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Abstract

A second fundamental form is introduced for arbitrary closed subsets
of Euclidean space, extending the same notion introduced by J. Fu for
sets of positive reach in [Fu89]. We extend well known integral-geometric
formulas to this general setting and we provide a structural result in terms
of second fundamental forms of submanifolds of class 2 that is new even
for sets of positive reach. In the case of a large class of minimal submani-
folds, which include viscosity solutions of the minimal surface system and
rectifiable stationary varifolds of arbitrary codimension and higher mul-
tiplicities, we prove the area formula for the generalized Gauss map in
terms of the discriminant of the second fundamental form and, adapting
techniques from the theory of viscosity solutions of elliptic equations to
our geometric setting, we conclude a natural second-order-differentiability
property almost everywhere. Moreover the trace of the second fundamen-
tal form is proved to be zero for stationary integral varifolds.

MSC-classes 2010. 53A07, 53C65, 49Q05, 49Q20.

1 Introduction (For notation and terminology, see 2.)

Motivation

In the attempt to introduce models to efficiently study the severe singularities
emerging from many mathematical problems in the Euclidean space, classical
smooth submanifolds have been generalized in different ways, and many classes
of generalized submanifolds are currently studied for both theoretical and prac-
tical reasons. Since the concept of curvature has a fundamental role in the
study of smooth submanifolds, it is natural to try to introduce a similar con-
cept for such generalized submanifolds and this has been actually done in various
cases. Among all of them, we recall here the class of (certain union of) sets of
positive reach in [Fed59], [Zäh86], [Fu89] and [RZ01], for which it is possible
to extend classical facts of differential and convex geometry as the Steiner for-
mula, the principal kinematic formula, the existence of the normal cycle and the

∗email: mario.santilli@aei.mpg.de; mariosntl@gmail.com

1

http://arxiv.org/abs/1708.01549v1


Morse theory. Furthermore we recall the class of curvature varifolds in [Hut86]
and [Man96], that is designed for applications in variational problems involving
curvature, because of the existence of a second fundamental form satisfying a
classical integration-by-parts identity and good compactness and semicontinuity
properties. However, no concept of curvature has been developed yet, that could
be used to study the geometric and regularity properties of generalized subman-
ifolds arising as solutions of very classical variational problems, as the critical
points of the area functional modelled by stationary integral varifolds. On the
other hand, a concept of curvature for arbitrary closed sets has been introduced
in [Sta79] and [HLW04] to obtain a very general Steiner formula; it agrees with
the aforementioned case of sets of positive reach and have found applications in
stochastic geometry, see [HLW04]. Therefore it is a natural question to under-
stand if this concept of curvature can be used to describe the geometric features
of generalized minimal submanifolds and we address this question in the present
paper.

Results of the present paper

The aim of this paper is twofold. In the first part (sections 3–6) we study
curvature properties of closed subsets of Euclidean space. Then, in section 7,
the results of the first part are applied to very general notions of minimal sub-
manifolds of arbitrary codimension, represented by either viscosity minimal sets
(a concept recently introduced in [Sav17]) or by stationary varifolds, and new
results on their geometric and regularity properties are proved.

We now provide a brief outline of the paper.

Second fundamental form of arbitrary closed subsets of Euclidean

space: sections 3–5. If A ⊆ Rn is closed and N(A) is the unit normal
bundle considered in [Sta79] and [HLW04], i.e.

N(A) = (A× Sn−1) ∩ {(a, u) : distance (A, a+ su) = s for some s > 0},

(whose fiber at a is denoted by N(A, a), see 4.1), we introduce in 4.11 the second
fundamental form QA of A as a function on N(A). This second fundamental
form extends the analogous concept introduced in [Fu89] for sets of positive
reach (see 4.15), and its principal curvatures, defined as in 4.14 and denoted
by −∞ < κ1 ≤ . . . ≤ κn−1 ≤ ∞, coincide up to an exceptional set of measure
zero with the generalized principal curvatures of [HLW04] (see 4.16). We extend
well known integral-geometric formulas, previously obtained for various special
classes, to the general setting of arbitrary closed sets (see 4.14(3), 5.6 and 5.7).
Furthermore we introduce the natural stratification of a closed set A ⊆ Rn (see
5.1–5.3) given by the subsets

A(m) = A ∩ {a : 0 < H
n−m−1(N(A, a)) <∞} for m = 0, . . . , n− 1,

and we prove the following structural result, that is new even in the case of sets
of positive reach.

Structural theorem on the second fundamental form (see 5.9). If A is a
closed subset of Rn and 0 ≤ m ≤ n− 1, then there exists a Borel set R ⊆ A(m)

such that H m(A(m) ∼ R) = 0 and the following two conditions hold.
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Lusin condition (N): if S ⊆ R such that H m(S) = 0, then

H
n−1(N(A) ∩ {(a, u) : a ∈ S}) = 0.

Locality of the second fundamental form : if M is an m dimensional subman-
ifold of class 2 with second fundamental form bM , then

QA(a, u) = −bM (a) • u

for H n−1 a.e. (a, u) ∈ N(A) ∩ {(a, u) : a ∈ R ∩M}.

The main result of [MS17] proves that A(m) can be H m almost covered by the
union of a countable collection of m dimensional submanifolds of class 2 of Rn.
Combining this result with the locality property, we conclude that the second
fundamental form QA can be described on A(m), outside an exceptional subset
of N(A) ∩ {(a, u) : a ∈ A(m)}, in terms of classical second fundamental forms.
However the exceptional subset, though projects onto a set of H m measure
zero, may have positive H

n−1 measure even in the case of convex sets, as the
example in 5.11 shows. All the results described so far are based on the study
carried in section 3 of the approximate differentiability properties of the nearest
point projection onto an arbitrary closed subset of Euclidean space.

A Lusin condition (N) for the normal bundle: section 6. A special
class of closed subsets of Euclidean space can be introduced by ruling out the
exceptional subsets of positive H

n−1 measure in 5.9. More precisely, for a closed
set A, we say that N(A) satisfies the m dimensional Lusin condition (N) if

H
n−1(N(A) ∩ {(a, u) : a ∈ S}) = 0, if S ⊆ A such that H

m(A(m) ∩ S) = 0.

This property of N(A) is not shared by all convex sets, as the example in
5.11 shows. On the other hand the main goal of section 7 is to prove that
this property holds for a large class of generalized minimal submanifolds (see
paragraph below). An immediate consequence of this condition is the area
formula for the generalized Gauss map in 6.6, where the discriminant of the
second fundamental form plays the same role of the Jacobian in the classical
area formula for functions. The following theorem is the central result of this
section.

A general criterion for second-order-differentiability (see 6.10). Sup-
pose 1 ≤ m < n are integers, A ⊆ Rn is a closed set with locally finite H m mea-
sure, N(A) satisfies the m dimensional condition (N), for H

m a.e. a ∈ A there
exists v ∈ Rn ∼ {0} such that limr→0 r

−1 sup{v • (x− a) : x ∈ B(a, r)∩A} = 0,
and there exists a nonnegative H n−1 measurable function f on N(A) such that

traceQA(a, u) ≤ f(a, u) for H
n−1 a.e. (a, u) ∈ N(A),

∫

K∩A

∫

{z}×N(A,z)

fmdH n−m−1dH mz <∞,

whenever K ⊆ Rn × Sn−1 is compact. Then H
m(A ∼ A(m)) = 0.

This result can be naturally compared with the classical result in [Tru89, The-
orem 1] (see also [CCKS96, 3.5]) asserting the twice super(sub)differentiability
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of viscosity sub(super)solutions of certain second order elliptic operators. For
continuous scalar functions the notion of twice super(sub)differentiability and
the associated notion of super(sub)differential have been introduced in [Tru89]
(see also [CCKS96, p. 381]). In our geometric setting, noting that no natural
distinction exists between the two cases, the subset A(m) can be interpreted
to be the set of points where A is “one-sided second-order differentiable” and
the role of the second order super(sub)differential belongs to N(A). Therefore
the conclusion “H m(A ∼ A(m)) = 0” is analogous to prove that a continuous
scalar function is twice sub(super)differentiable almost everywhere. However it
is remarkable that our result holds for non-graphical sets of arbitrary codimen-
sion. The proof is based on the aforementioned area formula for the generalized
Gauss map and we refer to 6.11 for further comments.

Regularity of generalized minimal submanifolds: section 7. In this
final section we deal with applications to minimal submanifolds of arbitrary
codimension in Euclidean space. They are represented by the viscosity minimal
sets recently introduced in [Sav17] as a notion of viscosity solution for the min-
imal surface system, see 7.1. They can be intuitively described as the largest
class of closed subsets including all minimal submanifolds of class 2 of arbitrary
codimension, for which the weak maximum principle holds; see [Sav17, p. 2] for
further comments. Employing the weak maximum principle in [Whi10], it is
not difficult to see that the support of a general stationary varifold is a viscosity
minimal set, see 7.10(1). The main result of this section is contained in 7.5,
where the Lusin condition (N) is verified for the normal bundle of a very large
class of viscosity minimal sets (which include every stationary varifold with a
uniform lower bound on the density). Then, the general criterion of section 6
can be applied to deduce second order differentiability properties of viscosity
minimal sets in 7.8, providing a natural extension of classical results for vis-
cosity solutions of elliptic equations in this geometric setting; see 6.11 and 7.9.
In the special case of stationary varifolds, our main regularity result can be
summarized as follows.

Rectifiable stationary varifolds of arbitrary codimension (see 7.11). If
0 < d < ∞, 1 ≤ m ≤ n − 1 are integers and V is an m dimensional station-
ary varifold in Rn such that Θm(‖V ‖, x) ≥ d for ‖V ‖ a.e. x ∈ Rn, then the
following three statements hold.

(1) N(spt ‖V ‖) satisfies the m dimensional condition (N) and
∫

Sn−1

H
0{a : (a, u) ∈ B} dH n−1u

=

∫

spt ‖V ‖

∫

{z}×{v:(z,v)∈B}

| discrQspt ‖V ‖|dH
n−m−1dH mz,

for every H n−1 measurable set B ⊆ N(spt ‖V ‖).

(2) traceQspt‖V ‖(a, u) ≤ 0 for H n−1 a.e. (a, u) ∈ N(spt ‖V ‖); in case V is
integral, “≤” can be replaced by “=”.

(3) H m
(

(spt ‖V ‖) ∼ (spt ‖V ‖)(m)
)

= 0; in particular spt ‖V ‖ can be H m

almost covered by countably many m dimensional submanifolds of class 2.

We refer to 7.12–7.15 for comments within the theory of varifolds.
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Lines of further studies

Once the Lusin condition (N) introduced in 6.1 has been verified for the minimal
submanifolds considered in section 7, the regularity results are consequences of
the abstract theory established in section 6. In particular the general criterion
for second-order-differentiability is applied in the special case f = 0.

The general setting of section 6, as well as the summability condition of f
in the general criterion, suggest other possible applications, than the case con-
sidered here. In particular, it is natural to ask if the hypothesis “δV = 0” can
be replaced by “‖δV ‖sing = 0 and h(V, ·) ∈ Lloc

m (‖V ‖,Rn)” in the regularity
result for varifolds in section 7. These varifolds naturally arise in variational
problems involving the Willmore functional (see [Sch09]). The key step would
be to establish the Lusin condition (N) in this more general setting and, in this
regard, the announcement in 7.13 is surely encouraging.

Acknowledgments. The author wish to thank Ulrich Menne for many indis-

pensable discussions about most of the content of the paper, to have provided the

unpublished lecture notes where the central idea of 7.5 originates from (see 7.6), and

to have suggested the example in 5.11.

2 Notation and preliminaries

Notation and terminology

The notation and the terminology used without comments agree with [Fed69,
pp. 669–676]. Additionally,

if A ⊆ Rn, then δA : Rn → R is the distance function to A;

the symbol • denotes the standard inner product of Rn;

if T is a linear subspace of Rn, then T♮ : R
n → Rn is the orthogonal projection

onto T and T⊥ = Rn ∩ {v : v • u = 0};

if X is a set, f : X → Rn is a function and u ∈ Rn, then f • u denotes the
scalar function given by (f • u)(x) = f(x) • u whenever x ∈ X ;

if X and Y are sets, Z ⊆ X × Y and S ⊆ X , then Z|S = Z ∩ {(x, y) : x ∈ S};

if M is an m dimensional submanifold of class 2, then bM is the second fun-
damental form;

the maps p,q : Rn × Rn → Rn are given by p(x, v) = x and q(x, v) = v,
whenever (x, v) ∈ Rn ×Rn.

if A ⊆ Rn and m ≥ 1 is an integer, we say that A has locally finite H m

measure if H m(A ∩K) <∞ whenever K ⊆ Rn is compact;

if A ⊆ Rn and m ≥ 1 is an integer, we say that A is countably (H m,m)
rectifiable of class 2 if A can be H m almost covered by the union of
countably many m dimensional submanifolds of class 2 of Rn; we omit
the prefix “countably” when H m(A) <∞;

if X and Y are metric spaces and f : X → Y is a function such that f and
f−1 are Lipschitzian functions, then we say that f is a bi-Lipschitzian
homeomorphism;
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Preliminaries

Basic preliminaries for the present paper are the classical methods and results of
Geometric Measure Theory for which we refer to [Fed69]. Further preliminaries
are collected here.

