, noncompositional VPCs (make up) are strongly asso-
ciated with the Complex Head structure and weakly associated
with the Small Clause structure. Other VPCs could lie in the
middle of the cline and be associated with both structures to
varying degrees. Such VPCs would exhibit a mixture of properties
from each structure—yielding a range of behaviors and not a
simple dichotomy.

Ilusory Conjunctions and Representational Structure

To assess whether a given VPC can be associated to varying
degrees with two representations—the hallmark of gradient struc-
ture—we adapted the illusory conjunction paradigm originating in
the visual perception literature (e.g., Prinzmetal & Millis-Wright,
1984; Treisman & Gelade, 1980; Treisman & Schmidt, 1982). The
basic phenomenon is that when participants view a field of colored
letters (e.g., black Ns and gray Ds), they will sometimes errone-
ously report seeing one letter in the color of another (e.g., a gray
N). The implication is that these recombinations can occur only in
the case that features have a cognitive identity separate from the
whole, providing evidence for the abstract symbolic structure
behind the stimuli (see, e.g., Treisman & Gelade, 1980).

Figure 2 schematizes the underlying processes that elicit such
errors. Visual stimuli activate mental representations that corre-
spond to the correct combination of stimulus features as well as
representations that share only some of the features. Random
variation in processing occasionally allows these illusory conjunc-
tions of separable input features to be retrieved.

It is critical to note that the probability of eliciting illusory
conjunctions follows from the representational structure of the
source stimuli and the coherence of potential illusory outcomes.
Evidence for this in the domain of language comes from illusory
conjunctions in spoken and written word perception (e.g., Ali &
Ingleby, 2010; Kolinsky, Morais, & Cluytens, 1995; Mattys &
Samuel, 1997; Prinzmetal, Hoffman, & Vest, 1991; Prinzmetal,
Treiman, & Rho, 1986; Rapp, 1992). Illusory conjunctions reflect
recombinations of the sources’ distinct linguistic components (e.g.,
vowel of one source, consonants of the other; Mattys & Samuel,
1997). The current work uses this relationship to assess the under-
lying structure of VPCs. To make the logic and predictions clear,
we first walk through the experimental paradigm and then outline
the critical statistical diagnostics for differentiating discrete versus
gradient structure.

Illusory Conjunctions of Sentences

We presented participants with sets of written sentences, aiming
to elicit the percept of elements moving between sentences. Each
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Input N D
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0Odds of Response
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Figure 2. Tllusory conjunctions in letter and color features. Inputs most
strongly activate representations with the correct conjunction of elements
(large bars) but also activate representations that share one element to a
smaller degree (small bars). This leads to occasional responses consistent
with the wrong analysis.

trial in this paradigm was made of three sentences. The first two
were source sentences. One source contained a VPC and would
remain a grammatical sentence if the particle were subtracted (e.g.,
He will lock up the bicycle; lock is a sensible bare verb) whereas
the other source contained a bare verb that would form a gram-
matical VPC if the particle from the other sentence were added
(e.g., He will cut the meat; cut up is a sensible VPC). After reading
the source sentences, participants were presented with a test sen-
tence and were asked to judge whether the test matched one of the
two sources. This test sentence might be a repetition of one of the
source sentences or, critically, might be a version of a source
sentence with the particle subtracted (He will lock the bicycle) or
with the particle from the other source added (He will cut up the
meat).

We used the accuracy and speed of the test sentence judgments
to delineate the underlying structure of the source stimuli. The
critical logic mirrors the findings from visual attention and sound
perception: If verbs and particles in VPCs are represented sepa-
rately in the mind (as in the Small Clause structure in Figure 1),
then participants will be susceptible to the illusion that the particle
occurred with the bare verb; if verbs and particles are represented
as a single entity (as in the Complex Head structure in Figure 1),
then the illusion should be infrequent. Rates of illusory conjunc-
tions index the association of a VPC to these different represen-
tational structures. By assessing the representation of a range of
VPCs, we can establish whether the set of VPCs reflects a single
gradient dimension (a cline of variability) or multiple discrete
classes.

Figure 3 illustrates the logic of these predictions in three exam-
ples, focusing on the sentences’ verbs and VPCs. In this figure, a
bare verb source sentence is represented by a single verb structure
(e.g., <make>, <lock>). We consider two possible representa-
tions of a VPC source: a Complex Head (<make_up>) versus a
Small Clause consisting of two independent elements
(<make> +<up>>).

In the case of noncompositional VPC sources (e.g., make up),
the VPC is strongly associated with a Complex Head representa-
tion (<make_up>). This implies little activation of the bare verb
(<make>; Figure 3, bottom) and the independent particle (<up>;
not depicted). The lack of activation on the independent particle

entails that the Small Clause representation binding the particle to
the other verb will also be inactive (<<lock>+ <up>>>). As such,
noncompositional VPCs will elicit few illusory conjunctions, and
responses will largely reflect the original sources (“make up;”
“lock™).

In contrast, fully compositional VPC sources (e.g., cut up) are
strongly associated with a Small Clause representation
(Kcut>+<up>>>). In turn, the activation of the independent
elements <cut> and <up> activates the alternative representa-
tions where the particle is bound to another verb (e.g.,
<<lock>+<up>>>; Figure 3, top). Therefore, fully compositional
sources will lead to many illusory conjunctions where the VPC
appears as a bare verb (“cut”) or where the bare verb appears as a
VPC (“lock up”).

To test between gradient and discrete accounts of VPC structure,
the critical cases involve VPCs intermediate in compositionality.

Input lock cut up
Activation Jock-+up lock cut+up cut_up | cut |
F ", cut
Odds of Response .‘-._
* lock up »| cutup
Input lock hold up
Activation ookep lock | hold Wpl I hokilp I I__Ihoid
H B S i hoa |
L] lock .3
Odds of Response | hold up
¥
Y lock up
Input lock make up
Activation
| Iock+up| lock make+up | make_up make
; H : [k
H lock H
Odds of Response H | make up
-
Tock up

Figure 3. Tllusory conjunctions in VPCs. Inputs most strongly activate
representations with the correct, appropriately structured conjunction of
verb and particle (large bars) but also activate appropriately structured
representations that share one element to a smaller degree (small bars),
leading to occasional errors (odds of response). Our analysis assumes that
VPCs vary in the degree to which they activate single vs. multiple unit
VPC representations, with some VPCs activating both structures (middle
panel).
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Under a gradient account, moderately compositional VPC sources
(e.g., hold up) might be associated with activation of both the
Complex Head and Small Clause representations (see Figure 3,
middle). Graded activation of these two representations would lead
to equally graded rates of illusory conjunctions, such that as the
relative activation of the multiple unit analysis increases, so would
the number of illusory conjunction errors. In contrast, under a
discrete account, VPCs would be sharply divided such that items
lead to either few or many errors with a clear division at some
intermediate level of compositionality. This sharp division would
reflect the fact that although compositionality might occur along a
gradient, the underlying syntactic structure does not. Under such
an account, items are associated with either one structure or the
other. This would mean that intermediate VPCs such as hold up
would either lead to many errors, similar to fully compositional
VPCs (Figure 3, top), or would lead to few errors, similar to
noncompositional VPCs (Figure 3, bottom); no intermediate VPC
items should lead to intermediate error rates.

It is important to note that this analysis relies on the assumption
that the probability of errors reflects the syntactic structure of
VPCs (i.e., the strength of association with the Complex Head vs.
Small Clause structure). This assumption is critically examined in
our experiments, verifying the independent influence of syntactic
structure on the probability of illusory conjunction errors.

Statistically Distinguishing Discrete From Gradient

The success of using the illusory conjunction paradigm to ex-
amine discrete versus gradient class structure is also contingent on
the ability to statistically distinguish the outcomes of these struc-
tures in the resulting data. In statistical terms, this is a problem of
establishing the dimensionality of a predictor (e.g., composition-
ality) to show whether it behaves as a categorical factor with two
levels (discrete classes) or as one continuous linear predictor
(gradient cline). If there were no noise in the dependent measures,
then establishing the predictor’s dimensionality would be trivial:
Discrete and gradient predictors imply different consequences for
behavior. Ideal categorical predictors should show a clear separa-
tion in outcomes, leading to easily distinguishable clusters in the
data; ideal linear predictors should not. The problem is that in
real-world data this pattern is often obscured by noise, requiring a
statistical approach.

We propose to use a statistical test to examine whether there is
a change in the way the predictor affects the outcome variable at
some intermediate value. The premise is that by definition, discrete
predictors have a discontinuity in the way the predictor affects the
outcome: Discrete categories have a sharp category boundary. The
presence of a discontinuity can be quantified using a statistical
tool— piecewise regression, also called segmented regression or
break point or change point modeling (see Knell, 2009; Muggeo,
2003; and Ruiz, Garcia, Muriel, Andrés, & Ventanas, 2002 for
examples of this approach in ecology, epidemiology, and food
science, respectively). Such a model fits separate regression lines
with break points between them, accurately describing discrete
(multiple discontinuous lines) and gradient (one continuous line)
data patterns. This statistical technique is robust to random noise
and affords similar hypothesis testing and model comparison as
standard linear regression, providing a way to assess the meaning-

BREHM AND GOLDRICK

fulness of middle levels of semantic compositionality for noisy
behavioral outcomes.