Notions of differentiability In the present paper we employ the concept of
approximate differentiability for functions and sets, for which we refer to [San17].
Moreover we use the classical notion of pointwise differentiability for functions
defined as in [San17, p. 4]. Finally, the concept of pointwise differentiability for
sets introduced in [Men16] is employed in 2.10 and 3.10(3).

For reader’s convenience, we collect here some additional (basic) facts on
approximately differentiable functions.

2.1 Lemma. Suppose n ≥ 1 is an integer, B ⊆ A ⊆ Rn, a ∈ A and f : A→ R

are such that f is approximately differentiable at a, Θ∗n(L n
x B, a) = 1 and

f(x) ≤ f(a) for every x ∈ B.
Then apD f(a) = 0.

Proof. Assume a = 0 and f(0) = 0. If apD f(0) 6= 0 then there would be ǫ > 0
and a non empty open cone C such that apD f(0)(x) ≥ 2ǫ|x| for every x ∈ C.
Therefore f(x)− apD f(0)(x) ≤ −2ǫ|x| for every x ∈ C ∩B and

Θ∗n(L n
x B ∼ C, 0) < 1, Θ∗n(L n

x B ∩ C, 0) > 0,

Θ∗n(L n
x Rn ∼ {x : |f(x)− apD f(0)(x)| ≤ ǫ|x|}, 0) > 0.

This would be a contradiction.

2.2 Remark. We observe that a similar argument proves that if f is approxi-
mately differentiable of order 2 at a then apD2 f(a) ≤ 0. However, this fact will
not be used in the sequel.

2.3 Lemma. Suppose n ≥ 1 and ν ≥ 1 are integers, B ⊆ A ⊆ Rn, a ∈ B
and f : A → Rν are such that f is approximately differentiable at a, f |B is a
bi-Lipschitzian homeomorphism and Θn(L n

x Rn ∼ B, a) = 0.
Then ker apD f(a) = {0}.

Proof. If Γ = (1/2)(Lip(f |B)−1)−1 then |f(y) − f(x)| ≥ 2Γ|y − x| whenever
y, x ∈ B. If there was v ∈ Rn ∼ {0} such that apD f(a)(v) = 0, then there
would exist a non empty open cone C such that

| apD f(a)(u)| ≤ Γ|u| whenever u ∈ C.

Choosing 0 < ǫ < Γ and letting D = {u+ a : u ∈ C} and

E = A ∩ {x : |f(x) − f(a)− apD f(a)(x− a)| ≤ ǫ|x− a|},

we would notice that Θn(L n
x Rn ∼ E, a) = 0 and B ∩ D ∩ E = ∅ and we

would get a contradiction.

2.4 Lemma. If m,n, ν are positive integers, D ⊆ Rm, U ⊆ Rn is open,
f : D → Rn, g : U → Rν , x ∈ D, f(x) ∈ U , f is approximately differentiable
at x and g is differentiable at f(x), then g ◦ f is approximately differentiable at
x with

apD(g ◦ f)(x) = D g(f(x)) ◦ apD f(x).
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Proof. Combine [San17, 2.8] and [Fed69, 3.1.1(2)].

2.5 Lemma. If n, ν ≥ 1 are integers, D ⊆ Rn, z ∈ D and g : Rn → Rν is a
Lipschitzian function such that g|D is approximately differentiable at z, then g
is differentiable at z with apD(g|D)(z) = D g(z).

Proof. This is proved in [Fed69, 3.1.5].

Level sets of distance function We recall classical facts on the structure
of the level sets of δA for an arbitrary closed set A. Besides the well known
rectifiability property that is an immediate consequence of Coarea formula (see
2.7), we state the structural result in [GP72] in a slightly different way (see 2.9).

2.6. It follows mechanically from the definitions that

δδ−1
A {s}(y) = δA(y)− s whenever δA(y) ≥ s and s > 0.

2.7. Since Lip δA ≤ 1 (see [Fed59, 4.8(1)]), it is a consequence of [Fed69, 3.2.15,
3.2.11] that δ−1

A {r} is countably (H n−1, n − 1) rectifiable with locally finite
H n−1 measure, for L 1 a.e. r > 0.

2.8 Lemma. If T ∈ G(n, n − 1), f : T → T⊥, α ∈ T , a = α + f(α) and
A = {χ+ f(χ) : χ ∈ T } are such that Tan(A, a) ⊆ T , then f is differentiable at
α with D f(α) = 0.

Proof. It follows immediately from the definition of Tan(A, a).

2.9 Theorem. If A is a closed subset of Rn, then δA is differentiable at H n−1

a.e. x ∈ δ−1
A {r}, for L

1 a.e. r > 0. Moreover if r > 0, x ∈ δ−1
A {r} is such that

δA is differentiable at x and T = {v : v • gradδA(x) = 0}, then there exists an
open neighborhood V of x and a Lipschitzian function f : T → T⊥ differentiable
at T♮(x) such that D f(T♮(x)) = 0 and V ∩ δ−1

A {r} = V ∩ {χ+ f(χ) : χ ∈ T }.

Proof. The first part evidently follows from [Fed69, 3.1.6, 3.2.11].
If r > 0, δA is differentiable at x ∈ δ−1

A {r} and T = {v : v • gradδA(x) = 0},
then, employing [Fed59, 4.8(3)], the proof of [GP72, Theorem 1] reveals that
there exist an open neighborhood V of x and a Lipschitzian function f : T → T⊥

such that V ∩ δ−1
A {r} = V ∩ {χ + f(χ) : χ ∈ T }. Moreover we observe that

Tan(δ−1
A {r}, x) ⊆ T . Therefore the conclusion comes from 2.8.

2.10 Remark. Employing [Men16, 3.14] we conclude that δ−1
A {r} is pointwise

differentiable of order 1 with Tan(δ−1
A {r}, x) = T at H n−1 a.e. x ∈ δ−1

A {r} and
for L 1 a.e. r > 0.

Approximate tangent cone of a measure The concept of approximate
tangent vector to a measure is introduced in [Fed69, 3.2.16]. Besides the fun-
damental results given in [Fed69, 3.2.16–3.2.22, 3.3.18], we prove here some
additional facts (see 2.12 and 2.14) that directly follows from them.

First, the following elementary inequality is useful here and elsewhere.

2.11 Lemma. If X and Y are metric spaces, m ≥ 1 is an integer, θ(x) ≥ 0 for
H m a.e. x ∈ X, 0 ≤ γ < ∞ and f : X → Y is an univalent Lipschitzian map
onto Y such that γ is a Lipschitz constant for f−1, then

∫ ∗

X

θdH m ≤ γm
∫ ∗

Y

θ ◦ f−1dH m.
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Proof. We assume
∫ ∗

Y
θ ◦ f−1dH m < ∞. Then the conclusion easily follows

from the definition of upper integral in [Fed69, 2.4.2], using approximation by
upper functions.

2.12 Lemma. Suppose X and Y are normed vector spaces, P ⊆ X, m ≥ 1
is an integer, θ(x) ≥ 0 for H m a.e. x ∈ P , a ∈ P and f : X → Y is a
function differentiable at a such that f |P is a bi-Lipschitzian homeomorphism.
Additionally, we define the measures

ψ(A) =

∫ ∗

A∩P

θ dH m, µ(B) =

∫ ∗

B∩f [P ]

θ ◦ (f |P )−1dH m,

whenever A ⊆ X and B ⊆ Y .
Then D f(a)[Tanm(ψ, a)] ⊆ Tanm(µ, f(a)).

Proof. Firstly we prove that Θm(ψ xX ∼ f−1[T ], a) = 0, whenever T ⊆ Y such
that Θm(µ xY ∼ T, f(a)) = 0. In fact, for such a subset T , if S = f−1[T ], γ is
a Lipschitz constant for f |P and(f |P )−1 and r > 0, we observe that

f [(P ∼ S) ∩B(a, r)] ⊆ (f [P ] ∼ T ) ∩B(f(a), γr),

and we employ 2.11 to get that ψ(B(a, r) ∼ S) ≤ γmµ(B(f(a), γr) ∼ T ).
Therefore D f(a)[Tanm(ψ, a)] ⊆ Tanm(µ, f(a)) by [Fed69, 3.1.21, p. 234] and
[Fed69, 3.2.16, p. 252].

2.13 Remark. If θ is the characteristic function of P then, by [Fed69, 2.4.5], we
have that ψ = H m

xP and µ = H m
x f [P ].

2.14 Lemma. Suppose 1 ≤ k ≤ ν are integers, E ⊆ Rν is countably (H k, k)
rectifiable and H

k measurable, θ is a H
k
xE measurable R valued map such

that
∫

E

θ dH k <∞, θ(z) > 0 for H
k a.e. z ∈ E,

and ψ is the measure over Rν given by

ψ(S) =

∫ ∗

E∩S

θ dH k whenever S ⊆ Rν .

Then Tank(ψ, z) is a k dimensional plane contained in Tank(H k
xE, z) for

H k a.e. z ∈ E and

Tank(H k
xF, z) ⊆ Tank(ψ, z) for H

k a.e. z ∈ F ,

whenever F ⊆ E is H k measurable such that H k(F ) <∞.

Proof. Firstly we observe that ψ(S) = 0 if and only if H k(S) = 0. Therefore
Rν is (ψ, k) rectifiable and, employing [Fed69, 2.4.10, 2.10.19(3)],

Θ∗k(ψ, z) <∞ for ψ a.e. z ∈ Rν .

We apply [Fed69, 3.3.18] to conclude that Tank(ψ, z) ∈ G(n, k) for H k a.e.
z ∈ E. If F ⊆ E is H k measurable and H k(F ) <∞, we define

Fi = F ∩ {z : θ(z) ≥ i−1} for every integer i ≥ 1,

8



we observe that Tank(H k
xF, z) = Tank(H k

xFi, z) for H k a.e. z ∈ Fi by
[Fed69, 2.10.19(4)], and we use [Fed69, 3.2.16] to conclude

Tank(H k
xF, z) ⊆ Tank(ψ, z) for H

k a.e. z ∈ F .

Since by [Fed69, 3.2.14] the set E can be H
k almost covered by countably

many H k measurable k rectifiable subsets of Rν, we may apply [Fed69, 3.2.19]
to conclude that Tank(ψ, z) ⊆ Tank(H k

xE, z) for H k a.e. z ∈ E.

Normal bundle of smooth submanifolds We recall the basic structural
result on the normal bundle of a submanifold of class 2 of Euclidean space.

2.15 Lemma. Let M ⊆ Rn be an m dimensional submanifold of class 2 and
let N = Nor(M) ∩ (M × Sn−1).

Then N is a n − 1 dimensional submanifold of class 1 of Rn × Rn and,
if (a, u) ∈ N then Tan(N, (a, u)) is the set of (τ, v + D ν(a)(τ)) such that
τ ∈ Tan(M,a), v ∈ Nor(M,a) is orthogonal to u and ν is a unit normal vector
field of class 1 on an open neighborhood of a such that ν(a) = u.

Proof. The conclusion is a direct consequence of the fact that, using a normal
frame of M in an open neighborhood Z of a, we can locally parametrize N at
(a, u) using the product manifold (M ∩ Z)× Sn−m−1.

2.16 Remark. If (a, u) ∈ N , τ ∈ Tan(M,a), τ1 ∈ Tan(M,a) and σ1 ∈ Rn is
such that (τ1, σ1) ∈ Tan(N, (a, u)), then

τ • σ1 = −bM (a)(τ, τ1) • u.

3 Approximate differentiability of the nearest
point projection

In this section we provide the basic technical tools that are used in the subse-
quent sections. In particular we study the approximate differentiability proper-
ties of the nearest point projection onto an arbitrary closed set A in 3.6, and
the second-order differentiability properties of certain subsets of the level sets
of δA in 3.10.

3.1 Definition. Suppose A ⊆ Rn is closed and U is the set of all x ∈ Rn

such that there exists a unique a ∈ A with |x − a| = δA(x). The nearest point
projection onto A is the map ξA characterised by the requirement

|x− ξA(x)| = ξA(x) for x ∈ U.

We let νA and ψA to be the functions on U ∼ A such that

νA(z) = δA(z)
−1(z − ξA(z)) and ψA(z) = (ξA(z),νA(z)),

whenever z ∈ U ∼ A.

3.2 Remark. The notation agree with [Fed59, 4.1].
It is proved in [Fed59, 4.8(4)], [MS17, 3.5] and [Fed59, 4.8(2)] that ξA is

continuous, dmn ξA is a Borel subset of Rn and ξ−1
A {a} is a convex subset

of Rn whenever a ∈ A.
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3.3 Remark. If U = (dmn ξA) ∼ A, then, noting 3.2, we readily infer that for
every 0 < r <∞ the map ψA|U ∩ δ−1

A {r} is an homeomorphism with

(ψA|U ∩ δ−1
A {r})−1(a, u) = a+ ru whenever (a, u) ∈ ψA[U ∩ δ−1

A {r}].