Experiment 1

The goal of Experiment 1 was to examine how a continuous
measure of semantic compositionality predicted illusory conjunc-
tions involving VPCs and therefore the underlying representational
structure of this construction. We used a piecewise regression
method to distinguish whether compositionality elicited memory
errors in a fashion consistent with two discrete classes or with a
single graded cline. To assess the validity of this technique, we
first ran Experiment 1a to establish estimates of the relevant effect
sizes and then ran Experiment 1b with a larger number of partic-
ipants drawn from estimates of power to detect null effects ob-
served in Experiment 1a. We walk through the methods and data
analysis used for both experiments here.

Method

Construction of the materials and procedure was informed by
the results of an in-laboratory pilot experiment that utilized a
categorical manipulation of compositionality. A write-up of the
pilot study can be found at https://osf.io/z4wya/; anonymized data
and analyses can be found at https://osf.io/gbkvc/ and https://osf
.10/s6vxh/.

Equipment. The experiment was run on participants’ comput-
ers in an in-browser script presented with IbexFarm (Drummond,
2013). Participants were instructed to use the F and J keys on their
keyboard for “yes” and “no” decisions, respectively. Key-press
latencies were collected and sent to the server upon completion of
the experiment.

Materials. There were 160 items in the experiment. Items
were made up of three sentences: two source sentences and a test
sentence that was either identical to one of the two sources or
differed by one word (a “foil” sentence). All sentence subjects
were pronouns (he, she, they, we), and all verbs were presented in
the future tense.

In the 32 critical trials, one source contained a VPC and the
other contained a bare verb, counterbalanced for position. The
VPC source would remain grammatical if the particle were re-
moved (e.g., Source: He will lock up the bicycle—=> Foil: He will
lock the bicycle); the bare verb source would remain grammatical
if the particle from the other sentence were added (e.g., Source: He
will cut the meat—> Foil: He will cut up the meat). Source VPCs
spanned the range of compositionality from Gonnerman and Hayes
(2005) and compositionality ratings of the (illusory) foils were all
relatively high, above the midpoint of the compositionality scale.’
The four forms of test sentences (repetitions of the two sources;
foils with added/removed particle) were counterbalanced across
lists so that each item appeared in each form an equal number of
times and each participant saw only one version of each item. See
Table 1 for examples; a list of critical trials can be found in the
Appendix.

The remaining items were fillers that controlled the predictabil-
ity of source and test sentences and allowed the general assessment

! One of these items (“carry up”) was added based upon author judg-
ments—analyses were performed with and without this item and the
pattern of results was identical.
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Stimulus triad

Item type Source 1 Source 2 Test Test type
Critical He will lock up the bicycle He will cut the meat He will lock up the bicycle Matches S1
He will cut the meat Matches S2

Adverb swap She will finally earn the

raise

VPC-noun swap They will let out the

prisoners

Adverb-noun swap We will happily advertise

the cereal

Two-VPC She will let out the goats

Two-adverb He will finally wash the

socks

Bare noun swap We will watch the cheetah

She will melt the ice

They will drive the
horses

We will mix the
paint

She will phase in the
plans

He will usually
scrub the dishes

We will examine the
cannon

He will lock the bicycle
He will cut up the meat

Illusory conjunction: S1 — particle
Illusory conjunction: S2 + particle

She will finally earn the raise Matches S1
She will melt the ice Matches S2
She will earn the raise S1 — adverb
She will finally melt the ice S2 + adverb
They will let out the prisoners Matches S1
They will drive the horses Matches S2
They will let out the horses S1 + S2 noun
They will drive the prisoners S2 + S1 noun
We will happily advertise the Matches S1
cereal

We will mix the paint Matches S2
We will advertise the cereal S1 + S2 noun
We will happily mix the paint S2 + S1 noun
She will let out the goats Matches S1
She will phase in the plans Matches S2

She will let in the goats

She will phase out the plans

He will finally wash the socks

He will usually scrub the
dishes

He will usually wash the
socks

He will finally scrub the
dishes

S1 + S2 particle
S2 + SI particle
Matches S1
Matches S2

S1 + S2 adverb

S2 + S1 adverb

We will watch the cheetah Matches S1
We will examine the cannon Matches S2
We will watch the cannon S1 + S2 noun
We will examine the cheetah S2 + S1 noun

Note. S1 = Source 1; S2 = Source 2. Bold underlined text indicates critical verb-particle phrases and verbs.

of the paradigm’s difficulty. Filler source sentences either con-
tained a VPC, a verb with an adverb modifier, or a bare verb; in
total, 60% of trials had one or more source sentences with a VPC,
30% had one or more source sentences with an adverb, and 10%
of trials had two bare verb sentences. Filler source sentences were
paired such that the presence or absence of a particle (or adverb)
in the first source sentence had no predictive value for the likeli-
hood of seeing a particle (or adverb) in the second source sentence;
both outcomes were equally likely. See Table 1 for example filler
items.

Filler test sentences were based upon one of the two source
sentences and, similar to the critical test sentences, were either
identical to one of the two sources or differed from one of the two
sources by one word; these were again counterbalanced across lists
so that each item appeared in each test form an equal number of
times. Foil test sentences involved changes to particles, adverbs,
and nouns and were most likely to involve changes to a particle
(40% particle, 25% adverb, and 35% noun changes). Across all
sentences, “yes” and “no” responses to test sentences were equally
likely.

Procedure. Trials began with a fixation cross presented cen-
trally for 500 msec. Next, the first source sentence appeared
centrally for 1,200 msec, followed by a visual mask (a series of
hash marks) presented in the same location for 100 msec. This was

followed by the second source sentence and a second visual mask,
presented for 1,200 and 100 msec, respectively. After these, the
test sentence was then displayed with the words “Yes” and “No”
below it, with its position offset from the source sentences by half
of a line. The test sentence stayed on the screen for 2,500 msec
while the participant’s response was collected and timed. If no
response occurred within 2,500 msec, then the trial was terminated
and the feedback “Too slow” was presented to the participant. The
intertrial interval was 1,000 msec; a break was offered to partici-
pants every 54 trials. Typeface was the participants’ browser
default in black on a white background.

Design and data analysis. The critical factors in this exper-
iment were source VPC compositionality (ranging from 1.58 to
8.55, with a mean of 4.70) and source particle presence (present/
absent). Source sentence position was also entered as a control
factor (VPC in first/second source). Source particle presence,
source sentence position, and test type were within-item factors,
counterbalanced across lists; compositionality was a between-item
factor. All of the two-level factors were effects coded (contrasts
of —.5,.5), and compositionality was centered. Anonymized data
and R analysis scripts are archived on the Open Science Frame-
work: Experiment 1a, https://osf.io/n3dfs/ and https://osf.io/a46bj/;
Experiment 1b, https://osf.io/hxgdu/ and https://osf.io/dvkmj/.
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Analysis I: Signal detection/linear regression. Analysis was
performed in R with the package lme4 (version 1.1-7; Bates,
Maechler, Bolker, & Walker, 2014; R Core Team, 2014). Analysis
of responses was based upon signal detection theory, building on
DeCarlo (1998). Responses were coded for whether they were
consistent with the belief that a particle was absent in the test
sentence such that correct “yes” responses to tests without particles
and incorrect “no” responses to tests with particles were classified
as “particle absent” responses. These were analyzed with a logistic
mixed-effects regression that separated bias (overall odds of re-
sponding particle absent) from discriminability (odds of respond-
ing particle absent when appropriate). The interactions of VPC
source compositionality with bias and discriminability were exam-
ined and source sentence position was entered secondarily as a
control predictor. The random effect structure was the maximum
justified by the data, assessed using the procedure of Bates, Kliegl,
Vasishth, and Baayen (2015).

Analysis of response latencies was based upon a standard linear
regression model. Log correct reaction time (RT) was predicted by
VPC source compositionality and source particle presence, with
source sentence position entered secondarily as a control predictor.
Again, the random effect structure was the maximum justified by
the data.

Analysis II: Break point analysis. The second stage of data
analysis involved searching for a break point in the original re-
sponse and RT models. The idea is that a piecewise model of an
underlyingly discrete predictor will have a markedly higher like-
lihood as compared with an analogous model done with standard
linear or logistic regression, supporting the division of the predic-
tor in multiple classes. In contrast, a gradient predictor would be fit
well by a standard linear or logistic regression, with minimal
improvement gained from a piecewise link function. Our analyses
used models that allow a single break point in one chosen predictor
at the level that maximizes model likelihood. If this single break
point significantly improves the original model, then there is
support for a discrete predictor; if it fails to significantly improve
the original model, then a gradient predictor is more parsimonious.

Regardless of model fit, it is also the case that in a piecewise
model, idealized discrete and gradient predictors reflect qualita-
tively different patterns of the piecewise segments’ slopes and
intercepts. We can capitalize upon this fact in hypothesis testing,
as illustrated in Figure 4. For discrete predictors, the two halves of
the regression model should have different intercepts but identical
slopes that are equal to zero—the pattern apparent in the left side
of Figure 4. This would be the case regardless of randomly
distributed noise (compare top and bottom left in Figure 4). For
gradient predictors, even if we force a model to find a break point,
the two “halves” of the regression should have identical intercepts
and identical nonzero slopes—apparent in the right side of Figure
4. Again, this would be the case regardless of randomly distributed
noise (top and bottom right). This means that by placing a confi-
dence interval (CI) around the differences in intercepts and slopes
in the two halves of a piecewise regression model, we can explic-
itly test support for the contrasting outcomes of discrete and
gradient predictors.