3.4 Remark. If v ∈ Rn ∼ {0}, a ∈ A and |v| = δA(a + v), then a + tv ∈
(dmn ξA) ∼ A and ξA(a+ tv) = a whenever 0 < t < 1.

3.5 Lemma. Suppose A ⊆ Rn is closed, x ∈ (dmn ξA) ∼ A, ξA is approxi-
mately differentiable at x and T = Rn ∩ {v : v • νA(x) = 0}.

Then δA is differentiable at x, νA is approximately differentiable at x,

apD ξA(x) • νA(x) = 0 and apDνA(x) = |x− ξA(x)|
−1(T♮ − apD ξA(x)).

In particular ker apDψA(x) ⊆ T⊥.

Proof. Since δA(y) = |y − ξA(y)| for y ∈ dmn ξA, we use 2.4 and 2.5 to deduce
that δA is differentiable at x. Moreover νA is approximately differentiable at x
by 2.4. Let r = |x − ξA(x)| and we use the continuity of ξA (see 3.2) to select
0 < δ < r such that |ξA(z)− ξA(x)| < r whenever z ∈ U(x, δ) ∩ dmn ξA. Since
|ξA(z)− x| ≥ r whenever z ∈ dmn ξA, we compute

(ξA(z)− x) • νA(x) = (ξA(z)− ξA(x)) • νA(x)− r < 0,

|(ξA(z)− x) • νA(x)|
2 = |ξA(z)− x|2 − |T♮(ξA(z)− ξA(x))|

2

≥ r2 − |T♮(ξA(z)− ξA(x))|
2,

(ξA(z)− ξA(x)) • νA(x) ≤ r − (r2 − |T♮(ξA(z)− ξA(x))|
2)1/2,

whenever z ∈ U(x, δ) ∩ dmn ξA. Therefore apD ξA(x) • νA(x) = 0 by 2.1 and
2.4. Using 2.4 we can now easily compute the desired formula for apDνA(x),
whence we deduce the postscript.

3.6 Theorem. If A is a closed subset of Rn and if we define:

the sets Aλ corresponding to 1 < λ <∞, given by x ∈ (dmn ξA) ∼ A such
that δA(ξA(x) + λ(x− ξA(x))) = λδA(x),

the sets Dλ corresponding to 1 < λ < ∞, given by x ∈ Aλ such that
Θn(L n

x Rn ∼ Aλ, x) = 0 and ξA is approximately differentiable at x,

the maps ht on (dmn ξA) ∼ A corresponding to 0 < t <∞, given by

ht(z) = ξA(z) + t(z − ξA(z)) whenever z ∈ (dmn ξA) ∼ A,

then the following four statements hold for 1 < λ <∞ and 0 < t < λ.

(1) Aλ is a Borel subset of Rn, Lip(ξA|Aλ) ≤ λ(λ − 1)−1 and ht|Aλ is a
bi-Lipschitzian homeomorphism onto Aλ/t with (ht|Aλ)

−1 = ht−1 |Aλ/t.

(2) L n(Aλ ∼ Dλ) = 0, the map ψA|Aλ has an extension Ψ : Rn → Rn ×Rn

such that Ψ is differentiable at every x ∈ Dλ with DΨ(x) = apDψA(x),
and ker apDψA(x) = {sνA(x) : s ∈ R} whenever x ∈ Dλ.
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(3) If x ∈ Dλ, then ht(x) ∈ Dλ/t, the map ht−1 is approximately differentiable
at ht(x) with apDht−1(ht(x)) = apD ht(x)

−1 and

apDψA(x) = apDψA(ht(x)) ◦ apDht(x).

(4) If x ∈ Dλ, the eigenvalues of apD ξA(x) and apDνA(x) belong to the
intervals 0 ≤ s ≤ λ(λ − 1)−1 and (1 − λ)−1δA(x)

−1 ≤ s ≤ δA(x)
−1,

respectively. In case apD ξA(x) is a symmetric endomorphism, so are
apD ξA(ht(x)) and apDνA(ht(x)).

Proof of (1). By 3.2 the set Aλ is a Borel subset of Rn. If x ∈ Aλ and y ∈ Aλ,
then we apply [MS17, 4.7(1)] with q, a, b and v replaced by λ|x−ξA(x)|, ξA(x),
ξA(y) and x− ξA(x) respectively, to infer that

(ξA(y)− ξA(x)) • (x − ξA(x)) ≤ (2λ)−1|ξA(x)− ξA(y)|
2,

and symmetrically,

(ξA(x) − ξA(y)) • (y − ξA(y)) ≤ (2λ)−1|ξA(x) − ξA(y)|
2.

Combining the two equations we get

|ξA(x)−ξA(y)||x− y| ≥ (ξA(x)−ξA(y))• (x− y) ≥ λ−1(λ− 1)|ξA(x)−ξA(y)|
2.

By 3.4, one infers ξA(ht(x)) = ξA(x) and ht−1(ht(x)) = x whenever x ∈ Aλ,
and ht[Aλ] ⊆ Aλ/t. Since 0 < t−1 < λ/t, the same conclusions hold with λ and
t replaced by λ/t and t−1 respectively, and (1) is proved.

Proof of (2). By (1), [Fed69, 2.10.19(4), 2.10.35] and [San17, 2.11(1)], we
conclude that L

n(Aλ ∼ Dλ) = 0. By (1) and [Fed69, 2.10.43], the map ξA|Aλ

has a Lipschitzian extension F : Rn → Rn. Then, by 2.5, the map F is
differentiable at every x ∈ Dλ with

DF (x) = apD ξA(x).

Defining G : Rn ∼ A→ Rn as G(x) = δA(x)
−1(x− F (x)) for x ∈ Rn ∼ A, we

notice that G is differentiable at every x ∈ Dλ with DG(x) = apD νA(x) by 3.5
and [Fed59, 4.8(3)] and the existence of the extension of ψA|Aλ is proved.

Finally, if x ∈ Dλ, we notice that DF (x)(νA(x)) = 0, since F (x+sνA(x)) =
ξA(x) for every −δA(x) < s < (λ − 1)δA(x). Then, using 3.5, we get the
remaining part of (2).

Proof of (3). If y = ht(x), we notice that ht is approximately differentiable at
x and ht−1(y) = x by (1). Therefore, by 2.3, (1) and [Buc92, Theorem 1], we
infer that

apDht(x) is an isomorphism of Rn,

Θn(L n
x Rn ∼ Aλ/t, y) = 0,

Θn(L n
x Aλ/t ∩ {z : |ht−1(z)− x− apDht(x)

−1(z − y)| > ǫ|z − y|}, y) = 0

whenever ǫ > 0. Therefore ht−1 is approximately differentiable at y with

apDht−1(y) = apDht(x)
−1.

Let Ψ be an extension of ψA|Aλ given by (2). Since ψA(z) = (Ψ◦ht−1)(z) when-
ever z ∈ Aλ/t by 3.4, we use 2.4 to infer that ψA is approximately differentiable
at y with

apDψA(y) = apDψA(x) ◦ apDht−1(y).
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Proof of (4). If µ ∈ R, v ∈ Sn−1 and apD ξA(x)(v) = µv, then (1−s)µ+s 6= 0
whenever 0 < s < λ and 0 ≤ µ ≤ λ(λ − 1)−1, since apDhs(x) is injective
by (3). If µ 6= 0, v ∈ Sn−1 and apDνA(x)(v) = µv then v • νA(x) = 0,
apD ξA(x)(v) = (1− δA(x)µ)v by 3.5, and (1− λ)−1δA(x)

−1 ≤ µ ≤ δA(x)
−1.

If apD ξA(x) is symmetric, then there exists an orthonormal basis v1, . . . , vn
of Rn and 0 ≤ µ1 ≤ . . . ≤ µn such that apD ξA(x)(vi) = µivi whenever
i = 1, . . . , n, by [Fed69, 1.7.3], and

apD ξA(ht(x))(vi) = µi((1− t)µi + t)−1vi whenever i = 1, . . . , n,

by (3). Therefore apD ξA(ht(x)) is symmetric and so is apDνA(ht(x)), by 3.5.

3.7 Remark. Combining 3.5 and 3.6(3), if 1 < λ < ∞, 0 < t < λ, x ∈ Dλ and
T = Rn ∩ {v : v • νA(x) = 0}, then

im apD ξA(ht(x)) = imapD ξA(x) ⊆ T,

im apDνA(ht(x)) = imapD νA(x) ⊆ T.

3.8 Remark. If 0 < R = reach(A), 0 < r < R and 0 < δA(x) ≤ r then, by
[Fed59, 4.8(6)],

sup{t : ξA(ξA(x) + t(x− ξA(x))) = ξA(x)} ≥ R/r;

in particular, Rn ∩ {x : 0 < δA(x) ≤ r} ⊆ AR/r.

3.9 Remark. In case A is convex, the map ht is called “dilation with center A”
in [Wal76, §3].

3.10 Theorem. Suppose 1 < λ <∞, Aλ and Dλ are as in 3.6,

Mr = δ−1
A {r} and Nr =Mr ∩ Aλ for every 0 < r <∞.

Then the following four statements hold.

(1) For every r > 0, ψA|Nr is a bi-Lipschitzian homeomorphism and ψA[Nr]
is a countably (H n−1, n − 1) rectifiable closed subset of Rn × Sn−1 with
locally finite H n−1 measure.

(2) For every r > 0, Nr is countably (H n−1, n− 1) rectifiable of class 2 with
locally finite H

n−1 measure, apTan(Nr, x) ∈ G(n, n− 1) and

−|v|2 ≤ apD2Nr(x)(v, v) • (x− ξA(x)) ≤ (λ− 1)−1|v|2,

whenever v ∈ apTan(Nr, x), for H n−1 a.e. x ∈ Nr.

(3) For L 1 a.e. r > 0 and for H n−1 a.e. x ∈ Nr,

apTan(Nr, x) = Tan(Mr, x) = Rn ∩ {v : v • νA(x) = 0}

and there exist an open neighborhood V of x and a Lipschitzian func-
tion f : Tan(Mr, x) → Nor(Mr, x), pointwise differentiable of order 2 at
Tan(Mr, x)♮(x), such that

V ∩Mr = V ∩ {χ+ f(χ) : χ ∈ Tan(Mr, x)}, D f(Tan(Mr, x)♮(x)) = 0,

ptD2 f(Tan(Mr, x)♮(x)) ◦
⊙

2 Tan(Mr, x)♮ = apD2Nr(x).
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(4) For L 1 a.e. r > 0, H n−1(Nr ∼ Dλ) = 0,

(H n−1
xNr, n− 1) apDψA(x) = apDψA(x)| apTan(Nr, x),

apD2Nr(x)(u, v) • νA(x) = − apDνA(x)(u) • v,

whenever u, v ∈ apTan(Nr, x) and for H n−1 a.e. x ∈ Nr.

Proof of (1). Firstly we notice that whenever 0 < r <∞ the map ψA|Nr is a
bi-Lipschitzian homeomorphism by 3.3 and 3.6(1) and

ψA[Nr] = (A× Sn−1) ∩ {(a, u) : δA(a+ λru) = λr}.

Therefore ψA[Nr] is closed and ψA[Nr] ⊆ ψA[Ns] whenever 0 < s < r < ∞.
Moreover ψA[Nr]∩ (B(0, t)×Sn−1) ⊆ ψA[Nr ∩B(0, t+ r)] whenever r > 0 and
t > 0. Therefore (1) follows from 2.7.

Proof of (2). Let r > 0. By 3.6(1),

ψA[Nr ∩B(x, t)] ⊆ ψA[Nr] ∩ (B(ξA(x), λ(λ − 1)−1t)× Sn−1)

whenever t > 0 and x ∈ Nr, whence we deduce that Nr has locally finite H n−1

measure by (1). Evidently U(ξA(x), r) ∩Mr = ∅ whenever x ∈Mr, and by 2.6

U(ξA(x) + λ(x − ξA(x)), (λ − 1)r) ∩Mr = ∅ whenever x ∈ Nr.

Noting that ξA(x) = x− rνA(x) and ξA(x) +λ(x− ξA(x)) = x+(λ− 1)rνA(x)
for x ∈ Nr, we conclude that

(∗) lim sup
t→0

t−2 sup{δT (z − x) : z ∈ U(x, t) ∩Mr} <∞,

whenever x ∈ Nr and T = {v : v • νA(x) = 0}. Therefore, applying [San17,
5.4] with k = 1 and α = 1, [Fed69, 3.1.15] and [San17, 3.23, 4.12], we conclude
that Nr is countably (H n−1, n− 1) rectifiable of class 2, Nr is approximately
differentiable of order 2 with apTan(Nr, x) ∈ G(n, n− 1) for H

n−1 a.e. x ∈ Nr

and the desired estimate for apD2Nr(x) holds at H n−1 a.e. x ∈ Nr.

Proof of (3). First, we notice gradδA(x) = νA(x) for H n−1 a.e. x ∈ Mr and
for L 1 a.e. r > 0 by 2.9 and [Fed59, 4.8(3)]. Second, we apply 2.10, (∗) and
[Men16, 5.7(3)] to infer that Mr is pointwise differentiable of order 2 with

Tan(Mr, x) = Rn ∩ {v : v • νA(x) = 0},

at H n−1 a.e. x ∈ Nr and for L 1 a.e. r > 0. Third, Mr and Nr are ap-
proximately differentiable of order 2 with apTan(Nr, x) = apTan(Mr, x) =
Tan(Mr, x) and

apD2Nr(x) = apD2Mr(x) = ptD2Mr(x,Tan(Mr, x)),

at H n−1 a.e. x ∈ Nr and for L 1 a.e. r > 0, as may be inferred from (2), [San17,
3.23, 3.22] and [Fed69, 2.10.19(4)]. Fourth, if we fix r > 0 and x ∈ Nr such that
the statements above hold and δA is differentiable at x, then we may combine
2.9 and [Men16, 3.14] to infer the existence of V and f as required by (3).
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Proof of (4). By 3.6(2) and [Fed69, 3.2.11] we get that H n−1(Nr ∼ Dλ) = 0
for L 1 a.e. r > 0. Therefore for such a number r > 0, by 3.6(2) and [Fed69,
3.2.16], the map ψA is (H n−1

xNr, n−1) approximately differentiable at H
n−1

a.e. x ∈ Nr with

(H n−1
xNr, n− 1) apDψA(x) = apDψA(x)| apTan(Nr, x).

Therefore, by [San17, 3.25], (1), (2) and (3),

apD2Nr(x)(u, v) • νA(x) = − apD νA(x)(u) • v,

for L 1 a.e. r > 0, H n−1 a.e. x ∈ Nr and whenever u, v ∈ apTan(Nr, x).

4 Second fundamental form

For an arbitrary closed set we introduce the normal bundle in 4.1, the second
fundamental form in 4.11 and the associated principal curvatures in 4.14. Clas-
sical facts (including a well known integral geometric formula), which have been
previously proved for various special classes of closed subsets, are extended to
arbitrary closed sets in 4.14. Moreover, a basic estimate is proved in 4.12 and
we compute in 4.19 the second fundamental form of the image of an arbitrary
closed set under smooth diffeomorphisms.

4.1 Definition. Suppose A is a closed subset of Rn. We define

N(A) = (A× Sn−1) ∩ {(a, u) : δA(a+ su) = s for some s > 0}.

Moreover we let N(A, a) = {v : (a, v) ∈ N(A)} for a ∈ A.

4.2 Remark. We notice that N(A) coincides with the normal bundle of A intro-
duced in [HLW04, §2.1]. Moreover, we let Dis(A) to be the distance bundle of
A introduced in [MS17, 4.1] and we recall from [MS17, 4.2, 4.6] that Dis(A, a)
is a closed convex subset of Nor(A, a) and

N(A) = {(a, |v|−1v) : 0 6= v ∈ Dis(A, a)}.

4.3 Remark. Using the notation of 3.6 and noting 3.4, we observe that

N(A) = ψA[(dmn ξA) ∼ A] = ψA[Aλ] =
⋃

r>0ψA[Aλ ∩ δ−1
A {r}],

whenever 1 < λ <∞. Therefore, by 3.10(1), it follows that N(A) is a countably
(H n−1, n − 1) rectifiable Borel subset of Rn × Sn−1. There are closed sets A
for which N(A) does not have locally finite H n−1 measure.

4.4 Remark. Suppose reach(A) = R > 0, 1 < λ < ∞ and 0 < r < Rλ−1.
Since AR/r ⊆ Aλ, we deduce by 3.8, 4.2, 4.3, [Fed59, 4.8(12)] and the displayed
equation in the proof of 3.10(1), that

δ−1
A {r} = Aλ ∩ δ−1

A {r}, ψA[δ
−1
A {r}] = Nor(A) ∩ (A× Sn−1).

Therefore N(A) = Nor(A) ∩ (A × Sn−1) and N(A) has locally finite H n−1

measure by 3.10(1).

In 4.5–4.10 we provide the necessary preliminaries for 4.11.
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4.5 Definition. If A is a closed subset of Rn, we define

ρ(A, x) = sup{t : δA(ξA(x) + t(x− ξA(x))) = tδA(x)},

whenever x ∈ (dmn ξA) ∼ A .

4.6 Remark. Evidently 1 ≤ ρ(A, x) ≤ ∞ whenever x ∈ (dmn ξA) ∼ A. Moreover
(see 3.6) Aλ = {y : ρ(A, y) ≥ λ} whenever λ > 1; whence we deduce that ρ(A, ·)
is a Borel map whose domain is a Borel subset of Rn by 3.2 and 3.6(1).

4.7 Definition. If f is a function mapping a subset of Rn into R and a ∈ Rn,
we define

ap lim inf
x→a

f(x) = sup{s : Θn(L n
x {x : f(x) < s}, a) = 0}.

4.8 Definition. Suppose A is a closed subset of Rn and x ∈ (dmn ξA) ∼ A.
We say that x is a smooth point of ξA if and only if

(1) ap lim infy→x ρ(A, y) ≥ ρ(A, x) > 1,

(2) ξA is approximately differentiable at x,

(3) apD ξA(x) is a symmetric endomorphism of Rn.

We say that a point (a, u) ∈ N(A) is a smooth point of N(A) if and only if
(a, u) = ψA(x) for some smooth point x of ξA.

4.9 Lemma. If A ⊆ Rn is closed, then the following three statements hold.

(1) If x is a smooth point of ξA, then ξA(x) + t(x− ξA(x)) is a smooth point
of ξA whenever 0 < t < ρ(A, x).

(2) L n a.e. x ∈ (dmn ξA) ∼ A such that ρ(A, x) > 1 is a smooth point of ξA.

(3) H n−1 a.e. (a, u) ∈ N(A) is a smooth point of N(A).

Proof. We define ht as in 3.6 for every 0 < t < ∞. If x is a smooth point of
ξA and 0 < t < ρ(A, x), then ρ(A, ht(x)) = t−1ρ(A, x) by 3.4 and, choosing
1 < λ < ρ(A, x) so that 0 < t < λ and employing 4.6 and 3.6(3)(4), we conclude
that ξA is approximately differentiable at ht(x), apD ξA(ht(x)) is symmetric
and ap lim infy→ht(x) ρ(A, y) ≥ λ/t, whence, letting λ → ρ(A, x), we get that
ht(x) is a smooth point of ξA and (1) is proved.

We observe that ap limy→x ρ(A, y) = ρ(A, x) for L n a.e. x ∈ (dmn ξA) ∼ A,
by 4.6 and [Fed69, 2.9.13, 2.10.19(4)]; by [Fed69, 3.2.11], the same conclusion
holds for H n−1 a.e. x ∈ δ−1

A [{r}] ∩ dmn ξA and for L 1 a.e. r > 0. Combining
3.5, 3.6(2) and 3.10(3)(4), we infer that ξA is approximately differentiable at
x and apD ξA(x) is symmetric for H n−1 a.e. x ∈ {y : ρ(A, y) > 1} ∩ δ−1

A {r}
and for L 1 a.e. r > 0; by [Fed69, 3.2.11], the same conclusion holds at L n a.e.
x ∈ {y : ρ(A, y) > 1}. Therefore (2) is proved and (3) follows from 4.6, 4.3 and
3.10(1).

4.10 Lemma. Suppose A is a closed subset of Rn and x is a smooth point
of ξA. Then the following statements hold.
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(1) If v, v1, v2 ∈ Rn are such that apD ξA(x)(v1) = apD ξA(x)(v2), then

apD ξA(x)(v) • apDνA(x)(v1) = apD ξA(x)(v) • apD νA(x)(v2),

apD ξA(x)(v1) • apDνA(x)(v) = apD ξA(x)(v) • apD νA(x)(v1).

(2) If 0 < t < ρ(A, x), y = ξA(x) + t(x − ξA(x)) and v, w, v1, w1 ∈ Rn are
such that (see 4.9(1))

apD ξA(y)(w) = apD ξA(x)(v), apD ξA(y)(w1) = apD ξA(x)(v1),

then

apD νA(x)(v1) • apD ξA(x)(v) = apDνA(y)(w1) • apD ξA(y)(w).

Proof. Let r = |x − ξA(x)|. In order to prove (1) we use 3.5 and 3.6(2) to
compute

apD ξA(x)(v) • apDνA(x)(v1)

= r−1v • [apD ξA(x)(v1)− (apD ξA(x) ◦ apD ξA(x))(v1)]

= r−1v • [apD ξA(x)(v2)− (apD ξA(x) ◦ apD ξA(x))(v2)]

= apD ξA(x)(v) • apDνA(x)(v2),

apD ξA(x)(v) • apDνA(x)(v1)

= r−1v • [apD ξA(x)(v1)− (apD ξA(x) ◦ apD ξA(x))(v1)]

= r−1 apD ξA(x)(v1) • [v − apD ξA(x)(v)]

= apD ξA(x)(v1) • apDνA(x)(v).

In order to prove (2) we use 3.5 and 3.6(2)(3)(4) to get

apD ξA(y)(w1) = apD ξA(x)(v1) = apD ξA(x)(T♮(v1))

= apD ξA(y)[apD ξA(x)(v1) + t(T♮(v1)− apD ξA(x)(v1))]

= apD ξA(y)[apD ξA(y)(w1) + tr apDνA(x)(v1)],

t−1r−1[apD ξA(y)(w1)− (apD ξA(y) ◦ apD ξA(y))(w1)]

= (apD ξA(y) ◦ apDνA(x))(v1),

apDνA(x)(v1) • apD ξA(x)(v)

= apDνA(x)(v1) • apD ξA(y)(w)

= (apD ξA(y) ◦ apDνA(x))(v1) • w

= t−1r−1[apD ξA(y)(w1)− (apD ξA(y) ◦ apD ξA(y))(w1)] • w

= apDνA(y)(w1) • apD ξA(y)(w).

4.11 Definition. Suppose A is a closed subset of Rn and (a, u) is a smooth
point of N(A). We define

TA(a, u) = imapD ξA(x) and QA(a, u)(τ, τ1) = τ • apDνA(x)(v1),

whenever x is a smooth point of ξA such that ψA(x) = (a, u), τ ∈ TA(a, u),
τ1 ∈ TA(a, u) and v1 ∈ Rn such that apD ξA(x)(v1) = τ1.

We call QA(a, u) second fundamental form of A at a in the direction u.
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4.12 Lemma. Let (a, u) be a smooth point of N(A).
Then QA(a, u) : TA(a, u)× TA(a, u) → R is a symmetric bilinear form and

TA(a, u) ⊆ {v : v • u = 0}. Moreover if r > 0 and δA(a+ ru) = r, then

QA(a, u)(τ, τ) ≥ −r−1|τ |2 whenever τ ∈ TA(a, u).

Proof. If x and y are smooth points of ξA such that ψA(x) = (a, u) = ψA(y)
then y = ξA(x)+ (δA(y)/δA(x))(x−ξA(x)), and the first part of the conclusion
follows from 3.7 and 4.10.

If 0 < s < r then a+su is a smooth point of ξA by 4.9(1), and ψA(a+su) =
(a, u). If τ ∈ TA(a, u) and v ∈ Rn is such that apD ξA(a + su)(v) = τ , then
from 3.5 and 3.6(4) we compute

QA(a, u)(τ, τ) = apD ξA(a+ su)(v) • apDνA(a+ su)(v)

= s−1 apD ξA(a+ su)(v) • (T♮(v)− apD ξA(a+ su)(v))

≥ −s−1| apD ξA(a+ su)(v)|2 = −s−1|τ |2.

Letting s→ r we get the second conclusion.

4.13 Remark. A similar estimate is proved in [San17, 4.12] for different notions
of curvature.

4.14 Theorem. Suppose A ⊆ Rn is closed, θ ∈ Lloc
1 (H n−1

xN(A)), θ is
H n−1

xN(A) almost positive and ψ is the measure over Rn ×Rn such that

ψ(S) =

∫ ∗

S∩N(A)

θ dH n−1 whenever S ⊆ Rn ×Rn.

For each smooth point (a, u) of N(A) we define κ1(a, u) ≤ . . . ≤ κn−1(a, u) so
that κm+1(a, u) = ∞, κ1(a, u), . . . , κm(a, u) are the eigenvalues of QA(a, u) and
m = dimTA(a, u).

Then the following three statements hold.