To implement the break point analysis, we took the original
signal detection/linear regression models from Stage 1, simplifying
the random effects structure to random intercepts only to minimize
convergence issues due to the increased complexity of these mod-
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els. A series of piecewise regressions based upon the original
models was then performed separately for responses and latencies.
This meant running a series of models with a varying break point
that dichotomized compositionality into two classes at all possible
values between 25% and 75% of its range (3.06—6.09). The break
point was coded as a logical statement such a regression model
was fit in each of the two segments (left half and right half) on
either side of the break point. The model in each of these series
with maximum likelihood and full statistical convergence was
selected. This procedure corresponds to a grid search for at most
one change (AMOC) in a piecewise regression allowing for a
discontinuity between the halves (see Crawley, 2007 for a worked
example; see http://osf.io/6v3r9 for archived R code).

Following Crawley (2007), we report the regression terms for
the right half of the model (intercept, slope estimates for predic-
tors) and the left-half adjustment terms—the difference between
the right and left model segments for the intercept and for each
slope term. To assess support for discrete versus gradient predic-
tors, Markov chain Monte Carlo profile CIs for the adjustment
parameters were calculated, assessing whether slope and intercept
differences between the model halves were meaningful. The de-
viation tolerance for these CIs was set to 1 X 107° (vs. the 1 X
10~ ° default) because of convergence issues; this is still fairly
conservative.

Degrees of freedom were adjusted in the piecewise model by
adding an additional penalty for the break because we allowed it to
freely vary in the first phase of piecewise model fitting. The
adjusted degrees of freedom were then used to perform likelihood
ratio tests comparing the break point model to the simpler no-break
point version (a nested comparison) to assess whether the more
complex model was supported (i.e., Kim, 1994). This is analogous
to standard model comparison techniques.>

Experiment 1a

Participants

Data were collected from 73 participants recruited through Am-
azon Mechanical Turk, all of who had IP addresses from the
United States and were older than 18 years of age. All participants
were compensated $5 for their time, which was approximately 30
min of active participation (excluding breaks). One participant was
excluded from the final analysis for reporting learning another
language before English and the second run of one participant who
chose to do the experiment twice was also excluded. Seven more
participants were excluded for an overall accuracy less than 60%,
leaving a total of 64 participants contributing data to the final
analyses. All experimental procedures and protocols were ap-
proved by the Northwestern University Institutional Review
Board.

Results

Responses. The mean error rate was 21%. VPC trials elicited
the most errors, with the highest error rate in the two-VPC-swap

2 An alternative technique would be to use an information criterion such
as Akaike information criterion (AIC) or Schwartz information criterion
(SIC). For these data, patterns are similar with all approaches.
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Figure 4. Categorical vs. linear predictors. In both columns, an X value below the mean leads to the same average
Y, despite the fact that the link functions are different. The most drastic difference comes at the median, where there
is a clear break point in the categorical panels. This holds for low (A and B) and high random noise (C and D).

fillers (29%), followed by the critical trials (26%). This was
followed by the adverb-swap fillers (two-adverb = 19%, one-
adverb = 19%) and the noun-swap fillers (VPC = 16%, adverb =
18%, bare = 15%).

Signal detection analysis: Illusory conjunctions are more
likely with high-compositionality VPCs. In the analysis of
critical trial responses (summarized in Table 2), there was an
overall bias toward responding “present,” with 52% of responses
consistent with a “present” belief. Discriminability was also high,
meaning that participants experienced illusory conjunctions on a
minority of trials. Discriminability was modulated by composi-
tionality of the VPC source such that participants experienced
more illusory conjunctions when the particle occurred in a source
with higher compositionality. As shown in the top panel of Figure
5, participants were less accurate in reporting that the particle was
absent from a bare verb source when it was paired with a high-
compositionality VPC versus a low-compositionality VPC. This
reflects a higher likelihood of particle intrusion from higher com-
positionality VPCs. The same occurred for deletions: Particles
were likely to migrate away from higher versus lower composi-
tionality VPCs (shown in the bottom panel of Figure 5).

The maximal random effect structure justified by these data was
random intercepts by subjects and items only. Adding the control
variable of source sentence position and its interactions with
source particle presence, compositionality as well as the three-way
interaction did not improve model fit,* x*(4) = 1.63, p = .80.

Break point analysis: A gradient, rather than categorical,
model best explains the distribution of illusory conjunctions.
The maximum log-likelihood piecewise model that met all con-
vergence criteria inserted a break point at a compositionality rating
of 4.07. In this model, profile CIs around the adjustment param-
eters indicated there were no significant differences in intercept or
slopes between the two piecewise segments, consistent with a
gradient view of compositionality (see Table 2). This was con-
firmed with model comparison between the break point model
(with four adjustment parameters and an additional penalty for the

3 This model did not converge to tolerance: 0.0019, rather than the 0.001
standard. Removing all nonsignificant effects allows the model to converge
to tolerance. This reduced model shows the same overall pattern.
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Table 2
Mixed-Effect Model Outputs From Experiment la
Model Estimate SE 7 value O3
Particle belief analysis
Zero-break model
Overall bias 0.14 0.06 2.50 .01
Discriminability 2.64 0.12 23.60 <.001
Source compositionality X Bias 0.00 0.03 0.04 97
Source compositionality X Discriminability —0.12 0.06 —2.06 .04
Estimate (lower, upper CI) SE z value
Break point model
Right-half parameters
Overall bias (intercept) 0.30 (0.08, 0.52) 0.11 2.64
Discriminability (slope) 2.60 (2.16, 3.04) 0.23 11.53
Source compositionality X Bias —0.08 (—0.21, 0.04) 0.06 —1.38
Source compositionality X Discriminability —0.12 (—0.36,0.12) 0.12 —0.99
Left-half parameter adjustments
Bias —0.21 (—0.70, 0.29) 0.25 —0.83
Discriminability 0.79 (—0.19, 1.79) 0.50 1.57
Source compositionality X Bias 0.09 (—0.17, 0.35) 0.13 0.67
Source compositionality X Discriminability 0.38 (—0.13, 0.90) 0.26 1.45
Estimate SE t value PO
Log correct RT analysis
Zero-break model
Intercept 7.04 0.02 316.2 <.001
Source particle presence 0.02 0.01 2.30 .03
Source compositionality —0.01 0.00 —2.10 .04
Source particle presence X Source compositionality 0.01 0.01 0.70 A7
Estimate (lower, upper CI) SE t value
Break point model
Right-half parameters
Intercept 7.07 (6.99, 7.14) 0.04 181.04
Source particle presence 0.10 (—0.03, 0.22) 0.07 1.48
Source compositionality —0.02 (—0.05, 0.01) 0.01 —1.51
Source particle presence X Source compositionality —0.01 (—=0.07, 0.04) 0.03 —0.48
Left-half parameter adjustments
Intercept —0.01 (—0.08, 0.05) 0.03 —0.43
Source particle presence 0.10 (—0.24, 0.03) 0.07 —1.51
Source compositionality 0.02 (—0.01, 0.05) 0.02 1.46
Source particle presence X Source compositionality —0.00 (—0.07, 0.05) 0.03 —0.20

Note. Model comparison was used to calculate p values, omitting one factor at a time and comparing models with x? tests.

break) and a model with no break point: adding a break point failed
to significantly improve model fit, x*(5) = 5.70, p = .34

RTs. Across conditions, mean correct responses ranged be-
tween 1,100 and 1,200 msec. Correct responses to the two-VPC
and two-adverb trials were the slowest (mean for two-VPC trials =
1,197 msec, two-adverb = 1,203 msec), with the other trial types
eliciting similar correct latencies (critical trials = 1,147 msec,
one-adverb = 1,158 msec, bare noun swap = 1,153 msec, adverb-
noun swap = 1,149 msec, VPC-noun swap = 1,146 msec). Error
responses tended to be slower but followed a similar pattern
(two-VPC M = 1,239 msec, two-adverb M = 1,241 msec, critical
trials M = 1,232 msec, one-adverb M = 1,212 msec, bare noun
M = 1,198 msec, adverb-noun swap M = 1,232 msec, VPC-noun
swap M = 1,195 msec).

Linear regression: RTs are lower for high-compositionality
VPCs. In the critical trials, correct latencies varied by source
particle presence and source compositionality. There was a signif-
icant effect of source particle presence such that source particle-
present trials were slowest (particle present M = 1,223 msec,

particle absent M = 1,197 msec). There was also a significant
effect of compositionality such that responses were faster as the
compositionality of the source VPC increased (mean for items
below 2.5: 1,214 msec; mean for items above 7: 1,164 msec). This
pattern is consistent with a standard speed—accuracy trade-off such
that high compositionality led to increased errors and faster re-
sponses. There was no interaction between compositionality and
particle presence. See Figure 6 for a graphical representation of the
data; see Table 2 for mixed-effect analyses.

The maximum random effect structure justified by the data was
the full random effect structure (random intercepts by participants
and items, random slopes by source particle presence, source
compositionality and their interaction for participants, and random
slopes by source particle presence for items). Adding the control
variable of source sentence position and its interactions did not
significantly improve model fit, x*(4) = 7.34, p = .12.

Break point analysis: A gradient, rather than categorical,
model best explains the distribution of RTs. The maximum
log-likelihood piecewise regression inserted a break point at
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Figure 5. Log odds particle “absent” belief in Experiment 1a (left) and Experiment 1b (right) across items by
source particle presence and continuous source compositionality. The solid lines represent the gradient model
(with no break points), which was the best-fitting model in Experiment la. Confidence bands are for slope

estimates.