(1) For H n−1 a.e. (a, u) ∈ N(A), Tann−1(ψ, (a, u)) is a (n − 1) dimen-
sional plane contained in Tann−1(H n−1

xN(A), (a, u)) and there exist
u1(a, u), . . . , un−1(a, u) such that u1(a, u), . . . , un−1(a, u), u is an orthonor-
mal basis of Rn and
(

1

(1 + κi(a, u)2)
ui(a, u),

κi(a, u)

(1 + κi(a, u)2)
ui(a, u)

)

for i = 1, . . . , n− 1

is an orthonormal basis of Tann−1(ψ, (a, u)). [Here and in the sequel, a
function a : R → R is extended to ∞ by a(∞) = limk→∞ a(k).]

(2) For H n−1 a.e. (a, u) ∈ N(A),

TA(a, u) = p[Tann−1(ψ, (a, u))] and QA(a, u)(τ, τ1) = τ • σ1

whenever τ ∈ TA(a, u), τ1 ∈ TA(a, u) and (τ1, σ1) ∈ Tann−1(ψ, (a, u)).

(3) For every (H n−1
xN(A)) integrable R valued function f on N(A),

∫

N(A)

f(a, u)

n−1
∏

i=1

|κi(a, u)|

(1 + κi(a, u)2)1/2
dH n−1(a, u)

=

∫

Sn−1

∫

{a:(a,v)∈N(A)}×{v}

f dH 0 dH n−1v.
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Proof. We choose λ > 1. For every r > 0 we let Nr to be as in 3.10 and Sr to be
the set x ∈ Nr such that x is a smooth point of ξA, Θ

n(L n
x Rn ∼ Aλ, x) = 0,

Tann−1(H n−1
xNr, x) = Rn ∩ {v : v • νA(x) = 0},

Tann−1(H n−1
xψA[Nr],ψA(x)) ∈ G(n, n− 1).

By 3.10(1)(3), 4.6, 4.9(2) and [Fed69, 2.10.19(4), 3.2.11, 3.2.19] we infer that
H n−1(Nr ∼ Sr) = 0 and H n−1(ψA[Nr] ∼ ψA[Sr]) = 0 for L 1 a.e. r > 0. By
3.6(2), 3.10(1), 2.12 and 2.13, we notice that

apDψA(x)[Tan
n−1(H n−1

xNr, x)] = Tann−1(H n−1
xψA[Nr],ψA(x)),

whenever x ∈ Sr and for every r > 0. Therefore, if r > 0, x ∈ Sr,

χ1 ≤ . . . ≤ χn−1 are the eigenvalues of apDνA(x)|Tan
n−1(H n−1

xNr, x),

and v1, . . . , vn−1 is an orthonormal basis of Tann−1(H n−1
xNr, x) such that

apD νA(x)(vi) = χivi for i = 1, . . . , n− 1,

then we apply 3.5 to conclude that

apD ξA(x)(vi) = (1 − δA(x)χi)vi for i = 1, . . . , n− 1,

χi = δA(x)
−1 for i > dimTA(ψA(x)),

QA(ψA(x))(vi, vj) = χj(1 − δA(x)χj)
−1vi • vj for i, j ≤ dimTA(ψA(x)),

κi(ψA(x)) = χi(1− δA(x)χi)
−1 for i ≤ dimTA(ψA(x)),

and an orthonormal basis of Tann−1(H n−1
xψA[Nr],ψA(x)) is given by

(

1

(1 + κi(ψA(x))2)1/2
vi,

κi(ψA(x))

(1 + κi(ψA(x))2)1/2
vi

)

for i = 1, . . . , n− 1.

Therefore by 4.3, 3.10(1) and 2.14 we get (1) and (2).
Finally, when f is a nonnegative (H n−1

xN(A)) measurable R valued func-
tion, we may apply [Fed69, 3.2.22(3)] with W , Z and f replaced by ψA[Nr],
Sn−1 and q|ψA[Nr] to conclude

∫

ψA[Nr]

f(a, u)

n−1
∏

i=1

|κi(a, u)|(1 + κi(a, u)
2)−1/2 dH n−1(a, u)

=

∫

Sn−1

∫

{a:(a,v)∈ψA[Nr]}×{v}

f dH 0 dH n−1v

for L
1 a.e. r > 0 and (3) is a consequence of 4.3 and [Fed69, 2.4.7]. The general

case asserted in (3) is then a consequence of [Fed69, 2.4.4].

4.15 Remark. In case reach(A) > 0, it follows from 4.4 and 4.14(2) that QA

coincides with the second fundamental form of A introduced in [Fu89, 4.5] on
H n−1 almost all of N(A).
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4.16 Remark. The principal curvatures on N(A) introduced in [HLW04, p. 244],
to give an explicit representation of the support measures µ0(A; ·), . . . , µn−1(A; ·)
of A in [HLW04, Corollary 2.5], coincide on H

n−1 almost all of N(A) with
the functions κi introduced in 4.14. This follows from 4.14(1). The support
measures arise as coefficient measures of a general Steiner formula for A, see
[HLW04, Theorem 2.1].

4.17 Corollary. If A1 and A2 are closed subsets of Rn, then

QA1(a, u) = QA2(a, u) for H
n−1 a.e. (a, u) ∈ N(A1) ∩N(A2).

Proof. By 3.10(1) and 4.3 we can choose two Borel functions, θ1 and θ2, such
that θ1 = θ2 on H n−1 almost all of N(A1)∩N(A2) and the hypothesis of 4.14
are satisfied with A and θ replaced by A1 and θ1 and by A2 and θ2. If we let

ψ1(S) =

∫ ∗

S∩N(A1)

θ1 dH
n−1 and ψ2(S) =

∫ ∗

S∩N(A2)

θ2 dH
n−1

whenever S ⊆ Rn ×Rn, we notice that ψ1 xN(A2) = ψ2 xN(A1) and we may
apply 2.14 to conclude that

Tann−1(ψ2, ζ) = Tann−1(ψ2 xN(A1), ζ) = Tann−1(ψ1, ζ) ∈ G(n, n− 1)

for H n−1 a.e. ζ ∈ N(A1)∩N(A2). Therefore the conclusion comes from 4.14(2).

The following result is employed in the computation of the formula in 4.19,
as well as in the subsequent sections.

4.18 Lemma. Suppose A ⊆ Rn is a closed set, F : Rn → Rn is a diffeomor-
phism of class 2 onto Rn and νF : Rn × Sn−1 → Rn × Sn−1 is given by

νF (a, u) =

(

F (a),
(DF (a)−1)∗(u)

|(DF (a)−1)∗(u)|

)

whenever (a, u) ∈ Rn × Sn−1.

Then νF is a diffeomorphism of class 1 onto Rn × Sn−1 such that

(νF )
−1 = νF−1 and νF [N(A)] = N(F [A]).

Proof. A direct computation shows that νF is a diffeomorphism of class 1 onto
Rn × Sn−1 with (νF )

−1 = νF−1 .
If (a, u) ∈ N(A) and r > 0 such that U(a+ ru, r) ∩ A = ∅, we let

v = (DF (a)−1)∗(u), W = F [U(a+ ru, r)], S = BdryW.

Since S = F [BdryU(a+ ru, r)], by [Fed69, 3.1.21] we conclude that

DF (a)[Tan(BdryU(a+ ru, r), a)] = Tan(S, F (a)),

and, consequently, v ∈ Nor(S, F (a)). If s = reach(S, F (a)), then by [Fed59, 4.11,
4.8(12)] we conclude that s > 0 and U(F (a) + s(v/|v|), s) ∩ S = ∅. Therefore,

either U(F (a) + s(v/|v|), s) ⊆W or U(F (a) + s(v/|v|), s) ⊆ Rn ∼ ClosW .
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If γ(t) = F (a+ tu) for t ∈ R, noting that γ̇(0) • v = 1 and

Dt(|γ(t)− F (a)− s(v/|v|)|)(0) = −1/|v|,

we conclude that γ(t) ∈ U(F (a) + s(v/|v|), s) for t > 0 sufficiently small,

U(F (a) + s(v/|v|), s) ⊆W and νF (a, u) ∈ N(F [A]).

Therefore νF [N(A)] ⊆ N(F [A]) and replacing F by F−1 and A by F [A] we
conclude

νF [N(A)] = N(F [A]).

4.19 Theorem. Suppose A is a closed subset of Rn and F : Rn → Rn is a
diffeomorphism of class 2 onto Rn.

Then (see 4.18) DF (a)[TA(a, u)] = TF [A](νF (a, u)) and

QF [A](νF (a, u)) ◦
⊙

2(DF (a)|TA(a, u))

= |(DF (a)−1)∗(u)|−1QA(a, u)

+ (D2 F (a)|
⊙

2 TA(a, u)) • ((DF (a)−1)∗(u)/|(DF (a)−1)∗(u)|),

for H n−1 a.e. (a, u) ∈ N(A).

Proof. We define, for (a, u) ∈ Rn × (Rn ∼ {0}),

g(a, u) = (DF (a)−1)∗(u)/|(DF (a)−1)∗(u)|.

If (a, u) ∈ Rn × (Rn ∼ {0}), (τ, σ) ∈ Rn ×Rn and

ζ = (DF (a)−1)∗(σ) − ((DF (a)−1)∗ ◦D(DF )(a)(τ)∗ ◦ (DF (a)−1)∗)(u),

then we compute

D g(a, u)(τ, σ) = |(DF (a)−1)∗(u)|−1(ζ − (g(a, u) • ζ)g(a, u)).

If θ and ψ are as in 4.14, noting 4.18, we define the measure µ over Rn×Rn by

µ(S) =

∫ ∗

N(F [A])∩S

θ ◦ νF−1dH n−1 whenever S ⊆ Rn ×Rn,

and we apply 2.11 with γ = Lip(νF |νF−1 [K]) to conclude that
∫

N(F [A])∩K

θ ◦ νF−1dH n−1 ≤ γn−1

∫

N(A)∩νF−1 [K]

θ dH n−1 <∞,

whenever K ⊆ Rn × Sn−1 is compact. Combining 4.18, 4.14(1)(2) and 2.12 we
conclude

Tann−1(ψ, (a, u)) is a (n− 1) dimensional plane,

TA(a, u) = p[Tann−1(ψ, (a, u))], QA(a, u)(τ, τ1) = τ • σ1,

D νF (a, u)[Tan
n−1(ψ, (a, u))] = Tann−1(µ, νF (a, u)),

DF (a)[TA(a, u)] = TF [A](νF (a, u)),

QF [A](νF (a, u))(DF (a)(τ),DF (a)(τ1)) = DF (a)(τ) •D g(a, u)(τ1, σ1),

whenever τ ∈ TA(a, u), τ1 ∈ TA(a, u), (τ1, σ1) ∈ Tann−1(ψ, (a, u)) and for H n−1

a.e. (a, u) ∈ N(A). Since

DF (a)(τ) • g(a, u) = |(DF (a)−1)∗(u)|−1u • τ = 0

whenever (a, u) is a smooth point of N(A) and τ ∈ TA(a, u) by 4.12, the con-
clusion follows.
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5 Curvature and second-order-rectifiable strata

We introduce a natural stratification in 5.1 and we extend a classical integral-
geometric formula to arbitrary closed sets in 5.6. Then we prove in 5.9 the
structural theorem on the second fundamental form announced in section 1.

5.1 Definition. Suppose A is a closed subset of Rn. For each 0 ≤ m ≤ n, we
define the m-th stratum of A by

A(m) = A ∩ {a : dim ξ−1
A {a} = n−m}.

[The dimension of a convex subset K of Rn is the dimension of the affine hull
of K and it is denoted by dimK.]

5.2 Remark. Noting [MS17, 4.4, 4.12] and [Fed69, 3.2.14], we observe that
A(m) can be covered, up to a set of H m measure zero, by countably many
m dimensional submanifolds of class 2 of Rn and there exists countably many
m rectifiable Borel subsets Bi of Rn (in particular, H m(Bi) < ∞) such that
Bi ⊆ Bi+1 whenever i ≥ 1 and

A(m) =
⋃∞

i=1 Bi.

5.3 Remark. We infer from [MS17, 4.4] that

dimDis(A, a) = dim ξ−1
A {a} whenever a ∈ A.

Moreover, from 4.2, if m = 0, . . . , n − 1 and a ∈ A(m) then there exists
P ∈ G(n, n−m) such that N(A, a) ⊆ P ∩ Sn−m−1 and

0 < H
n−m−1(N(A, a)) <∞.

In particular, {a : N(A, a) 6= ∅} =
⋃n−1

m=0A
(m) and {a : N(A, a) = ∅} = A(n).

5.4 Remark. Combining 4.18 and 5.3 we conclude that if F : Rn → Rn is a
diffeomorphism of class 2 onto Rn and m = 0, . . . , n, then

F [A](m) = F [A(m)].

5.5 Lemma. If A ⊆ Rn is closed, 0 ≤ m ≤ n − 1 is an integer and x ∈
ξ−1
A [A(m)] satisfies 4.8(1)(2), then dim imapD ξA(x) ≤ m.

In particular, dim TA(a, u) ≤ m whenever (a, u) is a smooth point of N(A) such
that a ∈ A(m).

Proof. Let a = ξA(x), 1 < λ < ρ(A, x), B = {y : ρ(A, y) ≥ λ} and C =
ξ−1
A [{a}] ∩ B. Then C is a convex subset of Rn and dimC = dim ξ−1

A {a}. In
fact, C = {y : δA(a + λ(y − a)) = λ|y − a|} by 4.6 and 3.4 and C is convex by
[Fed59, 4.8(2)]. Moreover, if U is the relative interior of ξ−1

A {a} (the relative
interior of a convex subset K of Rn is the interior of K relative to the affine
hull of K), then {y : a+ λ(y− a) ∈ U} is contained in C and it is open relative
to the affine hull of ξ−1

A {a}. Therefore dimC = dim ξ−1
A {a}.

By 3.6(2), let F : Rn → Rn be an extension of ξA|B that is differentiable
at x with DF (x) = apD ξA(x). Since F (y) = a whenever y ∈ C, we conclude
that DF (x)(y−x) = 0 whenever y ∈ C. Therefore DF (x)(y−x) = 0 whenever
y belongs to the affine hull of C. Since dimC = n − m, we conclude that
dim imapD ξA(x) ≤ m. The postscript readily follows.
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5.6 Theorem. If f is a (H n−1
xN(A)) integrable R valued function, then

∫

N(A)|A(m)

f(a, u)

m
∏

i=1

1

(1 + κi(a, u)2)1/2
dH n−1(a, u)

=

∫

A(m)

∫

{z}×N(A,z)

f dH n−m−1 dH mz,

where κ1, . . . , κn−1 are defined as in 4.14.

Proof. We assume f ≥ 0 on H n−1 almost all of N(A), since, as usual, the
general case follows from [Fed69, 2.4.4]. Since A(0) is a countable set by 5.2, the
case m = 0 is a consequence of [Fed69, 2.4.8]. Therefore we assume m ≥ 1.

Suppose λ > 1, Nr is as in 3.10 for every 0 < r < ∞ and Bi is as in
5.2 for every integer i ≥ 1. We notice that κm+1(a, u) = ∞ for H n−1 a.e.
(a, u) ∈ N(A)|A(m), by 5.5. Therefore for every i ≥ 1 we apply [Fed69, 3.2.22(3)]
with W , Z and f replaced by ψA[N1/i]∩p−1[Bi], Bi and p and, noting 4.14(1),
we conclude

∫

ψA[N1/i]∩p−1[Bi]

f(a, u)

m
∏

i=1

1

(1 + κi(a, u)2)1/2
dH n−1(a, u)

=

∫

Bi

∫

p−1[{z}]∩ψA[N1/i]

f dH n−m−1 dH mz.

Letting i→ ∞, the conclusion comes from [Fed69, 2.4.7], 4.3 and 5.2.

5.7 Remark. We can combine 5.5, 5.6 and 4.16 to infer the following explicit
formulas for the support measures of A: for every m = 0, . . . , n− 1,

µm(A;B|A(m)) =
1

(n−m)α(n−m)

∫

A(m)

H
n−m−1{v : (z, v) ∈ B}dH mz,

whenever B ⊆ N(A) is H n−1 measurable. Ifm = n−1 this formula is contained
in [HLW04, Proposition 4.1]. If reach(A) > 0, the same formulas are proved in
[Hug98, Theorem 3.2].

5.8 Remark. It follows by 5.6 that if S ⊆ A(m) and H m(S) = 0, then

dimTA(a, u) ≤ m− 1 for H
n−1 a.e. (a, u) ∈ N(A)|S.

5.9 Theorem. If A is a closed subset of Rn and 0 ≤ m ≤ n − 1, then there
exists a Borel set R ⊆ A(m) such that

(1) H m(A(m) ∼ R) = 0;

(2) H n−1(N(A)|S) = 0, whenever S ⊆ R such that H m(S) = 0;

(3) QA(a, u) = −bM (a) • u for H n−1 a.e. (a, u) ∈ N(A)|R ∩M , whenever
M is an m dimensional submanifold of class 2 of Rn.

Proof. Suppose λ > 1 and Nr is as in 3.10 for r > 0. For every integer i ≥ 1
we let Ci = ψA[N1/i] and Bi to be as in 5.2. By 3.10(1) and [Fed69, 2.2.17] we
notice that H m

xBi and p#(H
n−1

xCi) are Radon measures of Rn whenever
i ≥ 1. Therefore for every i ≥ 1 and j ≥ 1 we can apply [Fed69, 2.9.2] with
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φ and ψ replaced by H m
xBi and p#(H

n−1
xCj) to infer the existence of a

Borel set Ri,j ⊆ Bi such that H m(Bi ∼ Ri,j) = 0 and

H
n−1(Cj |S) = 0 whenever S ⊆ Ri,j such that H

m(S) = 0.

If we let R =
⋃∞

i=1

⋂∞
j=1 Ri,j , then one may readily check, using 4.3 and 5.2,

that R is a Borel set satisfying (1) and (2).
Suppose M is a m dimensional submanifold of class 2 of Rn, Z is the set of

a ∈ A(m) ∩M such that N(A, a) ⊆ Nor(M,a) and N = Nor(M) ∩ (M × Sn−1).
Since by [Fed69, 2.10.19(4)] we have

Tan(M,a) ⊆ Tanm(H m
xA(m), a) ⊆ Tan(A, a) for H

m a.e. a ∈ A(m) ∩M,

we conclude by 4.2 that H m(A(m) ∩M ∼ Z) = 0. We choose a measure ψ as
in 4.14. Since N(A)|Z ⊆ N , we can use 2.14, 4.14(1)(2), 2.15 and 2.16 to get
that

Tann−1(ψ, (a, u)) = Tann−1(H n−1
xN(A)|Z, (a, u)) = Tan(N, (a, u)),

TA(a, u) = Tan(M,a), QA(a, u) = −bM (a) • u,

for H n−1 a.e. (a, u) ∈ N(A)|Z. Since H n−1(N(A)|R ∩M ∼ Z) = 0 by (2),
the conclusion follows.

5.10 Remark. Noting 5.2 and [San17, 3.23], we can describe QA on the subsets
of R of finite H m measure, in terms of the approximate second fundamental
form introduced in [San17, p. 3].

5.11 Remark. The conclusion of 5.9(2) may fail to hold if we replace “S ⊆ R”
with “S ⊆ A(m)”. Suppose C ⊆ R is compact, 0 < s < 1, 0 < H s(C) <∞,

f(x) = H
s(C ∩ {z : z ≤ x}) whenever x ∈ C,

and g is a primitive of f . Then g is a non-decreasing convex function of class 1
on R. We let A = R2 ∩ {(x, y) : g(x) ≤ y} and S = {(x, g(x)) : x ∈ C} and we
notice that A is a closed convex set,

N(A, (x, g(x))) = {(1 + f(x)2)−1/2(f(x),−1)} whenever x ∈ R,

S ⊆ A(1), H 1(S) = 0 and H 1(q(N(A))) > 0. Since q(N(A)|A ∼ S) is a
countable subset of S1, we conclude that H 1(N(A)|S) > 0. We notice that
dimTA(a, u) = 0 for H 1 a.e. (a, u) ∈ N(A)|S by 5.8. Therefore κ1(a, u) = ∞
for H 1 a.e. (a, u) ∈ N(A)|S; see 4.14.

6 Lusin’s condition (N) for the normal bundle

We establish the area formula for the generalized Gauss map in 6.6 and the
general criterion for second-order-differentiability in 6.10 for the special class of
closed subsets whose normal bundle satisfies the Lusin condition (N) in 6.1.

6.1 Definition. Suppose A ⊆ Rn is a closed set, Ω ⊆ Rn is an open set and
1 ≤ m < n is an integer. We say thatN(A) satisfies them dimensional (Lusin’s)
condition (N) in Ω if and only if

H
n−1(N(A)|S) = 0, whenever S ⊆ A ∩ Ω such that H

m(A(m) ∩ S) = 0.

In case Ω = Rn, we say that N(A) satisfies the m dimensional (Lusin’s) condi-
tion (N).
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6.2 Remark. If A is a closed subset of Rn, Ω is an open subset of Rn and
C = Clos(A∩Ω), then one may easily check that N(A)|Ω = N(C)|Ω. Therefore
A(m) ∩ Ω = C(m) ∩ Ω for every m = 0, . . . , n by 5.3 and QA(ζ) = QC(ζ)
for H n−1 a.e. ζ ∈ N(A)|Ω by 4.17. Consequently, if N(A) satisfies the m
dimensional condition (N), then N(C) satisfies the m dimensional condition
(N) in Ω.

6.3 Remark. If H n−1(N(A)) > 0, then there is at most one integer m =
0, . . . , n− 1 so that N(A) satisfies the m dimensional condition (N).

6.4 Lemma. Suppose U ⊆ Rn is open, A ⊆ Rn is closed, N(A) satisfies the
m dimensional condition (N) in U and F : Rn → Rn is a diffeomorphism of
class 2 onto Rn.

Then N(F [A]) satisfies the m dimensional condition (N) in F [U ].

Proof. Suppose S ⊆ F [A] ∩ F [U ] such that H m(F [A](m) ∩ S) = 0. Since
F−1[S] ⊆ A ∩ U and 0 = H m(F−1[S ∩ F [A](m)]) = H m(F−1[S] ∩ A(m)) by
5.4, we conclude that

H
n−1(N(A)|F−1[S]) = 0.

Therefore, by 4.18,

νF [N(A)|F−1[S]] = N(F [A])|S, H
n−1(N(F [A])|S) = 0.

6.5 Remark. If in 6.1 we replace H n−1(N(A)|S) = 0 by

H
n−1({v : (a, v) ∈ N(A)|S}) = 0,

then the resulting property is not preserved under diffeomorphisms of class 2,
as the following example shows for n = 3 and m = 2.

If A = R3 ∩ {(x, y, z) : z = |x|} and F : R3 → R3 is defined by F (x, y, z) =
(x, y, z + 1− x2 − y2) for (x, y, z) ∈ R3, then

A(0) = ∅, A(1) = R3 ∩ {(x, y, z) : x = z = 0}, A(2) = A ∼ A(1),

H
2({v : (a, v) ∈ N(A)|S}) = 0 whenever S ⊆ A and H

2(S ∩ A(2)) = 0,

{v : (a, v) ∈ N(F [A])|F [A](1)} has not empty relatively interior in S2.

The area formula for the generalized Gauss map in the next result is a
consequence of 4.14(3) and 5.6.

6.6 Theorem. Suppose 1 ≤ m < n is an integer, Ω ⊆ Rn is open, A ⊆ Rn is
closed and N(A) satisfies the m dimensional condition (N) in Ω.

Then for every H n−1 measurable set B ⊆ N(A)|Ω,

∫

Sn−1

H
0{a : (a, u) ∈ B} dH n−1u

=

∫

A

∫

{z}×{v:(z,v)∈B}

| discrQA|dH
n−m−1dH mz.

Proof. If κ1, . . . , κn−1 are as in 4.14, we notice, by 5.2 and 5.9, that

κm+1(a, u) = ∞ and discrQA(a, u) =
m
∏

i=1

κi(a, u),
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for H n−1 a.e. (a, u) ∈ N(A)|Ω. Therefore, using 4.14(3) and 5.6, we compute

∫

Sn−1

H
0{a : (a, v) ∈ B}dH n−1v

=

∫

B

n−1
∏

i=1

|κi(a, u)|(1 + κi(a, u)
2)−1/2dH n−1(a, u)

=

∫

B|A(m)

| discrQA(a, u)|

m
∏

i=1

(1 + κi(a, u)
2)−1/2dH n−1(a, u)

=

∫

A(m)

∫

{z}×{v:(z,v)∈B}

| discrQA|dH
n−m−1dH mz,

whenever B ⊆ N(A)|Ω is H n−1 measurable.

We need the following elementary estimate in the proof of 6.9.

6.7 Lemma. Suppose V and W are finite dimensional vector spaces with inner
products such that dimV = m and dimW = n, f ∈ Hom(V,W ), 0 < t < ∞

and b ∈
⊙2

W such that b(w,w) ≤ t|w|2 whenever w ∈ W .
Then

‖f‖2 trace(b) + (1− n)t‖f‖2 ≤ trace (b ◦
⊙

2 f) ≤ mt‖f‖2.

Proof. By [Fed69, 1.7.3] we can choose an orthonormal basis v1, . . . , vm of V
and an orthonormal basis w1, . . . , wn of W such that

(f∗ ◦ f)(vi) • vj = 0 and b(wi, wj) = 0,

whenever i 6= j. If we define c(w, z) = t(w • z) − b(w, z) whenever w, z ∈ W ,
noting ‖f‖ = ‖f∗‖ by [Fed69, 1.7.6], we compute

trace(c ◦
⊙

2 f) =
∑m

i=1

∑n
j=1(f(vi) • wj)

2c(wj , wj)

=
∑n

j=1 |f
∗(wj)|

2c(wj , wj) ≤ ‖f‖2(nt− trace b),

trace(c ◦
⊙

2 f) = t
∑m

i=1 |f(vi)|
2 − trace(b ◦

⊙

2 f) ≥ t‖f‖2 − trace(b ◦
⊙

2 f).