6.04—a different location from the break point analysis of re-
sponses. In this model, profile CIs around the adjustment param-
eters indicated there were again no significant differences in in-
tercepts or slopes between the left and right halves of the model,
consistent with compositionality behaving as a linear predictor
(see Table 2). This was confirmed with model comparison between
the broken model (with four adjustment parameters and an addi-
tional penalty for the break) and a model with no break point. This
showed that adding a break point did not significantly improve
model fit, x*(5) = 9.27, p = .10.

Experiment 1b

To verify the applicability of the analysis technique to the
present domain, we ran a preregistered replication of Experiment
la (accessible at https://osf.io/k69cz/). This study was identical to
Experiment la in every way except an increase in the participant

sample size (to N = 152) to achieve the best possible statistical
power, critical for determining the validity of null effects.
Statistical power was estimated with a series of Monte Carlo
simulations. Using the estimated CIs from the zero-break regres-
sion models in Experiment la, simulations were used to generate
sample data at varying participant sample sizes to estimate our
ability to recover critical effects. These simulations showed that
with 152 participants, the critical interaction in the Experiment la
response model (between compositionality and source particle
presence) could be detected with 80% power. This sample size also
provides good power to observe a possible categorical effect. In a
second set of simulations, the Experiment la break point model
was modified to specify a pure categorical effect—in statistical
terms, an intercept adjustment for high compositional items only.
We then examined the ability of the break point analysis to detect
this pure categorical effect with varied effect sizes. These simula-
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Figure 6. Log correct response latencies in Experiment la (left) and Experiment 1b (right) across items by
source particle presence and continuous source compositionality. The solid lines represent the best-fitting model
in Experiments la and 1b, with no break points. Confidence bands are for slope estimates.
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tions reveal that with 152 participants, a significant categorical
effect roughly equivalent in magnitude to the observed nonsignif-
icant effects in Experiment 1a could be detected with 80% power
(Response model: within 1.5 SDs; RT model: within 1 SD); this
projected high power makes it likely that any null results in
Experiment 1b will indicate the true absence of an effect.

Participants. Data were collected from 176 participants re-
cruited through Amazon Mechanical Turk, all of who had IP ad-
dresses from the United States, were older than 18 years of age, and
had not participated in Experiment la. As in Experiment la, all
participants were compensated $5 for their time, approximately 30
min of active participation (excluding breaks). We excluded 23 par-
ticipants for having an overall accuracy under 60% and excluded the
second run of one participant who ran in the experiment twice, leaving
a total of 152 participants contributing data to the final analyses. All
experimental procedures and protocols were approved by the North-
western University Institutional Review Board.

Results

Responses. As in the previous experiment, VPC trials elicited
the most errors, with the highest error rate in the two-VPC-swap
fillers (27%), followed by the critical trials (25%) and the adverb-
swap fillers (two-adverb = 15%, one-adverb = 15%). Again, the
noun-swap fillers elicited the fewest errors (VPC = 12%, ad-
verb = 14%, bare = 13%). The overall error rate was similar to
Experiment la (18%, compared with 21%).

Signal detection analysis: Illusory conjunctions are more
likely with high-compositionality VPCs. Results of the mixed-
effects regression are summarized in Table 3. As in Experiment 1a,
there was an overall bias toward responding “present” in the
critical trials, with 54% of responses consistent with a “present”
belief (compare with 52% in Experiment 1a). Replicating Exper-
iment la, discriminability was high and was modulated by com-
positionality of the source VPC such that participants experienced
more particle intrusions and deletions when the particle occurred
in a source with higher compositionality (see Figure 5).

The maximum random effect structure justified by the data
included only random intercepts for subjects and items. Adding the
control variable source sentence position and its interactions im-
proved model fit, but critically, source position did not alter any of
the effects of compositionality® (see Table 3).

Break point analysis: A gradient, rather than categorical,
model best explains the distribution of illusory conjunctions.
The maximum log-likelihood piecewise model that met all con-
vergence criteria inserted a break point at a compositionality rating
of 3.83 (vs. the response model break point in Experiment la:
4.07). Profile CIs around the model’s adjustment parameters indi-
cated a significant difference in the source compositionality by
discriminability slope term, accounting for the fact that there were
more particle deletions (particle “absent” responses when the par-
ticle was present) for the lowest compositionality items than items
near the midpoint (see Figure 5). Following this pattern, adding a
break point improved model fit, x*(5) = 21.27, p < .001.

Despite this improvement in fit for the break point versus no
break point model, the results did not favor a discrete analysis. The
hallmark of a clear discrete analysis is an intercept difference on
either side of the break point with no slope differences, such that
the two line segments are flat and clearly separated. We observed

the opposite, a difference in slopes but not intercepts. To interpret
this finding, note that a change in slopes without a change in
intercepts means that the slope in the left segment of the model is
either flatter or in the opposite direction as the slope in the right
segment. This is a nonlinearity in the way the predictor affects the
outcome. In this case, the nonlinearity comes from composition-
ality’s differential impact on the lowest compositionality items.

Given the diverse factors shown to affect processing of VPCs
(see, e.g., Lohse et al., 2004), it is possible that the normed
compositionality rating for some specific items, such as the lowest
compositionality item help out (compositionality value of 1.58), is
not appropriate for the particular sentence contexts used here.
Consistent with this logic, an anonymous reviewer points out that
low compositionality items such as help out seem to behave more
compositionally when they take pronouns as objects than full noun
phrases (e.g., She will help me out vs. She will help the waiter out),
suggesting the plausible importance of accounting for sentence
context in compositionality ratings and in the availability of var-
ious structures. It is critical to note that this possibility is still more
consistent with a graded effect of compositionality than with a
sharp division of VPCs into two classes.

Response times. Overall response latencies were similar to
the previous experiments, with correct responses typically taking
between 1,100 and 1,200 msec. As in Experiment la, correct
responses to the two-VPC and two-adverb trials were slowest
(two-VPC M = 1,207 msec, two-adverb M = 1,237 msec), with
the rest of the trial types eliciting similar correct latencies (critical
trials M = 1,179 msec, one-adverb M = 1,163 msec, bare noun
M = 1,173 msec, adverb-noun swap M = 1,160 msec, VPC-noun
swap M = 1,170 msec). Again, error responses tended to be slower
than correct ones, following a similar pattern as Experiment la
(two-VPC M = 1,234 msec, two-adverb M = 1,321 msec, critical
trials M = 1,229 msec, one-adverb M = 1,253 msec, bare noun
M = 1,204 msec, adverb-noun swap M = 1,168 msec, VPC-noun
swap M = 1,249 msec).

Linear regression: RTs are lower for high-compositionality
VPCs. As in Experiment la, there was a significant effect of
source particle presence such that source particle-present trials
were slowest (particle present M = 1,201 msec, particle absent
M = 1,153 msec). Unlike in Experiment la, there was no signif-
icant effect of compositionality, neither as a main effect nor as an
interaction. However, the numerical pattern was similar to Exper-
iment la, with the fastest responses for high-compositional items
(mean for items below 2.5: 1,212 msec; mean for items above 7:
1,175 msec). See Figure 6 for a graphical representation of the
data, and see Table 3 for mixed-effect analyses. The maximum
random effect structure justified by the data was the full random
effect structure (random intercepts by participants and items, ran-
dom slopes by source particle presence, source compositionality
and their interaction for participants, and random slopes by source
particle presence for items).

Adding the control variable of source sentence position and its
interactions improved model fit, x*(4) = 11.48, p = .02. In this
model, there was a significant effect of source sentence position