Combining the two equations we get the left side. The right side is trivial.

6.8 Definition. If 0 < t <∞, a ∈ Rn an T ∈ G(n, n− 1), we define

Ct(T, a) = Rn ∩ {x : |T♮(x− a)| < t, |T⊥
♮ (x − a)| < t}.

The criterion for second-order-differentiability in 6.10, that is the central
result of this section, can be deduced by standard arguments from the somewhat
more subtle result in 6.9.

6.9 Theorem. If 1 ≤ m < n are integers, then there exist 0 < δ < ∞ and
0 < σ <∞ such that the following statement holds.

If A ⊆ Rn is a closed set, N(A) satisfies the m dimensional condition (N),
a ∈ A, 0 < r <∞, T ∈ G(n, n− 1) and the following two hypothesis hold,

(1) there exists v ∈ Sn−1 such that T♮(v) = 0 and

sup{v • (x− a) : x ∈ Clos(A ∩ C4r(T, a))} ≤ r/16;
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(2) there exists a nonnegative H n−1 measurable function f on N(A) such
that

traceQA(x, u) ≤ f(x, u) for H
n−1 a.e. (x, u) ∈ N(A)|C2r(T, a),

∫

C2r(T,a)∩A

∫

{z}×N(A,z)

fmdH n−m−1dH mz ≤ δ;

then there exists a Borel set M ⊆ N(A)|ClosC(11/8)r(T, a) such that

δA(x + (r/2)u) = r/2 whenever (x, u) ∈M,

H
n−m−1{v : (x, v) ∈M} > 0 whenever x ∈ p[M ],

and H m(p[M ]) ≥ σrm.

Proof. We assume a = 0 and we let Ct = Ct(T, 0) whenever 0 < t <∞.
By 6.2 we notice that N(Clos(A∩C4r)) satisfies them dimensional condition

(N) in C4r and we replaceA with Clos(A∩C4r). We consider the diffeomorphism
F : Rn → Rn given by

F (x) = x+ (r/8)v − (4r)−1|T♮(x)|
2v whenever x ∈ Rn

and we compute

F−1(x) = x− (r/8)v + (4r)−1|T♮(x)|
2v,

DF (x)(u) = u− (2r)−1(T♮(x) • T♮(u))v,

DF−1(x)(u) = u+ (2r)−1(T♮(x) • T♮(u))v,

D2 F−1(x)(u1, u2) = (2r)−1(T♮(u1) • T♮(u2))v,

whenever x, u, u1, u2 ∈ Rn. Moreover F−1[ClosCr] ⊆ ClosC(11/8)r,

sup
x∈A

F (x) • v ≤ 3r/16, sup
x∈A,|T♮(x)|≥r

F (x) • v ≤ −r/16.

Suppose L is the set of (z, η) ∈ (F [A]∩ClosCr)×Sn−1 such that (w−z)•η ≤ 0
whenever w ∈ F [A], and we observe that L is compact and

L ⊆ N(F [A])|F [ClosC(11/8)r].

We prove (see 4.18) that if (z, η) ∈ L then

(∗∗) δA(F
−1(z) + (r/2)(q ◦ νF−1)(z, η)) = r/2.

In fact, if x = F−1(z), ζ = (q ◦ νF−1)(z, η) and y ∈ A, we compute

|DF (x)∗(η)|−1η = (DF (x)∗)−1(ζ) = ζ + (2r)−1(v • ζ)T♮(x),

0 ≥ (DF (x)∗)−1(ζ) • (F (y)− F (x))

= ζ • (y − x) + (4r)−1(|T♮(x)|
2 − |T♮(y)|

2)(v • ζ)

+ (2r)−1(T♮(x) • (y − x))(v • ζ)

= ζ • (y − x)− (4r)−1|T♮(y − x)|2(v • ζ),

|y − x− (r/2)ζ|2 = |y − x|2 + (r2/4)− r(y − x) • ζ

≥ |y − x|2 + (r2/4)− (1/4)|T♮(y − x)|2(v • ζ) ≥ r2/4.
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If C = {(1 − t)F (0) + tx : x ∈ T ∩ B(0, 4r), 0 ≤ t < ∞} then C is a
closed convex set and DualNor(C,F (0)) = Tan(C,F (0)) = {z − F (0) : z ∈ C}.
Observe {z : z • v ≤ 0, |T♮(z)| ≤ 4r} ⊆ C. Then the following assertions will be
proved,

Nor(C,F (0)) ∩ Sn−1 ⊆ q[L],

H
n−1(Nor(C,F (0)) ∩ Sn−1) ≥ L

n−1(U(0, 1/(1 + 322)1/2)).

Let η ∈ Nor(C,F (0)) ∩ Sn−1. If z ∈ F [A] and (z − F (0)) • η > 0, then z /∈ C
and |T♮(z)| ≤ 4r, whence we deduce that z • v > 0, |T♮(z)| < r, |T⊥

♮ (z)| < 3r/16
and z ∈ Cr. Therefore if s = sup{(z − F (0)) • η : z ∈ F [A]} > 0, then we select
z0 ∈ F [A] such that (z0−F (0))•η = s, we observe that (w−z0)•η ≤ 0 for every
w ∈ F [A] and we conclude that (z0, η) ∈ L. Moreover a direct computation
shows that

Sn−1 ∩ Nor(C,F (0)) = Sn−1 ∩ {η : 32/(1 + 322)1/2 ≤ η • v ≤ 1}

and the desired lower bound for the H n−1 measure of Sn−1 ∩ Nor(C,F (0))
readily follows.

We notice that N(F [A]) satisfies the m dimensional condition (N) in F [C4r]
by 6.4. By 5.9, 4.19, 4.12 and (∗∗) we infer that

dimTF [A](z, η) = m, DF−1(z)[TF [A](z, η)] = TA(νF−1(z, η)),

QF [A](z, η) ≥ 0, QA(νF−1(z, η))(τ, τ) ≥ −(r/2)−1|τ |2

QF [A](z, η) = |(DF (F−1(z)))∗(η)|QA(νF−1(z, η)) ◦
⊙

2

(

DF−1(z)|TF [A](z, η)
)

− (D2 F−1(z)|
⊙

2 TF [A](z, η)) •DF (F
−1(z))∗(η)

for H n−1 a.e. (z, η) ∈ L and for every τ ∈ TA(νF−1(z, η)). In particular,
by [Fed69, 2.10.25], the same conclusion holds for H m a.e. z ∈ p[L] and for
H n−m−1 a.e. η ∈ {ζ : (z, ζ) ∈ L}. We combine 6.6 and the classical inequality
relating the arithmetic and the geometric means of a family of non negative
numbers (see [Roc70, pp. 29]) to estimate

H
n−1(q[L]) ≤

∫

Sn−1

H
0{z : (z, η) ∈ L}dH n−1η

=

∫

F [A]

∫

{z}×{η:(z,η)∈L}

discrQF [A]dH
n−m−1dH mz

≤ m−m

∫

F [A]

∫

{z}×{η:(z,η)∈L}

(traceQF [A])
mdH n−m−1dH mz.

We observe that if z ∈ ClosCr, η ∈ Sn−1 and S ∈ G(n,m), then

‖DF (F−1(z))‖ ≤ 3/2, ‖DF−1(z)‖ ≤ 3/2,

| trace
(

(D2 F−1(z)|
⊙

2 S) •DF (F
−1(z))∗(η)

)

| ≤ (3/4)mr−1.

Therefore, using 6.7, we infer there exists c1 > 0 depending only on m such that

(traceQF [A](z, η))
m ≤ c1(f(νF−1(z, η))m + r−m),
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for H n−1 a.e. (z, η) ∈ L.
By 3.10(1) and 4.3 we infer that L is a countable union of compact sets with

finite H
n−1 measure. Therefore D = {z : H

n−m−1{ζ : (z, ζ) ∈ L} > 0} is a
Borel subset of Rn by [Fed69, 2.10.26, p. 190]. We let

M = νF−1 [L|D],

and we notice that M is a Borel subset of N(A) by 4.18, p[M ] ⊆ ClosC(11/8)r,
δA(x + (r/2)u) = r/2 whenever (x, u) ∈ M and H

n−m−1{v : (x, v) ∈ M} > 0
whenever x ∈ p[M ]. By [Fed69, 2.2.7], 5.3 and 2.11, we infer the following
estimates,

Lip(F |ClosC(11/8)r) ≤ sup
z∈ClosC(11/8)r

‖DF (z)‖ ≤ 27/16,

∫

F [A]

H
n−m−1(Lz)dH

mz ≤ (27/16)mH
n−m−1(Sn−m−1)H m(p[M ]),

∫

F [A]

∫

{ζ:(z,ζ)∈L}

f(νF−1(z, η))mdH n−m−1ηdH mz

≤ c2

∫

A

∫

{ζ:(z,ζ)∈M}

f(z, η)mdH n−m−1ηdH mz,

where c2 is a constant depending on m and n. Therefore,

H
n−1(q[L]) ≤ m−mc1c2

∫

A

∫

{ζ:(z,ζ)∈M}

f(z, η)mdH n−m−1ηdH mz

+m−mc1(27/16)
m

H
n−m−1(Sn−m−1)H m(p[M ])r−m,

whence we get the conclusion.

6.10 Corollary. Suppose 1 ≤ m < n are integers, A ⊆ Rn is a closed set with
locally finite H m measure, N(A) satisfies the m dimensional condition (N),
for H m a.e. a ∈ A there exists v ∈ Sn−1 such that

lim
r→0

r−1 sup{v • (x− a) : x ∈ B(a, r) ∩A} = 0,

and there exists a nonnegative H
n−1 measurable function f on N(A) such that

traceQA(a, u) ≤ f(a, u) for H
n−1 a.e. (a, u) ∈ N(A),

∫

K∩A

∫

{z}×N(A,z)

fmdH n−m−1dH mz <∞,

whenever K ⊆ Rn × Sn−1 is compact.
Then H m(A ∼ A(m)) = 0. In particular, A is countably (H m,m) rectifiable

of class 2.

Proof. Combining [Fed69, 2.10.19(5)] and 6.9 and [Fed69, 2.4.11], we infer that

lim inf
r→0

H m(A(m) ∩B(a, r))

H m(A ∩B(a, r))
> 0 for H

m a.e. a ∈ A.
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If V = {(a,B(a, r)) : a ∈ Rn, 0 < r < ∞} we apply [Fed69, 2.8.18, 2.9.12]
with φ replaced by H m

xA to deduce that V is a H m
xA Vitali relation, the

(H m
xA, V ) density function of A(m) is positive on H

m almost all of A and
it is H m

xA almost equal to the characteristic function of A(m). Therefore
H m(A ∼ A(m)) = 0 and the postscript follows from 5.2.

6.11 Remark. As already mentioned in section 1, this theorem can be compared
to the classical result in [Tru89, Theorem 1] asserting the twice superdifferen-
tiability of viscosity subsolutions of certain second order elliptic operators. The
central idea of [Tru89, Theorem 1] is to use the Alexandroff maximum principle
in [GT01, 9.1], which in turn is based on the area formula for functions, to
get a lower bound for the measure of the set of superdifferentiability points of
subsolutions; whence the conclusion follows by classical density arguments. The
same strategy has be adapted to our case, using the area formula in 6.6.

7 Generalized minimal submanifolds

Following [Sav17] we introduce the class of viscosity minimal sets in 7.1 and
we establish the Lusin condition (N) for their normal bundle in 7.5. Second
order differentiability almost everywhere is deduced in 7.8 as an application of
the results in section 6. Finally, a regularity result for stationary varifolds of
arbitrary codimension is given in 7.11.

7.1 Definition. Suppose 1 ≤ m < n are integers and A ⊆ Rn is closed. We say
that A is a m dimensional viscosity minimal set of Rn if and only if whenever
x ∈ A and ψ is a R valued function of class 2 on a neighbourhood of x such that
ψ|A has a local maximum at x and gradψ(x) 6= 0, then there exists L ∈ G(n,m)
such that

gradψ(x) ∈ L⊥ and ∆x+Lψ(x) ≤ 0,

where ∆x+L denotes the Laplace operator on the affine subspace {x+u : u ∈ L}.

7.2 Remark. The notion of viscosity minimal set has been recently introduced in
[Sav17], where an Allard-type local regularity result is proved for graphical vis-
cosity minimal sets ([Sav17, Theorem 1.5]) by means of nonvariational methods
and weak Harnack inequality.

Every m dimensional minimal submanifolds of class 2 is an m dimensional
viscosity minimal set, see [Sav17, p. 2].