# This model did not converge to tolerance: 0.0015, rather than the 0.001
standard. Removing all nonsignificant effects allows the model to converge
to tolerance. This reduced model shows the same overall pattern.
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Table 3
Mixed-Effect Model Outputs From Experiment 1b
Model Estimate SE 7z value 0%
Particle belief analysis
Zero-break model
Overall bias 0.21 0.04 5.81 <.001
Discriminability 2.25 0.07 33.21 <.001
Source compositionality X Bias 0.03 0.02 1.52 13
Source compositionality X Discriminability —0.09 0.04 —2.57 .01
Estimate SE z value PO
Zero-break model containing particle source
Overall bias 0.22 0.04 6.01 <.001
Discriminability 2.27 0.07 33.18 <.001
Source compositionality X Bias 0.03 0.02 1.36 18
Source sentence position X Bias —0.22 0.07 —3.23 <.01
Source compositionality X Discriminability —0.10 0.04 —2.81 <.01
Source sentence position X Discriminability —0.49 0.14 —3.56 <.001
Source compositionality X Source sentence position X Bias 0.03 0.04 0.93 35
Source compositionality X Source sentence position X
Discriminability 0.10 0.07 1.38 17
Estimate
(lower, upper CI) SE z value
Break point model
Right-half parameters
Overall bias (intercept) 0.21 (0.10, 0.33) 0.06 3.67
Discriminability (slope) 2.52 (2.30,2.74) 0.11 22.57
Source compositionality X Bias 0.02 (—0.04, 0.09) 0.03 0.70
Source compositionality X Discriminability —0.28 (—0.40, —0.15) 0.06 —4.36
Left-half parameter adjustments
Bias (intercept) 0.36 (—0.10, 0.81) 0.23 1.57
Discriminability (slope) 0.85(0.00, 1.72) 0.44 1.96
Source compositionality X Bias 0.17 (—0.05, 0.39) 0.11 1.61
Source compositionality X Discriminability 0.79 (0.38, 1.19) 0.21 3.82
Estimate SE t value PX?)
Log correct RT analysis
Zero-break model
Intercept 7.03 0.01 523.7 <.001
Source particle presence 0.04 0.01 43 <.001
Source compositionality —0.00 0.00 -0.2 81
Source particle presence X Source compositionality 0.00 0.00 0.2 .86
Estimate SE t value PO
Zero-break model containing particle source
Intercept 7.03 0.01 524.0 <.001
Source particle presence 0.04 0.01 4.4 <.001
Source compositionality —0.00 0.00 -0.3 .79
Source sentence position 0.03 0.01 32 <.01
Source particle presence X Source compositionality 0.00 0.01 0.2 .86
Source particle presence X Source sentence position 0.00 0.02 0.3 .82
Source compositionality X Source sentence position 0.02 0.00 1.1 29
Source particle presence X Source compositionality X
Source sentence position 0.00 0.01 0.3 .80
Estimate
(lower, upper CI) SE t value
Break point model
Right-half parameters
Intercept 7.01 (6.97, 7.06) 0.02 323.90
Source particle presence —0.01 (—0.06, 0.04) 0.03 —0.35
Source compositionality 0.01 (—0.01, 0.03) 0.01 0.78
Source particle presence X Source compositionality 0.03 (0.00, 0.05) 0.01 1.86
Left-half parameter adjustments
Intercept 0.00 (—0.05, 0.05) 0.02 0.16
Source particle presence 0.09 (0.02, 0.16) 0.04 2.63
Source compositionality —0.02 (—0.04, 0.01) 0.01 —1.14
Source particle presence X Source compositionality —0.00 (—0.04, 0.03) 0.02 —0.25

Note. Model comparison was used to calculate p values, omitting one factor at a time and comparing models with x> tests.
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such that tests based upon the more recent source were faster; this
factor did not modulate any effects of compositionality. The mo-
del’s random effect structure contained random intercepts by par-
ticipants and items, random slopes by source particle presence and
source compositionality for participants, and random slopes by
source particle presence for items. See Table 3 for mixed-effect
analyses.

Break point analysis: A gradient, rather than categorical,
model best explains the distribution of illusory conjunctions.
The maximum log-likelihood piecewise regression inserted a
break point at 4.91 (contrast with the response time break point in
Experiment la: 6.04). As in Experiment 1a, profile Cls around the
model’s adjustment parameters showed no significant difference in
intercepts between the left and right halves of the model. One
small but statistically significant difference was observed in the
slope adjustment for source particle presence. This was such that
there was a slightly negative slope for particle-absent low compo-
sitionality trials (3 estimate = —0.05), and a slightly positive slope
for particle-present low compositionality trials ( estimate =
0.04); no other significant differences were observed (see Table 3).

Critically, again, the overall lack of improvement for the broken
model over the model with no break point was confirmed with
model comparison. Adding a break point did not significantly
improve model fit (x*(5) = 8.42 p = .13).

Discussion

Experiment 1 revealed that semantic compositionality modu-
lated forced-choice memory responses: Participants experienced
more illusory conjunctions involving particles from high versus
low compositional VPC sources. The tendency toward illusory
conjunctions followed a graded pattern across the whole spectrum
of compositionality, more consistent with a representational cline
than two discrete classes. This was further evidenced by our novel
application of piecewise regression in modeling potential break
points between classes. This technique also failed to show any
evidence in favor of the discrete account in analysis of RTs.

A key assumption of our analysis is that the illusory conjunc-
tions we observe reflect the syntactic structure of the VPCs (e.g.,
Complex Head vs. Small Clause). Although evidence from other
paradigms suggests that syntactic structure independently impacts
how VPCs are used (e.g., through syntactic priming; Konopka &
Bock, 2009), it is possible that the effects we observe here purely
reflect semantic similarity. For example, particles could migrate
simply because the source and target sentence have roughly the
same meaning, leading to errors in recall based upon gist memory
(e.g., Potter & Lombardi, 1990). This motivated Experiment 2, in
which syntactic and semantic contributions to illusory conjunc-
tions were crossed to assess the source of these errors.

Experiment 2

To dissociate the role of syntactic and semantic factors in
eliciting false memory errors, Experiment 2 capitalized on the
availability of two forms of many VPCs. These were an adjacent
form, as used in the previous experiments (e.g., He will cut up the
meat) and a shifted form (e.g., He will cut the meat up). The notion
is that although the adjacent and shifted form are highly similar in
meaning, they are associated with different syntactic structures

BREHM AND GOLDRICK

(e.g., as in Figure 1), allowing the separation of syntactic and
semantic factors in eliciting illusory conjunction errors.

In Experiment 2, we examined false memories for adjacent VPC
sources as induced by adjacent and shifted VPC foil test sentences.
The critical aspect of this design is that an adjacent VPC test
sentence contains the same [V Part Obj] structure as its source
whereas a shifted VPC test appears in a different structure than its
source [V Obj Part]. This means that although the same particle
intrudes in both conditions, only the adjacent test matches the
structure of the particle’s source. The prediction is that if structure
is the main driver of false memory errors, then rates of illusory
conjunctions will be higher for adjacent than for shifted tests.

As a baseline, we also examined error rates to foils that matched
the source in meaning but which substituted another bare verb
instead of a VPC (e.g., He will slice the meat). Error rates for these
foil sentences establish a baseline of error responding due to gist
meaning. Any errors observed in this condition do not reflect
“illusory conjunctions” of the source stimuli because the inserted
verb did not appear in either source. This allows us to estimate the
base rate of errors due to shared meaning only.

Unlike the previous experiments, the critical comparisons in
Experiment 2 focused on false alarms to various types of foil
sentences. This change in the critical comparison led us to simulate
the effect sizes from the previous experiments to determine an
appropriate sample size. As in Experiment 1b, we ran Monte Carlo
simulations based upon our previous data to estimate the sample
sizes needed to observe the effects of interest with 80% power. We
ran these simulations with effect sizes ranging from 100% of the
critical trial false alarm rate in Experiments la and 1b (pooled,
compared with the filler sentence baseline) down to 25% of the
original false alarm rate (compared with the filler sentence base-
line). These simulations suggest that with a set of 24 items,
collecting data from 60 participants should allow us to observe an
effect that is 33% of the size originally observed or larger. A plot
of simulation results can be found at https://osf.io/k4f9v/, the code
used to generate these simulations can be found at https://osf.io/
q567r/, and a registration of the study can be found at https://osf
.io/sudn4.

Method

Participants. Data were collected from 69 participants re-
cruited through Amazon Mechanical Turk, all of who had IP
addresses from the United States, were older than 18 years of age,
and had not participated in Experiments la or 1b. As in the
previous experiments, all participants were compensated $5 for
their time, which was approximately 30 min of active participation
(excluding breaks). Nine participants were excluded for having an
overall accuracy of less than 60%, leaving a total of 60 participants
contributing data to the final analyses. All experimental procedures
and protocols were approved by the Northwestern University
Institutional Review Board.

Equipment. Identical to Experiment 1.

Materials. The items were versions of the same 160 items as
in Experiment 1. Of these, 24 were critical trials. These were a
subset of those used in the previous experiment, comprised of the
items that were determined by both authors to be acceptable in the
shifted structure. As in the previous experiments, critical items
were made up of triads of sentences that contained two source
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sentences and a test sentence. As previously, one of the two source
sentences contained a VPC (e.g., He will lock up the bicycle) and
the other contained a verb that would become a grammatical VPC
if the particle from the other sentence were added to it (e.g., He
will cut the meat).

Unlike the previous experiments, all of the Experiment 2 critical
test sentences were what we term foils—items that mismatched
both of the source sentences. Three types of foils were developed
for each critical item. The first matched the source-plus-particle
foils in Experiment 1, containing a VPC derived from the non-
VPC source sentence where the verb and particle were directly
adjacent (e.g., He will cut up the meat). The second used a shifted
form of the same foil VPC (e.g., He will cut the meat up), placing
the particle in a structural position different from its original
source. The third was a synonym of the foil VPC, designed to
match the source in semantic content but to contain a verb that did
not appear in either original source (e.g., He will slice the meat).
To equate meaning across these types of foils as best as possible,
the semantic similarity of sources and the three types of foils was
normed by a separate group of participants. Results of this norming
study are outlined here; a list of critical items can be found in the
Appendix.

To control for the new types of critical trials, some additional
types of filler trials were created by modifying items from Exper-
iment 1. Half of the adjacent VPC-containing filler items from
Experiment 1 were used in the shifted VPC form instead; the test
sentences associated with these fillers had edits to both particles
and nouns. In addition, eight of the adjacent VPC items that had
been used as critical items in Experiment 1 were used as fillers in
this experiment. These were used in combination with other filler
items to balance the ratio of “yes” and “no” responses to VPC
trials. As in Experiment 1, the ratio of “yes” to “no” answers
across the experiment was equivalent, with 50% “yes” trials over-
all. As in Experiment 1, 60% of the items contained a VPC in one
or both of the sources, 30% of the items contained an adverb in one
or both of the sources, and 10% contained neither; again, the
presence of a particle in the second source sentence was not
predictable from the form of the first source sentence. Similar to
Experiment 1, test sentences were more likely to involve changes
to a particle than anything else, although the ratio was increased in
this experiment (50% particle change trials, 25% adverb change
trials, and 25% noun change trials).

Norming. To assess whether the three critical foil sentence
types were equivalent in meaning, we normed the semantic simi-
larity of foils and the source sentences they were based upon using
a separate group of 60 participants on Amazon Mechanical Turk.
These participants were asked to rate the similarity of pairs of
sentences using a 1-9 scale, in which 1 indicated very dissimilar
and 9 indicated very similar. Two examples were provided, one on
either end of the scale, and the 24 critical items were intermixed
with 32 filler item pairs that had varying degrees of semantic
similarity. In the norming survey, items were divided across six
lists, counterbalancing the three types of foil sentences (Adjacent/
Shifted/Synonymous) and which item (Experimental Source/Foil)
appeared first.

Results of this norming survey suggest that the critical sources
and their foils were rated as much more similar than the various
types of filler sentences were (Critical trial M = 7.13, 95% CI
[6.93,7.32] vs. fillers M = 3.89, 95% CI [3.67, 4.12]). There were
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also some small differences between types of critical trials. Within
the critical trials, the shifted VPC foils and sources were rated as
more similar than the adjacent VPC foils and sources, and these
were both rated as more similar than the synonymous foils and
sources were (Shifted: M = 7.36, 95% CI [7.11, 7.60]; Adjacent:
M =7.12,95% CI [6.89, 7.35], Synonymous: M = 6.93, 95% CI
[6.68 7.18]). There were no systematic differences in similarity
rating depending on whether the experimental source or foil sen-
tence was presented first (Shifted foil first M = 7.41, 95% CI
[7.09, 7.72] vs. source first M = 7.31, 95% CI [7.00, 7.62];
Adjacent foil first M = 7.18, 95% CI [6.93, 7.48] vs. source first
M = 17.06,95% CI [6.71, 7.38]; Synonymous foil first M = 6.88,
95% CI [6.55, 7.29] vs. source first M = 6.97, 95% CI [6.67,
7.23]). See Appendix for by-item norming results.

Procedure. Identical to Experiment 1.

Design and data analysis. The critical factor in this experi-
ment was foil type (Adjacent/Shifted/Synonymous). As in the
previous experiments, source sentence position was entered as a
control variable (VPC first/second). The normed similarity rating
was also entered as a control variable. Foil type and source
sentence position were within-item factors, counterbalanced across
six lists such that each item was presented an equal number of
times in each form and each participant viewed only one version of
each item. Foil type was contrast coded to compare the VPC
sentences to the synonymous foil (Adjacent/Shifted to Synony-
mous, 0.25, 0.25, —0.5) and to each other (Adjacent: 0.5;
Shifted: —0.5). Source sentence position was effects coded
(.5, —.5), and the normed similarity rating was mean centered.

Unlike the previous experiments, the critical dependent measure
for the response analysis was false alarm rate (in contrast to the
signal detection approach); the response time analysis was the
same as the previous experiments. As in the previous experiments,
the random effect structure was the maximum justified by the data.
Anonymized data from the experiment and norming task and R
scripts are archived on the Open Science Framework: https://osf
.do/rkztv/, https://ost.io/g8ys6/, and https://ost.io/d6z45/.

Results

Responses. The overall error rate was similar to that of Ex-
periment 1 (17%, compared with 21% in Experiment la and 18%
in Experiment 1b). As in the previous experiments, VPC trials
elicited the most errors, with the highest error rate in the two-VPC-
swap fillers (27%) followed by the one-VPC-swap trials (18%,
pooling critical trials and fillers). The other types of trials elicited
fewer errors (Adverb trials: two-adverb = 15%; one-adverb =
13%; Noun swap trials: VPC = 12%; adverb = 11%, bare =
13%).

The critical comparisons in this experiment focused on false
alarms, or erroneous “yes” responses to novel foils. The VPC trials
elicited the most false alarms, with the highest false alarm rate in
the two-VPC-swap fillers (45%), followed by the critical trials
(25%). The other types of trials elicited fewer false alarms (Adverb
trials: two-adverb = 17%; one-adverb = 16%; Noun swap trials:
VPC = 14%; adverb = 13%, bare = 17%).

Critical trial analyses: Illusory conjunctions are sensitive to
syntactic structure. The VPC-adjacent foils, where a particle
was inserted in the same structural position as it had appeared in its
original source, elicited the most false alarms (39%). These were
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followed by the VPC-shifted foils (25%), where the particle was
inserted in a different structural position. This difference points to
the importance of structure in eliciting false alarms. In addition,
both types of VPC foils elicited more false alarms than the syn-
onymous foils; at 12% false alarms, these had the lowest error rate
in the experiment (see Figure 7). These patterns were confirmed
with mixed-effect analyses (see Table 4).

The increased false alarm rate in the adjacent and shifted VPC
critical trials versus the synonymous critical trials emphasizes the
importance of structure in eliciting errors in this paradigm. False
alarms to both types of VPC critical trials largely reflect illusory
conjunctions of the verbs and particles from the source sentences
driven by shared structure. In contrast, the synonymous trials
reflect only the role of meaning; the low error rate here suggests
that meaning is not a major source of errors.

Adding the control variable of source sentence position and its
interactions improved model fit, x*(3) = 9.52, p = .02. This was
due to the higher rate of false alarms for synonymous trials when
the test sentence was in the first position (16%) versus the second
(8% see Table 4). Both types of VPC foils elicited similar false
alarm rates regardless of position, providing further evidence that
the synonymous trials disclosed a qualitatively and quantitatively
different pattern than the VPC foil trials did. Adding the normed
similarity rating and its interactions failed to improve model fit,
showing that the critical trial differences did not follow from
semantic similarity. This was the case for a model adding only
VPC type, X2(3) = 2.00, p = .57, and for a model adding VPC
type and item order, x*(6) = 5.18, p = .52. In the final model, the
maximum random effect structure included only random intercepts
for subjects and items.

Response times. Response latencies were similar to the pre-
vious experiments, with correct responses typically taking between
1,100 and 1,300 msec. As in the previous experiments, correct
responses to the two-VPC and two-adverb trials were the slowest
(two-VPC M = 1,213 msec, two-adverb M = 1,238 msec). Critical
trials were similarly slow (1,222 msec); the remaining trial types
elicited slightly faster correct latencies (one-VPC controls M =
1,143 msec, one-adverb M = 1,170 msec, bare noun swap M =
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1,179 msec, adverb-noun swap M = 1,216 msec, VPC-noun swap
M = 1,179 msec). Again, error responses tended to be slower than
correct ones (two-VPC M = 1,285 msec, two-adverb M = 1,276
msec, critical trials M = 1,239 msec, one-VPC controls M = 1,307
msec, one-adverb M = 1,239 msec, bare noun M = 1,183 msec,
adverb-noun swap M = 1,197 msec, VPC-noun swap M = 1,245
msec).

Critical trials: RTs are slower for VPCs relative to synony-
mous non-VPC foils. For correct responses to critical trials (see
Figure 8), the pattern was that the VPC trials—whether adjacent or
shifted—elicited slower responses than the synonymous foil trials
(adjacent M = 1,280 msec; shifted M = 1,276 msec; synonymous
M = 1,136 msec), again showing the importance of shared struc-
ture in leading to response difficulty. This pattern was confirmed
with mixed-effect analyses (see Table 4).

Adding the control variable of source sentence position and its
interactions significantly improved model fit. This was due to the
main effect of Source 2 tests eliciting faster responses than Source
1 tests regardless of foil type (see Table 4), perhaps reflecting a
recency effect. As with the response rate analysis, adding the
normed similarity rating failed to improve model fit in a model that
contained only VPC type, x*(3) = 1.85, p = .61, and in a model
that contained VPC type and source sentence position, x*(6) =
4.16, p = .65. In the final model, the maximum random effect
structure justified by the data included random slopes for VPC
type, source sentence position and their interaction by subjects,
and random intercepts only by items.

Discussion

In Experiment 2, we examined whether memory errors for VPCs
were driven by meaning similarity or by syntactic structure. This
was done by contrasting false alarm rates to three types of foil
sentences. Adjacent VPC foils, which contained an intruded par-
ticle that appeared in the same position as it did in its original
source, elicited the highest rate of “particle-present” false alarms.
Shifted VPC foils, which contained the same intruded particle in a
position that was different from its original source, elicited fewer
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Figure 7. Mean false alarm rate in Experiment 2 by foil type. CIs represent 95% range of mean values from
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Table 4
Mixed Effect Model Outputs From Experiment 2
Model Estimate ~ SE  zvalue  p(x?)
False alarms by VPC type and particle source
Intercept 1.60  0.22 7.44  <.001
Adjacent/Shifted VPC vs. Synonymous —2.13 025 —8.70 <.001
Adjacent vs. Shifted VPC —0.88 0.16 —540 <.001
Source sentence position —0.25 0.15 —1.64 A1
Adjacent/Shifted VPC vs. Synonymous X Source sentence position 1.38 0.48 2.88  <.001
Adjacent vs. Shifted VPC X Source sentence position —-0.23 032 —0.70 49
Estimate ~ SE  tvalue  p(x®)
Log correct RT by VPC type and particle source
Intercept 7.09 .02 30523 <.001
Adjacent/Shifted VPC vs. Synonymous 0.17 .02 6.96 <.001
Adjacent vs. Shifted VPC 0.00 0.02 —0.05 .96
Source sentence position 0.06 0.01 4.69 <.001

Adjacent/Shifted VPC vs. Synonymous X Source sentence position 0.02 0.04 0.50 .62

Adjacent vs. Shifted VPC X Source sentence position

0.03 0.03 0.98 .33

Note.

false alarms. The increased error rate in adjacent versus shifted
foils appeared despite the fact that the shifted VPC foils were rated
as slightly more similar in meaning to the original target sentences
than the adjacent VPCs were. This provides clear evidence in favor
of syntactic structure as a primary driver of memory errors in this
paradigm.