7.3 Lemma. Suppose 1 ≤ m < n are integers, T ∈ G(n, n − 1), η ∈ T⊥,
|η| = 1, f : T → T⊥ is pointwise differentiable of order 2 at 0, f(0) = 0,
D f(0) = 0, χ1 ≥ . . . ≥ χn−1 are the eigenvalues of ptD2 f(0) • η and A is a m
dimensional viscosity minimal set of Rn such that 0 ∈ A and

A ∩ V ⊆ {z : z • η ≤ f(T♮(z)) • η},

for some open neighbourhood V of 0.
Then

m
∑

i=1

χi ≥ 0.
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Proof. For ǫ > 0 we let

Pǫ(ζ) = (1/2)(ptD2 f(0)(ζ2) • η + ǫ|ζ|2)η whenever ζ ∈ T ,

Mǫ = {ζ + Pǫ(ζ) : ζ ∈ T },

ψǫ(z) =

{

δMǫ(z) if z • η > Pǫ(T♮(z)) • η
−δMǫ(z) if z • η ≤ Pǫ(T♮(z)) • η

and we observe that ψǫ is of class ∞ on a neighbourhood of 0 by [GT01, 14.16],
ψǫ|A has a local maximum at 0 and ψǫ(ζ + Pǫ(ζ)) = 0 whenever ζ ∈ T . Differ-
entiating the last equation we get

gradψǫ(0) = η and gradψǫ(0) •D
2 Pǫ(0) = −D2 ψǫ(0)|T × T.

Therefore there exists L ∈ G(n,m) such that

η ∈ L⊥ and ∆Lψǫ(0) ≤ 0,

and, noting that −χ1 − ǫ, . . . ,−χn−1 − ǫ are the eigenvalues of D2 ψǫ(0)|T × T ,
we employ [JT03, Lemma 2.3] to conclude

∑m
i=1(χi + ǫ) ≥ 0.

Letting ǫ→ 0, we get the conclusion.

We need the following elementary consequence of coarea formula in 7.5.

7.4 Lemma. Suppose 0 ≤ µ ≤ m are integers, W is a (H m,m) rectifiable and
H m measurable subset of Rn, S ⊆ Rν is a countable union of sets with finite
H µ measure and f :W → Rν is a Lipschitzian map such that

H
m(W ∩ {w : ‖

∧

µ

(

(H m
xW,m) apD f(w)

)

‖ = 0}) = 0,

H
µ(S ∩ {z : H

m−µ(f−1{z}) > 0}) = 0.

Then H m(f−1[S]) = 0.

Proof. Firstly we reduce the problem to the case H µ(S) <∞; then, by [Fed69,
2.1.4, 2.10.26], to the case of a Borel subset S of Rν . Now the conclusion comes
from the coarea formula in [Fed78, p. 300].

7.5 Theorem. If A is a m dimensional viscosity minimal set and A is a count-
able union of sets with finite H

m measure, then N(A) satifies the m dimen-
sional condition (N) and

traceQA(a, u) ≤ 0 for H
n−1 a.e. (a, u) ∈ N(A).

Proof. For λ > m we let Nr to be as in 3.10 whenever r > 0.
We select r > 0 such that 3.10(3)(4) holds at H n−1 a.e. x ∈ Nr; then we

fix x ∈ Nr to be one of these points. We let T = {v : v •νA(x) = 0}, we assume
ξA(x) = 0 and we notice that T♮(x) = 0. Suppose f : T → T⊥ is a Lipschitzian
function pointwise differentiable of order 2 at 0 such that D f(0) = 0,

ptD2 f(0)(u, v) • νA(x) = − apDνA(x)(u) • v whenever u, v ∈ T ,
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U(x, s) ∩ δ−1
A {r} = U(x, s) ∩ {χ+ f(χ) : χ ∈ T } for some 0 < s < r/2.

We let U = T♮[U(x, s) ∩ {χ + f(χ) : χ ∈ T }] and g(ζ) = f(ζ) − x whenever
ζ ∈ T . Since U is open relative to T , the set V = {y−x : y ∈ T−1

♮ [U ]∩U(x, s)}
is open in Rn and we claim that

V ∩ A ⊆ {z : z • νA(x) ≤ g(T♮(z)) • νA(x)}.

In fact, if y ∈ U(x, s) ∩ T−1
♮ [U ] and y − x ∈ A, then we notice that

T♮(y) + f(T♮(y)) ∈ U(x, s) ∩ δ−1
A {r}, |T♮(y) + f(T♮(y))− y| < r,

and we compute

r ≤ |T♮(y) + f(T♮(y))− (y − x)| = r − (y − f(T♮(y))) • νA(x);

whence the claim readily follows. If χ1 ≤ . . . ≤ χn−1 are the eigenvalues of
apD νA(x)|T , then 1 − χ1r, . . . , 1 − χn−1r are the eigenvalues of apD ξA(x)|T
by 3.5 and −χ1, . . . ,−χn−1 are the eigenvalues of ptD2 g(0) • νA(x). Therefore
we apply 7.3 with f and η replaced by g and νA(x) to conclude that

m
∑

i=1

χi ≤ 0.

Since χj ≥ −(λ− 1)−1r−1 whenever j = 1, . . . , n− 1 by 3.10(2), we conclude

χj − (m− 1)(λ− 1)−1r−1 ≤
m
∑

i=1

χi ≤ 0 and χj < r−1,

whenever j = 1, . . . ,m; therefore,

‖
∧

m

(

(H n−1
xNr, n− 1) apD ξA(x)

)

‖ > 0.

In particular all the assertions of this paragraph hold for H n−1 a.e. x ∈ Nr and
for L 1 a.e. r > 0.

If x ∈ A, r > 0 and H n−m−1(ξ−1
A [{x}] ∩Nr) > 0, then by 3.10(1), 4.3 and

5.3 we conclude that

H
n−m−1(N(A, x)) > 0 and x ∈

⋃m
i=0A

(i).

Suppose now S ⊆ A such that H m(S ∩ A(m)) = 0. Since H m(A(i)) = 0
whenever 0 ≤ i ≤ m− 1 by 5.2, we get

H
m(S ∩ {x : H

n−m−1(ξ−1
A [{x}] ∩Nr) > 0}) = 0 whenever r > 0,

and, employing 3.10(1)(2) and 7.4, we infer that

H
n−1(ξ−1

A [S] ∩Nr) = 0 for L
1 a.e. r > 0.

We use 3.10(1) to get H n−1(ψA[Nr]|S) = 0 for L 1 a.e. r > 0 and 4.3 to
conclude H n−1(N(A)|S) = 0. Therefore N(A) satisfies the m dimensional
condition (N).
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Employing 5.9, 3.10(1) and 4.3 we get that dim TA(ψA(x)) = m for H n−1

a.e. x ∈ Nr and for every r > 0. Therefore, letting κ1, . . . , κn−1 to be as in 4.14,
the proof of 4.14 allows to conclude that

m
∑

j=1

κj(ψA(x))

1 + rκj(ψA(x))
≤ 0,

for H n−1 a.e. x ∈ Nr and for L 1 a.e. r > 0. Choosing a sequence ri > 0
converging to 0 such that for the subset Mi of Nri whose points satisfy the
inequality above, the following condition holds

H
n−1(Nri ∼Mi) = 0 whenever i ≥ 1,

we can easily verify that traceQA(a, u) ≤ 0 for every (a, u) ∈
⋂∞

i=1

⋃∞
j=i ψA[Mj].

Moreover, employing 3.10(1) and 4.3,

H n−1(N(A) ∼
⋂∞

i=1

⋃∞
j=iψA[Mj ]) = 0.

7.6 Remark. A somehow similar approach is adopted in [Alm86, §5, §6] to
prove, among the other things, an equation relating the perpendicular part of
the variational mean curvature of certain varifolds with the principal curvatures
of the level sets of the distance function to the convex hull of their supports (see
[Alm86, §6(2)]).

The idea to deduce the Lusin condition (N) from the fact that the ap-
proximate Jacobian of the nearest point projection ξA is positive on H n−1

almost all of Nr for L
1 a.e. r > 0, originates from unpublished lecture notes

of Ulrich Menne, where the aforementioned approach of [Alm86] is employed to
study a kind of weaker Lusin condition (N) in the case of certain varifolds of
bounded mean curvature.

7.7 Remark. The second conclusion of 7.5 is the natural extension of [CCKS96,
3.4] to viscosity minimal sets.

7.8 Corollary. If A is an m dimensional viscosity minimal set of Rn with
locally finite H m measure and for H m a.e. a ∈ A there exists v ∈ Sn−1 such
that

lim
r→0

r−1 sup{v • (x− a) : x ∈ B(a, r) ∩A} = 0,

then H m(A ∼ A(m)) = 0; in particular A is countably (H m,m) rectifiable of
class 2.

Proof. Combine 6.10 and 7.5.

7.9 Remark. Noting 6.11, this result is the natural extension of [Tru89, Theorem
1] and [CCKS96, 3.5] to viscosity minimal sets.

The remaining part of this section is devoted to state and comment our
regularity result for stationary varifolds. We adopt the notation of [All72].

7.10. Three facts on stationary varifolds, that are immediate consequences of
well known general results in varifold theory, are provided here for reader’s
convenience. Suppose 1 ≤ m ≤ n− 1 are integers.

(1) If V ∈ Vm(Rn) and δV = 0 (i.e. V is an arbitrary m dimensional sta-
tionary varifold) then spt ‖V ‖ is an m dimensional viscosity minimal set.
This follows from [Whi10, Theorem 1].
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(2) If V ∈ Vm(Rn), δV = 0, 0 < d < ∞ and Θm(‖V ‖, x) ≥ d for ‖V ‖ a.e.
x ∈ Rn, then

H
m(A ∩ spt ‖V ‖) ≤ d−1‖V ‖(A) whenever A ⊆ Rn;

in particular, spt ||V ‖ has locally finite H m measure. This follows from
[All72, 5.5(1), 3.5(1), 8.6].

(3) If V ∈ Vm(Rn), δV = 0, 0 < d < ∞ and Θm(‖V ‖, x) ≥ d for ‖V ‖ a.e.
x ∈ Rn, then for ‖V ‖ a.e. x ∈ Rn there exists T ∈ G(n,m) such that

lim
r→0

r−1 sup{δT (y − x) : y ∈ B(x, r) ∩ spt ‖V ‖} = 0.

This follows from [Sim83, 17.11].

7.11 Corollary. If 1 ≤ m ≤ n − 1 are integers, V ∈ Vm(Rn), δV = 0,
0 < d < ∞ and Θm(‖V ‖, x) ≥ d for ‖V ‖ a.e. x ∈ Rn, then the following three
statements hold.

(1) N(spt ‖V ‖) satisfies the m dimensional condition (N) and
∫

Sn−1

H
0{a : (a, u) ∈ B} dH n−1u

=

∫

spt ‖V ‖

∫

{z}×{v:(z,v)∈B}

| discrQspt ‖V ‖|dH
n−m−1dH mz,

for every H n−1 measurable set B ⊆ N(spt ‖V ‖);

(2) traceQspt‖V ‖(a, u) ≤ 0 for H n−1 a.e. (a, u) ∈ N(spt ‖V ‖);

(3) H
m
(

(spt ‖V ‖) ∼ (spt ‖V ‖)(m)
)

= 0; in particular spt ‖V ‖ is countably
(H m,m) rectifiable of class 2.

Proof. Combine 7.10, 7.5, 7.8 and 6.6.

7.12 Remark. In case V is integral, then

traceQspt ‖V ‖(a, u) = 0 for H
n−1 a.e. (a, u) ∈ N(spt ‖V ‖);

this can be deduced combining 7.11(1), 5.9, 5.2 and [Sch09, Corollary 4.2].
However, it is not known if the hypothesis of integrality is essential here.

7.13 Remark. In [Men12] a result similar to 7.11(1) has been announced for
the case of m dimensional integral varifolds V of Rm+1 with mean curvature
h(V ; ·) ∈ Lloc

m (‖V ‖,Rn), ‖δV ‖sing = 0 and m ≥ 2.

7.14 Remark. The main result of [Men13] proves that the support of every m
dimensional integral varifold V of Rn (1 ≤ m ≤ n − 1) with mean curvature
h(V ; ·) ∈ Lloc

1 (‖V ‖,Rn) can be ‖V ‖ almost covered by the union of countablym
dimensional submanifolds of class 2. In this regard, the main novelty in 7.11(3)
lies in the fact that the stationary varifolds are required to be only rectifiable.
Moreover our approach completely differs from [Men13].

7.15 Remark. The regularity result in 7.11 is a substantial consequence of 6.9,
whose proof is based on techniques adapted from the theory of viscosity so-
lutions of elliptic PDE’s. Such a theory has been previously applied to prove
regularity results for integral varifolds of codimension 1 in [Sch04]. In this re-
gard, the conclusions in 7.11(2)(3) are conceptually similar to [Sch04, Theorem
6.1] (notice that, by [San17, 3.23], the conclusion in 7.11(3) implies that spt ‖V ‖
is approximately differentiable of order 2 at H m almost all points of spt ‖V ‖).
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