Critically, both types of VPC foils elicited slower correct re-
sponses and more false alarms than did foils where a synonymous
bare verb intruded in the sentence instead of a particle. The
meaning of the synonymous foil was similar to the meaning of
the original source sentence, but in contrast to the VPC foils, the
intruded element (here, a bare verb) did not appear in either source
sentence. The low false alarm rate and quick responding in this
condition implies that meaning similarity induces few errors and
the errors that are observed in this paradigm do reflect true illusory
conjunctions of elements of the original source sentences (i.e., the
particle of one source, verb of the other).

VPC = verb-particle constructions. Model comparison was used to calculate p values, omitting one
factor at a time and comparing models with x? tests.

In general, the importance of structure over meaning in eliciting
false memories for sentences is consistent with a large body of
work on syntactic priming. This work supports the isolable impact
of structure from meaning and lexical content (e.g., Bock, 1986;
Bock & Loebell, 1990; Konopka & Bock, 2009; Tooley & Bock,
2014). It is important to note that, as with syntactic priming
paradigms, errors in the present paradigm come from the presence
of a structured representation of the stimuli.

General Discussion

Debates over the structure of VPCs mirror a general tension in
theories of cognition: whether mental representations are funda-
mentally discrete or whether they incorporate graded structure. To
examine this issue, we elicited illusory conjunctions of verbs and
particles. This allowed us to assess the extent to which VPCs are
associated with two distinct structures. In one of these distinct
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structures, the verb and particle are represented as syntactically
distinct structural elements (a Small Clause), facilitating the inde-
pendent recombination of particle and verb in illusory conjunc-
tions. In the other structure, the verb and particle are represented as
a single syntactic element (a Complex Head), suppressing such
conjunctions. Under a discrete account, VPCs should be associated
with either one or the other structure; under a gradient account,
VPCs should be associated, in varying degrees, to both structures.

Our results are consistent with the predictions of the gradient
account. We demonstrated that participants make responses in a
forced-choice perception paradigm that are consistent with the
intrusion and disappearance of particles in VPCs. This tendency
was modulated by semantic compositionality, a factor known to be
associated with Small Class versus Complex Head syntactic rep-
resentations of VPCs. The general pattern was that VPCs high in
compositionality were more likely to induce illusory conjunctions
where the particle intrudes on another verb source. Piecewise
regression of the Experiment 1 data showed that illusory conjunc-
tions increased in a gradient fashion with source compositionality.
Experiment 2 showed that these effects are not simply due to
similarity in meaning, but that they reflect structural overlap be-
tween the source and target in illusory conjunction errors. The
combination of these experiments suggests that VPCs are gradi-
ently associated with two distinct structural options.

Forms of Gradience in Sentence Processing and
Syntactic Structure

Although this work provides novel support for gradient repre-
sentations in syntax, a key area for future work is determining the
structure of gradience in the language processing system. In sen-
tence processing and within probabilistic syntactic models more
generally, it is common to incorporate gradience in probability
distributions over structures (e.g., Hale, 2001; Jaeger & Snider,
2008; Levy, 2008; inter alia). Applying this perspective to VPCs,
a moderately compositional VPC such as look up fits a structure in
which the VPC is a single unit (look + up) and a structure in which
the verb and particle are part of separate syntactic units
(look)+ (up). A reader selects between these two discrete structures
in a gradient fashion such that the overall response distribution is
probabilistic (e.g., for a VPC, a Small Clause structure is selected
70% of the time, a Complex Head is selected the remaining 30%
of the time). A virtue of such models is that they are easy to
incorporate with traditional views of linguistic structure.

An alternative approach is to assume that the representations
themselves are gradient (Aarts, 2007; Dowty, 2003; Smolensky et
al., 2014; see Baayen & del Prado Martin, 2005, for parallel
arguments at the semantics/morphology interface). Two structures
might be simultaneously available to varying degrees, both par-
tially activated within a single structure. For example, a moder-
ately compositional VPC is associated with a single parse in which
the structural elements of a Small Clause structure are active at
0.70 and, simultaneously, the elements of a Complex Head struc-
ture are active at 0.30. Such representations form a key part of
dynamical computational architectures, in which linguistic repre-
sentations are realized with a continuous, gradient representational
space (e.g., Smolensky et al., 2014; Tabor & Tanenhaus, 1999),
proving a transparent mapping to a plausible neural representation
(see, e.g., beim Graben, Gerth, & Vasishth, 2008).
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It is important to note that both approaches have advantages;
distinguishing between them could shine light on the organizing
principles of language and of the mind in general. A clear area for
future research is examining the relative strength of each account.

Erroneous Recombinations and Gradient Structure
in Cognition

Paradigms examining the reassociation of “unbound” stimulus
features form a springboard for literature in attention. This is the
premise of the extremely influential “feature integration theory”
(i.e., Treisman & Gelade, 1980). Supporting work has shown
robust evidence for the cognitively distinct identity of source
stimulus properties. These independent elements are often called
“features” and include properties such as color and size (for
shapes) as well as letter position and morphological category (for
written words). The data show that features sometimes dislocate
and are erroneously rebound in perception. These misbindings of
features—illusory conjunctions—reflect properties of the sources
and of the similarity structure that underlies isolable features,
demonstrating that as a generic property across many domains in
cognitive science, what can become mentally unstuck occasionally
unsticks. This is robustly supported within the domains of object
attention (e.g., Treisman, 1991; Treisman & Schmidt, 1982), word
reading (e.g., Esterman, Prinzmetal, & Robertson, 2004; Prin-
zmetal et al., 1986, 1991; Prinzmetal & Millis-Wright, 1984; Rapp,
1992), and speech processing (Ali & Ingleby, 2010; Kolinsky et
al., 1995; Mattys & Samuel, 1997). Here, we have extended such
work to investigate the building blocks of sentences. We demon-
strate clear evidence of illusory conjunctions of source elements in
sentence stimuli, providing a novel measure of linguistic represen-
tational structure.

We also note that a gradient account of linguistic structure is
consistent with gradience in representational structures across cog-
nitive domains. This is especially apparent for the case of seman-
tic/object categories, which research has shown to be nonlinearly
separable and not discretely defined. For example, the category
“game” includes the activities chess, football, and Tetris, which
have no one unifying property, and the typical use of the category
“sandwich” includes hoagies but not hot dogs—both of which
comprise meat on a roll. The suggestion is that conceptual cate-
gories are defined by a probabilistic collection of features instead
of hard and fast rules (e.g., Medin & Schaffer, 1978; Rosch &
Mervis, 1975; Wittgenstein, 1953). This underscores the fact that
human categories can be gradient: In language and other aspects of
cognition, rather than associating an item with cognitive represen-
tation X or Y, it may be more fruitful to suppose that item is
associated with X and Y to varying degrees.

Statistical Analysis of Categories

Across scientific domains, proposals relying on gradient struc-
ture are often contrasted with proposals relying on discrete struc-
ture. This means that many statistical techniques have been devel-
oped to determine the latent structure of variables. These
techniques include taxometric analysis, a technique that deter-
mines latent category structure from multiple dependent measures
based upon means or covariances (e.g., Meehl, 1999), as well as
the related techniques of mixture modeling and latent class anal-
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ysis (e.g., Lubke & Muthen, 2005; Vermunt & Magidson, 2003).
These tools are powerful and useful for domains in which there is
a large amount of data, especially where there are many dependent
measures that can provide converging evidence regarding the
nature of underlying constructs. In the present work we used
piecewise regression to answer a similar question: Does a predictor
represent a categorical or linear factor? This type of technique
works well for a domain where regression models are most ap-
propriate: One where there are relatively few independent mea-
sures, relatively few dependent measures, and an unknown link
function.

Novel statistical techniques are most useful when their effects
are shown to generalize. Experiment 1b was a registered replica-
tion study, designed to confirm the applicability of the piecewise
regression technique for describing linguistic structure. Replicat-
ing the behavioral results from Experiment 1a and confirming the
gradient pattern in responding in a high-powered sample demon-
strates the general applicability of this technique: Piecewise re-
gression is capable of determining the underlying structure of
predictors in noisy behavioral data.

The replication study underscores a primary virtue of the piece-
wise regression technique: It is simple and robust to random noise.
Even in the present domain, which has a relatively high signal-to-
noise ratio, we were able to make consistent inferences about the
dimensionality of predictors. This is because the linear predictor in
the piecewise technique has an optional split and can fit the data
well in either the categorical or continuous case. Furthermore, as a
form of regression, this technique preserves all of the desiderata of
mixed-effect models (relative to techniques such as ANOVA)
including crossed random effects and the ability to appropriately
model categorical outcomes (Jaeger, 2008). As a robust, simple
method that can be applied to accuracy and latency data, piecewise
regression may prove more broadly useful for addressing questions
of class structure in other domains within cognitive science.

Conclusion

In three experiments, we have shown that VPCs are gradiently
associated with multiple syntactic structures. Using illusory con-
junctions to reveal the strength of association between syntactic
elements, and applying statistical techniques in a novel way, we
have provided new support for the claim that the variable behav-
ioral patterns of VPCs reflect an underlying gradient structure.
This provides further support for cognitive architectures that in-
corporate gradient mental representations across all levels of pro-
cessing.
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DISTINGUISHING DISCRETE FROM GRADIENT 1555
Appendix
Critical Stimuli From Experiments 1 and 2
Experiment 1
Continuous Continuous
Subject + source VPC foil VPC
Aux Source VPC Source V Foil V Foil VPC compositionality compositionality
She will help out the waiter clear the drawer help the waiter clear out the drawer 1.58 6.73
They will throw over the check the essays throw the check over the 1.84 5.81
frisbee frisbee essays
We will set off the timer show the ponies set the timer show off the ponies 2.27 4.74
He will bring down the hold the line bring the crowd hold down the line 2.56 5.78
crowd
He will run up the hills hold the lizard run the hills hold up the lizard 2.64 4.32
We will make over the smooth the make the model smooth over the 2.68 4.64
model frosting frosting
He will run over the trail pass the dessert run the trail pass over the 3.00 5.30
dessert
They will keep up the secret carry the keep the secret carry up the 3.07 -
groceries groceries
They will live down the lie pull the photo live the lie pull down the photo 3.09 4.86
They will take over the look the part take the look over the part 3.18 7.30
position position
They will boil down the shoot the hawk boil the soup shoot down the 3.70 5.64
soup hawk
He will see through the think the see the rumors think through the 3.83 7.04
rumors thoughts thoughts
She will check out the drive the trucks check the books drive out the trucks 3.96 4.81
books
We will pull off the sticker mark the pages pull the sticker mark off the pages 4.07 5.93
She will throw out the trash buy the store throw the trash buy out the store 4.29 5.17
We will dress up the doll charge the dress the doll charge up the phone 4.32 5.75
phone
He will strike down the hold the job strike the hold down the job 4.62 5.78
balance balance
They will catch up the mark the lumber catch the mark up the lumber 491 5.84
students students
We will tie up the canoe buy the supplies tie the canoe buy up the supplies 5.20 5.56
She will break off the stick pair the geese break the stick pair off the geese 5.52 6.17
He will buy up the land round the buy the land round up the 5.56 4.08
fractions fractions
We will call forth the juror bring the gifts call the juror bring forth the gifts 5.56 7.36
They will seal off the bag lead the dance seal the bag lead off the dance 6.04 6.13
We will bring in the dog throw the towel bring the dog throw in the towel 6.04 6.00
She will close down the shut the close the slide shut down the 6.09 4.16
slide computer computer
She will drive away the give the prizes drive the give away the 6.50 6.14
candidate candidate prizes
We will bust out the moves bail the prisoner bust the moves bail out the prisoner 6.64 6.52
He will lock up the bicycle cut the meat lock the bicycle cut up the meat 6.85 7.09
He will eat up the cover the eat the cover up the 7.09 5.75
spaghetti research spaghetti research
They will wring out the rag find the word wring the rag find out the word 7.16 6.26
She will patch up the tire set the patch the tire set up the 7.87 5.83
boundaries boundaries
She will finish up the game close the café finish the game close up the café 8.55 6.27

(Appendix continues)



gical Association or one of its allied publishers.

This document is copyrighted by the American Psycholo
This article is intended solely for the personal use of the individual user

and is not to be disseminated broadly.

1556

Experiment 2
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Semantic similarity rating (mean

Source Foil source-foil [SD]/mean foil-source [SD])
VPC A% Adjacent Shifted Synonymous Adjacent Shifted ~ Synonymous
She will help out the clear the drawer  clear out the clear the drawer  clean the drawer 7.8 (2.4)/ 8.1 (1.4)/ 7.4 (1.4)/
waiter drawer out 7.9 (1.7) 8.7 (0.7) 6.7 (2.3)
They will ~ throw over the  check the check over the check the review the 8.6 (0.7)/ 8.5 (1)/ 8.3 (0.9)/
frisbee essays essays essays over essays 8.9 (0.3) 8.6 (0.7) 8.5(0.8)
We will set off the show the ponies  show off the show the ponies  display the 4(2.8)/ 5.1 (2.3)/ 6.8 (2.6)/
timer ponies off ponies 8.9 (0.3) 7.6 (1.3) 8.7 (0.7)
He will run up the hold the lizard hold up the hold the lizard carry the lizard 7.2 (1.9)/ 7.6 (1.2)/ 7.7/
hills lizard up 7.3(1.9) 8 (1) 6.1 (3.2)
He will run over the pass the dessert pass over the pass the dessert skip the dessert 5Q2.9)/ 7.3 (1.8)/ 4.9 (3.5)/
trail dessert over 5.1(3) 8.3 (1.1) 6(2.7)
They will  keep up the carry the carry up the carry the lift the groceries 8.8 (0.4)/ 8.1 (1) 7.8 (1.3)/
secret groceries groceries groceries up 7.8 (0.8) 8.2 (1.1) 7.4 (1.2)
They will  live down the pull the photo pull down the pull the photo remove the 6 (2.1)/ 5.9 (3)/ 7.5(.1)/
lie photo down photo 6.2 (2.1) 7(2.1) 7.3 (2.5)
They will  take over the look the part look over the look the part examine the part 2.7 (3.1)/ 3227/ 4.1 (3.2)/
position part over 2.5(1.9) 4.8 (3) 3.8 (2.8)
They will ~ boil down the shoot the hawk shoot down the shoot the hawk kill the hawk 7.8 (2.5)/ 8.2 (1)/ 7.7 (1.3)/
soup hawk down 8.1(0.9) 8.2 (1.9) 7.5 (0.8)
He will see through think the think through think the contemplate the 7.3 (1.8)/ 5.8 (1.5)/ 7.2 (1.8)/
the rumors thoughts the thoughts thoughts thoughts 7.5(1.2) 7(1.3) 7.6 (2.2)
through
We will pull off the mark the pages mark off the mark the pages check the pages 8(0.9)/ 7.2 (L.6)/ 8.1 (1.9)/
sticker pages off 7.2 (1.8) 6.2 (2.9) 5.32.7)
She will throw out the buy the store buy out the buy the store empty the store 5.6 (2.8)/ 5.7 Q.7 3 2.1/
trash store out 4.4 (3.1) 52.7) 43(3.2)
We will dress up the charge the charge up the charge the power the phone 8.7 (0.5)/ 8.3 (1.3)/ 7.7 (1.6)/
doll phone phone phone up 8.3(1.3) 8.8 (0.4) 6.3 (2.6)
He will strike down hold the job hold down the hold the job keep the job 6.6 (2.2)/ 7.6 (L.7)/ 8.4 (1)
the balance job down 8 (1.7) 7.1 (2.1) 8.5(1.1)
They will  catch up the mark the mark up the mark the measure the 6.5 (2.3)/ 7.4 (2.5)/ 6(2.2)/
students lumber lumber lumber up lumber 6.4 (2.5) 5.6 (2.9) 35124
She will break off the pair the geese pair off the pair the geese partner the 7.6 (2.4)/ 6.4 (2.6)/ 8.5(0.7)/
stick geese off geese 8.4 (1) 8(1.2) 8.5(0.7)
We will call forth the bring the gifts bring forth the bring the gifts reveal the gifts 7.2 (1.8)/ 7.8 (1.4)/ 5.5 (L.1)/
juror gifts forth 8(1.3) 7.9 (1.3) 4.5 (1.6)
She will drive away the  give the prizes give away the give the prizes donate the 7.9 (1.3) 8.4 (.8)/ 6.2 (2.6)/
candidate prizes away prizes /8.3 (1.1) 8.3 (1.1) 7.8 (1.9)
We will bust out the bail the prisoner  bail out the bail the prisoner  free the prisoner 7.4 (2)/ 8.5 (1.3)/ 7.5 (1.4)/
moves prisoner out 7.6 (2.5) 7.7 (1.3) 7.9 (1.2)
He will lock up the cut the meat cut up the meat  cut the meat up slice the meat 8.8 (0.4)/ 8.7 (0.5)/ 8.9 (0.3)/
bicycle 8.4 (1.1) 8.5(1) 8.6 (0.7)
He will eat up the cover the cover up the cover the conceal the 6.9 (2)/ 7.1 (1.5)/ 52 2.1/
spaghetti research research research up research 3.73.2) 4(3.2) 6.2 (3)
They will ~ wring out the find the word find out the find the word discover the 6.7 (1.9)/ 7.5 (1)/ 7.9 (1.4)/
rag word out word 7.6 (1.1) 7.4 (2) 8.3(1.3)
She will patch up the set the set up the set the outline the 8(2.2)/ 8.5 (0.8)/ 7.2 (1.6)/
tire boundaries boundaries boundaries up boundaries 8.4(0.5) 8.4 (1) 7.6 (1.4)
She will finish up the close the café close up the close the café shut the café 8.22 (1.7)/ 8.6 (0.5)/ 8.4 (0.8)/
game café up 7.52.3) 8.4 (1.3) 8.2(1.1)
Note. 'V represents ‘verb’; Aux represents ‘auxillary’.
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